Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. III. Analysis of seeded plate experiments
Whether its for expediting targeted drug delivery or more generally for the potential risk posed to health through exposure to contaminated environments, the internalization of nanoparticles by biological cells has been the subject of much experimental research. One particular experimental system in...
Saved in:
Published in | Journal of engineering mathematics Vol. 152; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Nature B.V
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Whether its for expediting targeted drug delivery or more generally for the potential risk posed to health through exposure to contaminated environments, the internalization of nanoparticles by biological cells has been the subject of much experimental research. One particular experimental system involving a 2D cell culture exposed to a nanoparticle solution is here modeled mathematically with the goal of identifying both cell-specific and environment-specific properties that govern the rate of nanoparticle uptake and the capacity for internalization by cells. Three models are presented and compared with experimental data. The first model considered, previously used in the literature to analyze experimental measurements, is discounted for its unrealistic behavior and lack of adequate representation of the cells. The predictions of the second and third models, not previously considered, compare favorably with experimental measurements. We find generally that the experimentally measured rates of uptake are foremost dictated by the manner of exposure: unidirectional diffusion toward the 2D cell culture. This rate is then modulated by cell-specific properties. The latter are here represented physically by cell size and internal diffusion rate, and biologically by two phenomenological parameters. We find that for 2D cultures of close-packed cells, the second, finite domain (per unit area) 1D model presented here is appropriate. For cells free in solution or 2D cell cultures distributed at low surface density, or 3D cultures of cells grown on polymeric scaffolds, the third, 3D isolated cell model is more appropriate. |
---|---|
AbstractList | Whether its for expediting targeted drug delivery or more generally for the potential risk posed to health through exposure to contaminated environments, the internalization of nanoparticles by biological cells has been the subject of much experimental research. One particular experimental system involving a 2D cell culture exposed to a nanoparticle solution is here modeled mathematically with the goal of identifying both cell-specific and environment-specific properties that govern the rate of nanoparticle uptake and the capacity for internalization by cells. Three models are presented and compared with experimental data. The first model considered, previously used in the literature to analyze experimental measurements, is discounted for its unrealistic behavior and lack of adequate representation of the cells. The predictions of the second and third models, not previously considered, compare favorably with experimental measurements. We find generally that the experimentally measured rates of uptake are foremost dictated by the manner of exposure: unidirectional diffusion toward the 2D cell culture. This rate is then modulated by cell-specific properties. The latter are here represented physically by cell size and internal diffusion rate, and biologically by two phenomenological parameters. We find that for 2D cultures of close-packed cells, the second, finite domain (per unit area) 1D model presented here is appropriate. For cells free in solution or 2D cell cultures distributed at low surface density, or 3D cultures of cells grown on polymeric scaffolds, the third, 3D isolated cell model is more appropriate. |
ArticleNumber | 18 |
Author | Miklavcic, Stanley J. |
Author_xml | – sequence: 1 givenname: Stanley J. surname: Miklavcic fullname: Miklavcic, Stanley J. |
BookMark | eNotkMlOwzAQQC1UJNrCD3CyxBWXsZ3EybGqWCJVcIGz5doTkZINO0H0F_hqXMpppJk321uQWdd3SMg1hxUHUHeBQ5alDETKOCRpwtQZmfNUSSYUyBmZAwjBIJfygixC2ANAkSdiTn6eTdcPxo-1bZBOw2g-kO4O1NCAbc0G9C2aXYO3NAzv6GtrGmqxaWjl-5aajuL3iL6L2aExnfHU1VU1hfoLaVVj41a0LMsVXUfiEOpA-yoORofuyI8Y2-OKusVuDJfkvDJNwKv_uCRvD_evmye2fXksN-sts0KJkVVOCstRWZtILiETzokkc8K6vChQ5kksS57nYpdhxkFZCUZhqpy0wqaFlUtyc5o7-P5zwjDqfT8dXwhaCq54KrKiiJQ4Udb3IXis9BDvNP6gOeijc31yrqNz_edcK_kLI0J3Ow |
Cites_doi | 10.1007/978-3-030-33459-8 10.1093/toxsci/kfl165 10.1371/journal.pone.0254208 10.21203/rs.3.rs-4373487/v1 10.1109/ICC40277.2020.9149441 10.1016/j.biomaterials.2004.07.050 10.1186/1743-8977-7-36 10.1016/j.nano.2013.08.013 10.3390/toxics10020050 10.1002/anie.201906303 10.1021/acs.langmuir.6b01634 10.1038/srep19103 10.1021/es051043o 10.1007/s10665-024-10395-7 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10665-025-10454-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1573-2703 |
ExternalDocumentID | 10_1007_s10665_025_10454_7 |
GroupedDBID | -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ZWQNP ZY4 ~02 ~EX ABRTQ |
