Environmentally Friendly Gel Tape Casting of Silicon Nitride Ceramic Substrates with Enhanced Thermal Conductivity

With the development of third-generation semiconductors, the heat dissipation problems of electronic packaging systems and the harsh usage environment of high-power devices have put forward higher requirements on the thermal conductivity and mechanical properties of silicon nitride ceramic substrate...

Full description

Saved in:
Bibliographic Details
Published inSILICON Vol. 17; no. 5; pp. 1091 - 1101
Main Authors Liu, Yuanfei, Fu, Jie, Liu, Yuan, Gao, Zhengxia, Ma, Chengliang
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1876-990X
1876-9918
DOI10.1007/s12633-025-03234-6

Cover

Loading…
Abstract With the development of third-generation semiconductors, the heat dissipation problems of electronic packaging systems and the harsh usage environment of high-power devices have put forward higher requirements on the thermal conductivity and mechanical properties of silicon nitride ceramic substrates. As an almost defect-free ceramic forming technology, aqueous gel tape casting technology is very suitable for the forming of ceramic substrate materials because of the high density, low porosity and large forming size of the ceramic flakes produced. However, the existing acrylamide-methylene bisacrylamide (AM-MBAM) gel system has a complicated process, is subject to oxygen depolymerisation and has problems such as neurotoxicity. For this reason, in this study, a non-toxic and environmentally friendly isobutylene-maleic anhydride copolymer (Isobam) gel system was used to prepare silicon nitride ceramic substrates in-situ by combining the methods of gel tape casting and reaction sintering. The rheological properties of the slurry were optimized by adjusting the dosage of additives, and the effects of the nitriding reaction process of silicon powder and different sintering aids on the properties of Si3N4 ceramic substrates after resintering were investigated in detail. The results show that the slurries with different additive contents show shear-thinning behaviour and relatively high solid content. Under 0.1 MPa nitrogen atmosphere, Si 3 N 4 has been basically completely generated at 1400 °C, and the comprehensive performance of Si 3 N 4 ceramics is optimal with the addition of Y 2 O 3 -MgO-ZrO 2 sintering additives. The relative density and thermal conductivity were 98.4% and 61.5 W·m −1 ·K −1 , respectively, and Si 3 N 4 showed columnar morphology, which effectively improved the hardness, fracture toughness and flexural strength of Si 3 N 4 ceramics, up to 13.39 GPa, 6.9 MPa·m 1/2 and 684.5 MPa, respectively.
AbstractList With the development of third-generation semiconductors, the heat dissipation problems of electronic packaging systems and the harsh usage environment of high-power devices have put forward higher requirements on the thermal conductivity and mechanical properties of silicon nitride ceramic substrates. As an almost defect-free ceramic forming technology, aqueous gel tape casting technology is very suitable for the forming of ceramic substrate materials because of the high density, low porosity and large forming size of the ceramic flakes produced. However, the existing acrylamide-methylene bisacrylamide (AM-MBAM) gel system has a complicated process, is subject to oxygen depolymerisation and has problems such as neurotoxicity. For this reason, in this study, a non-toxic and environmentally friendly isobutylene-maleic anhydride copolymer (Isobam) gel system was used to prepare silicon nitride ceramic substrates in-situ by combining the methods of gel tape casting and reaction sintering. The rheological properties of the slurry were optimized by adjusting the dosage of additives, and the effects of the nitriding reaction process of silicon powder and different sintering aids on the properties of Si3N4 ceramic substrates after resintering were investigated in detail. The results show that the slurries with different additive contents show shear-thinning behaviour and relatively high solid content. Under 0.1 MPa nitrogen atmosphere, Si 3 N 4 has been basically completely generated at 1400 °C, and the comprehensive performance of Si 3 N 4 ceramics is optimal with the addition of Y 2 O 3 -MgO-ZrO 2 sintering additives. The relative density and thermal conductivity were 98.4% and 61.5 W·m −1 ·K −1 , respectively, and Si 3 N 4 showed columnar morphology, which effectively improved the hardness, fracture toughness and flexural strength of Si 3 N 4 ceramics, up to 13.39 GPa, 6.9 MPa·m 1/2 and 684.5 MPa, respectively.
