Environmentally Friendly Gel Tape Casting of Silicon Nitride Ceramic Substrates with Enhanced Thermal Conductivity
With the development of third-generation semiconductors, the heat dissipation problems of electronic packaging systems and the harsh usage environment of high-power devices have put forward higher requirements on the thermal conductivity and mechanical properties of silicon nitride ceramic substrate...
Saved in:
Published in | SILICON Vol. 17; no. 5; pp. 1091 - 1101 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1876-990X 1876-9918 |
DOI | 10.1007/s12633-025-03234-6 |
Cover
Loading…
Abstract | With the development of third-generation semiconductors, the heat dissipation problems of electronic packaging systems and the harsh usage environment of high-power devices have put forward higher requirements on the thermal conductivity and mechanical properties of silicon nitride ceramic substrates. As an almost defect-free ceramic forming technology, aqueous gel tape casting technology is very suitable for the forming of ceramic substrate materials because of the high density, low porosity and large forming size of the ceramic flakes produced. However, the existing acrylamide-methylene bisacrylamide (AM-MBAM) gel system has a complicated process, is subject to oxygen depolymerisation and has problems such as neurotoxicity. For this reason, in this study, a non-toxic and environmentally friendly isobutylene-maleic anhydride copolymer (Isobam) gel system was used to prepare silicon nitride ceramic substrates in-situ by combining the methods of gel tape casting and reaction sintering. The rheological properties of the slurry were optimized by adjusting the dosage of additives, and the effects of the nitriding reaction process of silicon powder and different sintering aids on the properties of Si3N4 ceramic substrates after resintering were investigated in detail. The results show that the slurries with different additive contents show shear-thinning behaviour and relatively high solid content. Under 0.1 MPa nitrogen atmosphere, Si
3
N
4
has been basically completely generated at 1400 °C, and the comprehensive performance of Si
3
N
4
ceramics is optimal with the addition of Y
2
O
3
-MgO-ZrO
2
sintering additives. The relative density and thermal conductivity were 98.4% and 61.5 W·m
−1
·K
−1
, respectively, and Si
3
N
4
showed columnar morphology, which effectively improved the hardness, fracture toughness and flexural strength of Si
3
N
4
ceramics, up to 13.39 GPa, 6.9 MPa·m
1/2
and 684.5 MPa, respectively. |
---|---|
AbstractList | With the development of third-generation semiconductors, the heat dissipation problems of electronic packaging systems and the harsh usage environment of high-power devices have put forward higher requirements on the thermal conductivity and mechanical properties of silicon nitride ceramic substrates. As an almost defect-free ceramic forming technology, aqueous gel tape casting technology is very suitable for the forming of ceramic substrate materials because of the high density, low porosity and large forming size of the ceramic flakes produced. However, the existing acrylamide-methylene bisacrylamide (AM-MBAM) gel system has a complicated process, is subject to oxygen depolymerisation and has problems such as neurotoxicity. For this reason, in this study, a non-toxic and environmentally friendly isobutylene-maleic anhydride copolymer (Isobam) gel system was used to prepare silicon nitride ceramic substrates in-situ by combining the methods of gel tape casting and reaction sintering. The rheological properties of the slurry were optimized by adjusting the dosage of additives, and the effects of the nitriding reaction process of silicon powder and different sintering aids on the properties of Si3N4 ceramic substrates after resintering were investigated in detail. The results show that the slurries with different additive contents show shear-thinning behaviour and relatively high solid content. Under 0.1 MPa nitrogen atmosphere, Si