ID | FETCH-LOGICAL-c272t-fd32c1e7cc4313062dd246d2cd899e38432c31882b6e6107c30a7e57d3c2c59c3 |
ISSN | 0022-0833 |
IngestDate | Sat Jul 12 02:55:16 EDT 2025 Thu Jul 03 08:19:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c272t-fd32c1e7cc4313062dd246d2cd899e38432c31882b6e6107c30a7e57d3c2c59c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10665-025-10454-7.pdf |
PQID | 3217152699 |
PQPubID | 2043778 |
ParticipantIDs | proquest_journals_3217152699 crossref_primary_10_1007_s10665_025_10454_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of engineering mathematics |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | ET Whittaker (10454_CR20) 1965 S Ashraf (10454_CR4) 2020; 59 LK Limbach (10454_CR6) 2005; 39 H West (10454_CR10) 2021; 16 M Kumar (10454_CR1) 2017; 5 X-H Yin (10454_CR2) 2022; 10 PM Hinderliter (10454_CR11) 2010; 7 J Crank (10454_CR18) 1956 EA Moelwyn-Hughes (10454_CR17) 1961 J Cui (10454_CR8) 2016; 32 M Zanoni (10454_CR5) 2016; 6 SJ Miklavcic (10454_CR21) 2020 KY Win (10454_CR7) 2005; 26 10454_CR12 M Abramowitz (10454_CR19) 1964 JG Teeguarden (10454_CR3) 2007; 95 10454_CR14 10454_CR13 I Sorrell (10454_CR9) 2014; 10 10454_CR16 10454_CR15 |
References_xml | – volume-title: An illustrative guide to multivariable and vector calculus year: 2020 ident: 10454_CR21 doi: 10.1007/978-3-030-33459-8 – volume: 95 start-page: 300 issue: 2 year: 2007 ident: 10454_CR3 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfl165 – volume: 16 start-page: 0254208 issue: 7 year: 2021 ident: 10454_CR10 publication-title: PLoS ONE doi: 10.1371/journal.pone.0254208 – ident: 10454_CR12 doi: 10.21203/rs.3.rs-4373487/v1 – ident: 10454_CR16 doi: 10.1109/ICC40277.2020.9149441 – volume: 26 start-page: 2713 year: 2005 ident: 10454_CR7 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.07.050 – volume: 7 start-page: 36 year: 2010 ident: 10454_CR11 publication-title: Part Fibre Toxicol doi: 10.1186/1743-8977-7-36 – ident: 10454_CR13 doi: 10.21203/rs.3.rs-4373487/v1 – ident: 10454_CR15 doi: 10.1109/ICC40277.2020.9149441 – volume-title: The mathematics of diffusion year: 1956 ident: 10454_CR18 – volume: 10 start-page: 339 year: 2014 ident: 10454_CR9 publication-title: Nanomed Nanotechnol Biol Med doi: 10.1016/j.nano.2013.08.013 – volume-title: Physical chemistry year: 1961 ident: 10454_CR17 – volume: 5 start-page: 169 issue: 3 year: 2017 ident: 10454_CR1 publication-title: Pharm Nanotechnol – volume: 10 start-page: 50 issue: 2 year: 2022 ident: 10454_CR2 publication-title: Toxics doi: 10.3390/toxics10020050 – volume: 59 start-page: 5438 year: 2020 ident: 10454_CR4 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201906303 – volume-title: Handbook of mathematical functions year: 1964 ident: 10454_CR19 – volume: 32 start-page: 12394 year: 2016 ident: 10454_CR8 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b01634 – volume-title: A course of modern analysis year: 1965 ident: 10454_CR20 – volume: 6 start-page: 19103 year: 2016 ident: 10454_CR5 publication-title: Sci Rep doi: 10.1038/srep19103 – volume: 39 start-page: 9370 issue: 23 year: 2005 ident: 10454_CR6 publication-title: Environ Sci Technol doi: 10.1021/es051043o – ident: 10454_CR14 doi: 10.1007/s10665-024-10395-7 |
SSID | ssj0009842 |
Score | 2.3823788 |
Snippet | Whether its for expediting targeted drug delivery or more generally for the potential risk posed to health through exposure to contaminated environments, the... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Cell culture Diffusion rate Exposure Mathematics Nanoparticles One dimensional models |
Title | Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. III. Analysis of seeded plate experiments |
URI | https://www.proquest.com/docview/3217152699 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1Be4EDHwVEoaA5cDOOkvWu13tsEVVTqT21Um_Wej2WolI3qh0k-An8ama9_gxUolysZBOtkp2X2TfOvLeMfdKZ1JldmHChEh2KqBChxliGRkuhdCG1Nk23xXl8cilOr-TV0DrUqEvqbGZ__lVX8j9RpTGKq1PJPiCy_aQ0QI8pvnSlCNP1n2JMqZFqXj8ebNa1uUZHJ01Q4c0qXFPSRaeMcstYOfsA7wbi7tY1qhLjDP69CbQ7Tbo0d815KZumo71pbZsFy-VyNnEuqWi7I5JK769xdD5AdQ_LxcHvMLjpLWJ7In-2uv5mvtuV9R1npnQ56nQ2vhfB5dAzNdIGEKnzKQvblKoip3qLJjlX8m1w_ZHL5522OY6diNwZpgopQjXsXN2_9VsbWt9mOFgyuzlSmiNt5kjVY7bLqa6gxLh7eHx0dD74NCeiN5h3X6TVWbVqy61PMuUy06284ScXL9izdsnh0KPhJXuE5R573hYZ0Kbwao89HTlQ0rOzISav2K8xoMADCrIfYGAKqM_QwwkcnMDBCUwJ3cKAhxP0cAIPJ3Bwgg5OcFuAhxM0cIIRnF6zy-OvF19OwvawjtByxeuwyCNuF6isJUpKdSjPcy7inNucKnqMEkEv0_6R8CxGouzKRnOjUKo8stxKbaM3bKe8LfEtgyJBGqDCg6iryNFmeebKGIwxKeYc7T4LumVP196TJb0_1PvsoItM2v52qzSiSpwwGGv97kGTvWdPBtwfsJ36boMfiJXW2ccWSb8BipeL6g |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticle+uptake+by+a+semi-permeable%2C+spherical+cell+from+an+external+planar+diffusive+field.+III.+Analysis+of+seeded+plate+experiments&rft.jtitle=Journal+of+engineering+mathematics&rft.au=Miklavcic%2C+Stanley+J.&rft.date=2025-06-01&rft.issn=0022-0833&rft.eissn=1573-2703&rft.volume=152&rft.issue=1&rft_id=info:doi/10.1007%2Fs10665-025-10454-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10665_025_10454_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0833&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0833&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0833&client=summon |