With the development of third-generation semiconductors, the heat dissipation problems of electronic packaging systems and the harsh usage environment of high-power devices have put forward higher requirements on the thermal conductivity and mechanical properties of silicon nitride ceramic substrates. As an almost defect-free ceramic forming technology, aqueous gel tape casting technology is very suitable for the forming of ceramic substrate materials because of the high density, low porosity and large forming size of the ceramic flakes produced. However, the existing acrylamide-methylene bisacrylamide (AM-MBAM) gel system has a complicated process, is subject to oxygen depolymerisation and has problems such as neurotoxicity. For this reason, in this study, a non-toxic and environmentally friendly isobutylene-maleic anhydride copolymer (Isobam) gel system was used to prepare silicon nitride ceramic substrates in-situ by combining the methods of gel tape casting and reaction sintering. The rheological properties of the slurry were optimized by adjusting the dosage of additives, and the effects of the nitriding reaction process of silicon powder and different sintering aids on the properties of Si3N4 ceramic substrates after resintering were investigated in detail. The results show that the slurries with different additive contents show shear-thinning behaviour and relatively high solid content. Under 0.1 MPa nitrogen atmosphere, Si3N4 has been basically completely generated at 1400 °C, and the comprehensive performance of Si3N4 ceramics is optimal with the addition of Y2O3-MgO-ZrO2 sintering additives. The relative density and thermal conductivity were 98.4% and 61.5 W·m−1·K−1, respectively, and Si3N4 showed columnar morphology, which effectively improved the hardness, fracture toughness and flexural strength of Si3N4 ceramics, up to 13.39 GPa, 6.9 MPa·m1/2 and 684.5 MPa, respectively.
Author Liu, Yuan
Liu, Yuanfei
Fu, Jie
Ma, Chengliang
Gao, Zhengxia
Author_xml – sequence: 1
  givenname: Yuanfei
  surname: Liu
  fullname: Liu, Yuanfei
  organization: School of Material Science and Engineering, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University
– sequence: 2
  givenname: Jie
  surname: Fu
  fullname: Fu, Jie
  organization: School of Material Science and Engineering, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University
– sequence: 3
  givenname: Yuan
  surname: Liu
  fullname: Liu, Yuan
  organization: School of Material Science and Engineering, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University
– sequence: 4
  givenname: Zhengxia
  surname: Gao
  fullname: Gao, Zhengxia
  organization: School of Material Science and Engineering, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University
– sequence: 5
  givenname: Chengliang
  surname: Ma
  fullname: Ma, Chengliang
  email: machengliang@zzu.edu.cn
  organization: School of Material Science and Engineering, Henan Key Laboratory of High-Temperature Functional Materials, Zhengzhou University
BookMark eNp9kE1PwzAMhiM0JMbYH-AUiXMhH12aHlG1DaQJDhsStyhN0y1Tm44kHdq_J6MIbvhiy379Wn6uwch2VgNwi9E9Rih78JgwShNEZgmihKYJuwBjzDOW5Dnmo98avV-Bqfd7FIOSjLN8DNzcHo3rbKttkE1zggtntK1isdQN3MiDhoX0wdgt7Gq4No1RnYUvJjhTxZF2sjUKrvvSByeD9vDThB2c2520Sldws9OulQ0sOlv1KpijCacbcFnLxuvpT56At8V8Uzwlq9flc_G4ShTJSEhqHt9ijFSkLrmqSsoRwrlGrCx5liqucsp4GpusVkRnMSotpUI8RXmNIpEJuBt8D6776LUPYt_1zsaTghJMZzlmPI8qMqiU67x3uhYHZ1rpTgIjccYrBrwi4hXfeMXZmg5LPortVrs_63-2vgDnSn-x