3
N
4
has been basically completely generated at 1400 °C, and the comprehensive performance of Si
3
N
4
ceramics is optimal with the addition of Y
2
O
3
-MgO-ZrO
2
sintering additives. The relative density and thermal conductivity were 98.4% and 61.5 W·m
−1
·K
−1
, respectively, and Si
3
N
4
showed columnar morphology, which effectively improved the hardness, fracture toughness and flexural strength of Si
3
N
4
ceramics, up to 13.39 GPa, 6.9 MPa·m
1/2
and 684.5 MPa, respectively. With the development of third-generation semiconductors, the heat dissipation problems of electronic packaging systems and the harsh usage environment of high-power devices have put forward higher requirements on the thermal conductivity and mechanical properties of silicon nitride ceramic substrates. As an almost defect-free ceramic forming technology, aqueous gel tape casting technology is very suitable for the forming of ceramic substrate materials because of the high density, low porosity and large forming size of the ceramic flakes produced. However, the existing acrylamide-methylene bisacrylamide (AM-MBAM) gel system has a complicated process, is subject to oxygen depolymerisation and has problems such as neurotoxicity. For this reason, in this study, a non-toxic and environmentally friendly isobutylene-maleic anhydride copolymer (Isobam) gel system was used to prepare silicon nitride ceramic substrates in-situ by combining the methods of gel tape casting and reaction sintering. The rheological properties of the slurry were optimized by adjusting the dosage of additives, and the effects of the nitriding reaction process of silicon powder and different sintering aids on the properties of Si3N4 ceramic substrates after resintering were investigated in detail. The results show that the slurries with different additive contents show shear-thinning behaviour and relatively high solid content. Under 0.1 MPa nitrogen atmosphere, Si3N4 has been basically completely generated at 1400 °C, and the comprehensive performance of Si3N4 ceramics is optimal with the addition of Y2O3-MgO-ZrO2 sintering additives. The relative density and thermal conductivity were 98.4% and 61.5 W·m−1·K−1, respectively, and Si3N4 showed columnar morphology, which effectively improved the hardness, fracture toughness and flexural strength of Si3N4 ceramics, up to 13.39 GPa, 6.9 MPa·m1/2 and 684.5 MPa, respectively. |
Author | Liu, Yuan Liu, Yuanfei Fu, Jie Ma, Chengliang Gao, Zhengxia |
Author_xml | – sequence: 1 givenname: Yuanfei surname: Liu fullname: Liu, Yuanfei organization: School of Material Science and Engineering, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University – sequence: 2 givenname: Jie surname: Fu fullname: Fu, Jie organization: School of Material Science and Engineering, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University – sequence: 3 givenname: Yuan surname: Liu fullname: Liu, Yuan organization: School of Material Science and Engineering, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University – sequence: 4 givenname: Zhengxia surname: Gao fullname: Gao, Zhengxia organization: School of Material Science and Engineering, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University – sequence: 5 givenname: Chengliang surname: Ma fullname: Ma, Chengliang email: machengliang@zzu.edu.cn organization: School of Material Science and Engineering, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University |