Cites_doi 10.1016/j.ceramint.2005.03.003
10.1016/S0955-2219(96)00147-1
10.1016/j.ceramint.2013.11.098
10.1557/JMR.2004.0416
10.1016/j.ijlmm.2018.09.002
10.1016/j.ceramint.2023.08.336
10.1016/0921-5093(95)09785-6
10.1111/ijac.12679
10.1111/jace.15523
10.1016/j.ceramint.2018.01.165
10.1016/j.jeurceramsoc.2014.01.025
10.1016/j.jeurceramsoc.2007.02.211
10.1016/j.jeurceramsoc.2016.06.007
10.1016/j.ceramint.2020.11.048
10.3103/S1063457623030188
10.1016/j.jeurceramsoc.2004.04.024
10.1111/j.1151-2916.2000.tb01182.x
10.1016/j.jallcom.2015.10.012
10.1111/jace.16015
10.1103/PhysRevB.65.134110
10.1016/S0955-2219(99)00216-2
10.1016/S0955-2219(02)00029-8
10.1016/j.ceramint.2022.11.059
10.1016/j.ceramint.2015.03.067
10.1111/j.1151-2916.2000.tb01501.x
10.1016/j.ceramint.2019.09.227
10.1016/j.ceramint.2020.09.266
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
DOI 10.1007/s12633-025-03234-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1876-9918
EndPage 1101
ExternalDocumentID 10_1007_s12633_025_03234_6
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 51472220, No. 51872265, No. 51902290; No. 51472220, No. 51872265, No. 51902290; No. 51472220, No. 51872265, No. 51902290; No. 51472220, No. 51872265, No. 51902290; No. 51472220, No. 51872265, No. 51902290
– fundername: Collaborative Innovation Major Special Project of Zhengzhou
  grantid: 20XTZX12025; 20XTZX12025; 20XTZX12025; 20XTZX12025; 20XTZX12025
– fundername: Program for Leading Talents of Science and Technology in the Central Plain of China 2022
  grantid: 234200510002; 234200510002; 234200510002; 234200510002; 234200510002
GroupedDBID .VR
06C
06D
0R~
0VY
1N0
203
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
406
408
40D
5VS
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KB.
KOV
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9N
PDBOC
PF0
PHGZT
PT4
QOR
QOS
R89
R9I
RIG
ROL
RSV
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
ID FETCH-LOGICAL-c272t-f8126662d2fb8cdb380019e06bb874c8c936848006fc2e7777deaac08409f0263
IEDL.DBID U2A
ISSN 1876-990X
IngestDate Fri Jul 25 09:42:09 EDT 2025
Tue Aug 05 11:58:15 EDT 2025
Sat Apr 26 01:28:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Heat conduction
Silicon nitride ceramic substrates
Sol–gel processes
Sintering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-f8126662d2fb8cdb380019e06bb874c8c936848006fc2e7777deaac08409f0263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3213591689
PQPubID 2044170
PageCount 11
ParticipantIDs proquest_journals_3213591689
crossref_primary_10_1007_s12633_025_03234_6
springer_journals_10_1007_s12633_025_03234_6
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle SILICON
PublicationTitleAbbrev Silicon
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References 3234_CR26
3234_CR28
G Blugan (3234_CR17) 2007; 27
K Cai (3234_CR8) 2005; 25
P Gao (3234_CR5) 2020; 46
WM Guo (3234_CR3) 2016; 36
M Kitayama (3234_CR12) 2000; 83
PC Mo (3234_CR25) 2023; 45
XW Zhu (3234_CR14) 2014; 34
L Ming (3234_CR22) 2006; 25
3234_CR23
3234_CR16
3234_CR18
L Riley (3234_CR1) 2000; 83
P Stastny (3234_CR10) 2018; 101
MA Omatete (3234_CR7) 1997; 17
Y Duan (3234_CR27) 2023; 49