BookMark | eNp9kE1PwzAMhiM0JMbYH-AUiXMhH12aHlG1DaQJDhsStyhN0y1Tm44kHdq_J6MIbvhiy379Wn6uwch2VgNwi9E9Rih78JgwShNEZgmihKYJuwBjzDOW5Dnmo98avV-Bqfd7FIOSjLN8DNzcHo3rbKttkE1zggtntK1isdQN3MiDhoX0wdgt7Gq4No1RnYUvJjhTxZF2sjUKrvvSByeD9vDThB2c2520Sldws9OulQ0sOlv1KpijCacbcFnLxuvpT56At8V8Uzwlq9flc_G4ShTJSEhqHt9ijFSkLrmqSsoRwrlGrCx5liqucsp4GpusVkRnMSotpUI8RXmNIpEJuBt8D6776LUPYt_1zsaTghJMZzlmPI8qMqiU67x3uhYHZ1rpTgIjccYrBrwi4hXfeMXZmg5LPortVrs_63-2vgDnSn-x |
Cites_doi | 10.1016/j.ceramint.2005.03.003 10.1016/S0955-2219(96)00147-1 10.1016/j.ceramint.2013.11.098 10.1557/JMR.2004.0416 10.1016/j.ijlmm.2018.09.002 10.1016/j.ceramint.2023.08.336 10.1016/0921-5093(95)09785-6 10.1111/ijac.12679 10.1111/jace.15523 10.1016/j.ceramint.2018.01.165 10.1016/j.jeurceramsoc.2014.01.025 10.1016/j.jeurceramsoc.2007.02.211 10.1016/j.jeurceramsoc.2016.06.007 10.1016/j.ceramint.2020.11.048 10.3103/S1063457623030188 10.1016/j.jeurceramsoc.2004.04.024 10.1111/j.1151-2916.2000.tb01182.x 10.1016/j.jallcom.2015.10.012 10.1111/jace.16015 10.1103/PhysRevB.65.134110 10.1016/S0955-2219(99)00216-2 10.1016/S0955-2219(02)00029-8 10.1016/j.ceramint.2022.11.059 10.1016/j.ceramint.2015.03.067 10.1111/j.1151-2916.2000.tb01501.x 10.1016/j.ceramint.2019.09.227 10.1016/j.ceramint.2020.09.266 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s12633-025-03234-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1876-9918 |
EndPage | 1101 |
ExternalDocumentID | 10_1007_s12633_025_03234_6 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No. 51472220, No. 51872265, No. 51902290; No. 51472220, No. 51872265, No. 51902290; No. 51472220, No. 51872265, No. 51902290; No. 51472220, No. 51872265, No. 51902290; No. 51472220, No. 51872265, No. 51902290 – fundername: Collaborative Innovation Major Special Project of Zhengzhou grantid: 20XTZX12025; 20XTZX12025; 20XTZX12025; 20XTZX12025; 20XTZX12025 – fundername: Program for Leading Talents of Science and Technology in the Central Plain of China 2022 grantid: 234200510002; 234200510002; 234200510002; 234200510002; 234200510002 |
GroupedDBID | .VR 06C 06D 0R~ 0VY 1N0 203 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 4.4 406 408 40D 5VS 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KB. KOV LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J P9N PDBOC PF0 PHGZT PT4 QOR QOS R89 R9I RIG ROL RSV S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PQGLB |
ID | FETCH-LOGICAL-c272t-f8126662d2fb8cdb380019e06bb874c8c936848006fc2e7777deaac08409f0263 |
IEDL.DBID | U2A |
ISSN | 1876-990X |
IngestDate | Fri Jul 25 09:42:09 EDT 2025 Tue Aug 05 11:58:15 EDT 2025 Sat Apr 26 01:28:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Heat conduction Silicon nitride ceramic substrates Sol–gel processes Sintering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-f8126662d2fb8cdb380019e06bb874c8c936848006fc2e7777deaac08409f0263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3213591689 |
PQPubID | 2044170 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3213591689 crossref_primary_10_1007_s12633_025_03234_6 springer_journals_10_1007_s12633_025_03234_6 |
PublicationCentury | 2000 |
PublicationDate | 20250400 2025-04-00 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | SILICON |
PublicationTitleAbbrev | Silicon |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | 3234_CR26 3234_CR28 G Blugan (3234_CR17) 2007; 27 K Cai (3234_CR8) 2005; 25 P Gao (3234_CR5) 2020; 46 WM Guo (3234_CR3) 2016; 36 M Kitayama (3234_CR12) 2000; 83 PC Mo (3234_CR25) 2023; 45 XW Zhu (3234_CR14) 2014; 34 L Ming (3234_CR22) 2006; 25 3234_CR23 3234_CR16 3234_CR18 L Riley (3234_CR1) 2000; 83 P Stastny (3234_CR10) 2018; 101 MA Omatete (3234_CR7) 1997; 17 Y Duan (3234_CR27) 2023; 49 CA Gutiérrez (3234_CR20) 2000; 20 HL Hu (3234_CR13) 2014; 40 B Bitterlich (3234_CR19) 2002; 22 L Li (3234_CR24) 2015; 41 X Zhu (3234_CR15) 2004; 19 S Yin (3234_CR11) 2018; 44 F Chen (3234_CR6) 2018; 1 J Zhang (3234_CR21) 2006; 32 Q Yao (3234_CR4) 2021; 47 P Stastny (3234_CR9) 2021; 47 Y Duan (3234_CR2) 2017; 14 |
References_xml | – volume: 32 start-page: 277 issue: 3 year: 2006 ident: 3234_CR21 publication-title: Ceram Int doi: 10.1016/j.ceramint.2005.03.003 – volume: 17 start-page: 407 issue: 2–3 year: 1997 ident: 3234_CR7 publication-title: J Eur Ceram Soc doi: 10.1016/S0955-2219(96)00147-1 – volume: 40 start-page: 7579 issue: 5 year: 2014 ident: 3234_CR13 publication-title: Ceram Int doi: 10.1016/j.ceramint.2013.11.098 – volume: 19 start-page: 3270 issue: 11 year: 2004 ident: 3234_CR15 publication-title: J Mater Res doi: 10.1557/JMR.2004.0416 – volume: 1 start-page: 239 issue: 4 year: 2018 ident: 3234_CR6 publication-title: Int J Lightweight Mater Manuf doi: 10.1016/j.ijlmm.2018.09.002 – ident: 3234_CR26 doi: 10.1016/j.ceramint.2023.08.336 – ident: 3234_CR18 doi: 10.1016/0921-5093(95)09785-6 – volume: 14 start-page: 712 issue: 4 year: 2017 ident: 3234_CR2 publication-title: J Am Ceram doi: 10.1111/ijac.12679 – volume: 101 start-page: 3317 issue: 8 year: 2018 ident: 3234_CR10 publication-title: J Am Ceram doi: 10.1111/jace.15523 – volume: 44 start-page: 7569 issue: 7 year: 2018 ident: 3234_CR11 publication-title: Ceram Int doi: 10.1016/j.ceramint.2018.01.165 – volume: 34 start-page: 2585 issue: 10 year: 2014 ident: 3234_CR14 publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2014.01.025 – volume: 27 start-page: 4789 issue: 16 year: 2007 ident: 3234_CR17 publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2007.02.211 – volume: 36 start-page: 3919 issue: 16 year: 2016 ident: 3234_CR3 publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2016.06.007 – volume: 47 start-page: 6988 issue: 5 year: 2021 ident: 3234_CR9 publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.11.048 – volume: 45 start-page: 192 issue: 3 year: 2023 ident: 3234_CR25 publication-title: J Superhard Mater doi: 10.3103/S1063457623030188 – volume: 25 start-page: 1089 issue: 7 year: 2005 ident: 3234_CR8 publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2004.04.024 – volume: 83 start-page: 245 issue: 2 year: 2000 ident: 3234_CR1 publication-title: J Am Ceram doi: 10.1111/j.1151-2916.2000.tb01182.x – ident: 3234_CR23 doi: 10.1016/j.jallcom.2015.10.012 – ident: 3234_CR16 doi: 10.1111/jace.16015 – ident: 3234_CR28 doi: 10.1103/PhysRevB.65.134110 – volume: 20 start-page: 1527 issue: 10 year: 2000 ident: 3234_CR20 publication-title: J Eur Ceram Soc doi: 10.1016/S0955-2219(99)00216-2 – volume: 22 start-page: 2427 issue: 13 year: 2002 ident: 3234_CR19 publication-title: J Eur Ceram Soc doi: 10.1016/S0955-2219(02)00029-8 – volume: 49 start-page: 9035 issue: 6 year: 2023 ident: 3234_CR27 publication-title: Ceram Int doi: 10.1016/j.ceramint.2022.11.059 – volume: 41 start-page: 8584 issue: 7 year: 2015 ident: 3234_CR24 publication-title: Ceram Int doi: 10.1016/j.ceramint.2015.03.067 – volume: 83 start-page: 1985 issue: 8 year: 2000 ident: 3234_CR12 publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.2000.tb01501.x – volume: 46 start-page: 2365 issue: 2 year: 2020 ident: 3234_CR5 publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.09.227 – volume: 47 start-page: 4327 issue: 3 year: 2021 ident: 3234_CR4 publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.09.266 – volume: 25 start-page: 101 issue: 2 year: 2006 ident: 3234_CR22 publication-title: Bull Chin Ceram Soc |