CA Gutiérrez (3234_CR20) 2000; 20
HL Hu (3234_CR13) 2014; 40
B Bitterlich (3234_CR19) 2002; 22
L Li (3234_CR24) 2015; 41
X Zhu (3234_CR15) 2004; 19
S Yin (3234_CR11) 2018; 44
F Chen (3234_CR6) 2018; 1
J Zhang (3234_CR21) 2006; 32
Q Yao (3234_CR4) 2021; 47
P Stastny (3234_CR9) 2021; 47
Y Duan (3234_CR2) 2017; 14
References_xml – volume: 32
  start-page: 277
  issue: 3
  year: 2006
  ident: 3234_CR21
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2005.03.003
– volume: 17
  start-page: 407
  issue: 2–3
  year: 1997
  ident: 3234_CR7
  publication-title: J Eur Ceram Soc
  doi: 10.1016/S0955-2219(96)00147-1
– volume: 40
  start-page: 7579
  issue: 5
  year: 2014
  ident: 3234_CR13
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2013.11.098
– volume: 19
  start-page: 3270
  issue: 11
  year: 2004
  ident: 3234_CR15
  publication-title: J Mater Res
  doi: 10.1557/JMR.2004.0416
– volume: 1
  start-page: 239
  issue: 4
  year: 2018
  ident: 3234_CR6
  publication-title: Int J Lightweight Mater Manuf
  doi: 10.1016/j.ijlmm.2018.09.002
– ident: 3234_CR26
  doi: 10.1016/j.ceramint.2023.08.336
– ident: 3234_CR18
  doi: 10.1016/0921-5093(95)09785-6
– volume: 14
  start-page: 712
  issue: 4
  year: 2017
  ident: 3234_CR2
  publication-title: J Am Ceram
  doi: 10.1111/ijac.12679
– volume: 101
  start-page: 3317
  issue: 8
  year: 2018
  ident: 3234_CR10
  publication-title: J Am Ceram
  doi: 10.1111/jace.15523
– volume: 44
  start-page: 7569
  issue: 7
  year: 2018
  ident: 3234_CR11
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2018.01.165
– volume: 34
  start-page: 2585
  issue: 10
  year: 2014
  ident: 3234_CR14
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2014.01.025
– volume: 27
  start-page: 4789
  issue: 16
  year: 2007
  ident: 3234_CR17
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2007.02.211
– volume: 36
  start-page: 3919
  issue: 16
  year: 2016
  ident: 3234_CR3
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2016.06.007
– volume: 47
  start-page: 6988
  issue: 5
  year: 2021
  ident: 3234_CR9
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.11.048
– volume: 45
  start-page: 192
  issue: 3
  year: 2023
  ident: 3234_CR25
  publication-title: J Superhard Mater
  doi: 10.3103/S1063457623030188
– volume: 25
  start-page: 1089
  issue: 7
  year: 2005
  ident: 3234_CR8
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2004.04.024
– volume: 83
  start-page: 245
  issue: 2
  year: 2000
  ident: 3234_CR1
  publication-title: J Am Ceram
  doi: 10.1111/j.1151-2916.2000.tb01182.x
– ident: 3234_CR23
  doi: 10.1016/j.jallcom.2015.10.012
– ident: 3234_CR16
  doi: 10.1111/jace.16015
– ident: 3234_CR28
  doi: 10.1103/PhysRevB.65.134110
– volume: 20
  start-page: 1527
  issue: 10
  year: 2000
  ident: 3234_CR20
  publication-title: J Eur Ceram Soc
  doi: 10.1016/S0955-2219(99)00216-2
– volume: 22
  start-page: 2427
  issue: 13
  year: 2002
  ident: 3234_CR19
  publication-title: J Eur Ceram Soc
  doi: 10.1016/S0955-2219(02)00029-8
– volume: 49
  start-page: 9035
  issue: 6
  year: 2023
  ident: 3234_CR27
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2022.11.059
– volume: 41
  start-page: 8584
  issue: 7
  year: 2015
  ident: 3234_CR24
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2015.03.067
– volume: 83
  start-page: 1985
  issue: 8