SSID | ssj0000327869 |
Score | 2.3232937 |
Snippet | With the development of third-generation semiconductors, the heat dissipation problems of electronic packaging systems and the harsh usage environment of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1091 |
SubjectTerms | Acrylamide Activated sintering Additives Casting Casting defects Ceramics Chemistry Chemistry and Materials Science Copolymers Depolymerization Electronic packaging Environmental Chemistry Flakes (defects) Flexural strength Fracture toughness Heat conductivity Heat transfer Inorganic Chemistry Lasers Maleic anhydride Materials Science Mechanical properties Methylene bisacrylamide Optical Devices Optics Photonics Polymer Sciences Rheological properties Semiconductors Shear thinning (liquids) Silicon nitride Silicon substrates Sintering Sintering aids Slurries Specific gravity Thermal conductivity Zirconium dioxide |
Title | Environmentally Friendly Gel Tape Casting of Silicon Nitride Ceramic Substrates with Enhanced Thermal Conductivity |
URI | https://link.springer.com/article/10.1007/s12633-025-03234-6 https://www.proquest.com/docview/3213591689 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHWBBPEWhVB7YwFLqJE4ytlVLBaILrVSmKH6JSlFatWXg33PnJkQgGMiSyI48nM_38N19R8htAlrTRsJjxoaSBcAlLONaYTd3LS33Qi2xUPh5Isaz4HEezsuisE2V7V6FJJ2krovduPAx5hgyz-d-wMQ-aYbouwMXz3jv62YFZqPY9bLrwlFnIG7nZbXM78t810i1mfkjMuoUzuiYHJWWIu3ttvaE7JnilBwMqgZtZ2Q9rIvUsjz_oCPELNbw8WByOs1Whg6yDaY106WlL4scNr2gk8V2vdAwZdbYip6i5HAItRuKd7J0WLy5pAAKDARCO6eDZYGYsK7JxDmZjYbTwZiVLRSY4hHfMgv6GxwUrrmVsdLSj9GmM56QMo4CFavEF3EAg8IqbiJ4tMky5aHbZ8E98y9Io1gW5pJQ6ZnIyiS0mQ4Q0TARGYLbKFhAR0GiWuSuImO62iFlpDUmMhI9BaKnjuipaJF2Rem0PDWb1OddPwR7NU5a5L6ifj3992pX__v9mhxyxwCYgNMmje363dyAbbGVHdLsjfr9Cb4fXp-GHcdanyhYyEk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHMYF8RSDATlwg0glbdP2OFUbA7Zd2KTdquYlJlXd1JYD_x4na6lAcKCnqq58cBzbie3PCN1G4DV1wByitM-JB1pCUiqFmeYuuaaOL7lpFJ7O2HjhPS_9Zd0UVjbV7k1K0lrqttmNMtfkHH3iuNT1CNtFexAMhKaQa0EHXzcrQA1CO8vuAbY6AXO7rLtlfmfz3SO1YeaPzKh1OKNDdFBHiniwXdojtKPyY9SNmwFtJ6gYtk1qaZZ94JHBLJbw8qgyPE83Csdpacqa8Vrj11UGi57j2aoqVhJIqjCj6LGxHBahtsTmThYP8zdbFIBBgcBoZzhe5wYT1g6ZOEWL0XAej0k9QoEIGtCKaPDfcEChkmoeCsnd0MR0ymGch4EnQhG5LPTgI9OCqgAeqdJUOObYp-F45p6hTr7O1TnC3FGB5pGvU-kZRMOIpQbcRgADGXiR6KG7RozJZouUkbSYyEboCQg9sUJPWA_1G0kn9a4pE5c-uD7Eq2HUQ_eN9Fvy39wu_vf7DeqO59NJMnmavVyifWqVwRTj9FGnKt7VFcQZFb-2avUJMG_ILA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54SMAF8RSDATlwg4gubdP2iMbGeE1IMGm3qnmJSVU3beXAv8fOVgoIDvRU1ZUPjmM7sf2ZkLMEvKaNhMeMDSULQEtYxrXCae5aWu6FWmKj8GNf9AbB3TAcfunid9XuVUpy3tOAKE1FeTnR9rJufOPCx_xjyDyf-wETy2QVzHEL9XrArz5vWYAaxW6uXQu2PQPTO1x0zvzO5rt3qkPOH1lS53y6W2RzETXSq_kyb5MlU-yQ9XY1rG2XTDt1w1qW5--0i_jFGl5uTE5fsomh7WyGJc50bOnzKAcFKGh_VE5HGkhmimPpKVoRh1Y7o3g_SzvFqysQoKBMYMBz2h4XiA_rBk7skUG389LuscU4BaZ4xEtmwZfDYYVrbmWstPRjjO-MJ6SMo0DFKvFFHMBHYRU3ETzaZJny8Aho4ajm75OVYlyYA0KlZyIrk9BmOkB0w0RkCHSjgIGOgkQ1yHklxnQyR81Ia3xkFHoKQk-d0FPRIM1K0uliB81Sn7f8EGLXOGmQi0r6Nflvbof_-_2UrD1dd9OH2_79EdngThewLqdJVsrpmzmGkKOUJ06rPgAGfMxo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmentally+Friendly+Gel+Tape+Casting+of+Silicon+Nitride+Ceramic+Substrates+with+Enhanced+Thermal+Conductivity&rft.jtitle=SILICON&rft.au=Liu%2C+Yuanfei&rft.au=Fu%2C+Jie&rft.au=Liu%2C+Yuan&rft.au=Gao%2C+Zhengxia&rft.date=2025-04-01&rft.pub=Springer+Netherlands&rft.issn=1876-990X&rft.eissn=1876-9918&rft.volume=17&rft.issue=5&rft.spage=1091&rft.epage=1101&rft_id=info:doi/10.1007%2Fs12633-025-03234-6&rft.externalDocID=10_1007_s12633_025_03234_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1876-990X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1876-990X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1876-990X&client=summon |