  year: 2000
  ident: 3234_CR12
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.2000.tb01501.x
– volume: 46
  start-page: 2365
  issue: 2
  year: 2020
  ident: 3234_CR5
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2019.09.227
– volume: 47
  start-page: 4327
  issue: 3
  year: 2021
  ident: 3234_CR4
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.09.266
– volume: 25
  start-page: 101
  issue: 2
  year: 2006
  ident: 3234_CR22
  publication-title: Bull Chin Ceram Soc
SSID ssj0000327869
Score 2.3232937
Snippet With the development of third-generation semiconductors, the heat dissipation problems of electronic packaging systems and the harsh usage environment of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1091
SubjectTerms Acrylamide
Activated sintering
Additives
Casting
Casting defects
Ceramics
Chemistry
Chemistry and Materials Science
Copolymers
Depolymerization
Electronic packaging
Environmental Chemistry
Flakes (defects)
Flexural strength
Fracture toughness
Heat conductivity
Heat transfer
Inorganic Chemistry
Lasers
Maleic anhydride
Materials Science
Mechanical properties
Methylene bisacrylamide
Optical Devices
Optics
Photonics
Polymer Sciences
Rheological properties
Semiconductors
Shear thinning (liquids)
Silicon nitride
Silicon substrates
Sintering
Sintering aids
Slurries
Specific gravity
Thermal conductivity
Zirconium dioxide
Title Environmentally Friendly Gel Tape Casting of Silicon Nitride Ceramic Substrates with Enhanced Thermal Conductivity
URI https://link.springer.com/article/10.1007/s12633-025-03234-6
https://www.proquest.com/docview/3213591689
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHWBBPEWhVB7YwFLqJE4ytlVLBaILrVSmKH6JSlFatWXg33PnJkQgGMiSyI48nM_38N19R8htAlrTRsJjxoaSBcAlLONaYTd3LS33Qi2xUPh5Isaz4HEezsuisE2V7V6FJJ2krovduPAx5hgyz-d-wMQ-aYbouwMXz3jv62YFZqPY9bLrwlFnIG7nZbXM78t810i1mfkjMuoUzuiYHJWWIu3ttvaE7JnilBwMqgZtZ2Q9rIvUsjz_oCPELNbw8WByOs1Whg6yDaY106WlL4scNr2gk8V2vdAwZdbYip6i5HAItRuKd7J0WLy5pAAKDARCO6eDZYGYsK7JxDmZjYbTwZiVLRSY4hHfMgv6GxwUrrmVsdLSj9GmM56QMo4CFavEF3EAg8IqbiJ4tMky5aHbZ8E98y9Io1gW5pJQ6ZnIyiS0mQ4Q0TARGYLbKFhAR0GiWuSuImO62iFlpDUmMhI9BaKnjuipaJF2Rem0PDWb1OddPwR7NU5a5L6ifj3992pX__v9mhxyxwCYgNMmje363dyAbbGVHdLsjfr9Cb4fXp-GHcdanyhYyEk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHMYF8RSDATlwg0glbdP2OFUbA7Zd2KTdquYlJlXd1JYD_x4na6lAcKCnqq58cBzbie3PCN1G4DV1wByitM-JB1pCUiqFmeYuuaaOL7lpFJ7O2HjhPS_9Zd0UVjbV7k1K0lrqttmNMtfkHH3iuNT1CNtFexAMhKaQa0EHXzcrQA1CO8vuAbY6AXO7rLtlfmfz3SO1YeaPzKh1OKNDdFBHiniwXdojtKPyY9SNmwFtJ6gYtk1qaZZ94JHBLJbw8qgyPE83Csdpacqa8Vrj11UGi57j2aoqVhJIqjCj6LGxHBahtsTmThYP8zdbFIBBgcBoZzhe5wYT1g6ZOEWL0XAej0k9QoEIGtCKaPDfcEChkmoeCsnd0MR0ymGch4EnQhG5LPTgI9OCqgAeqdJUOObYp-F45p6hTr7O1TnC3FGB5pGvU-kZRMOIpQbcRgADGXiR6KG7RozJZouUkbSYyEboCQg9sUJPWA_1G0kn9a4pE5c-uD7Eq2HUQ_eN9Fvy39wu_vf7DeqO59NJMnmavVyifWqVwRTj9FGnKt7VFcQZFb-2avUJMG_ILA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54SMAF8RSDATlwg4gubdP2iMbGeE1IMGm3qnmJSVU3beXAv8fOVgoIDvRU1ZUPjmM7sf2ZkLMEvKaNhMeMDSULQEtYxrXCae5aWu6FWmKj8GNf9AbB3TAcfunid9XuVUpy3tOAKE1FeTnR9rJufOPCx_xjyDyf-wETy2QVzHEL9XrArz5vWYAaxW6uXQu2PQPTO1x0zvzO5rt3qkPOH1lS53y6W2RzETXSq_kyb5MlU-yQ9XY1rG2XTDt1w1qW5--0i_jFGl5uTE5fsomh7WyGJc50bOnzKAcFKGh_VE5HGkhmimPpKVoRh1Y7o3g_SzvFqysQoKBMYMBz2h4XiA_rBk7skUG389LuscU4BaZ4xEtmwZfDYYVrbmWstPRjjO-MJ6SMo0DFKvFFHMBHYRU3ETzaZJny8Aho4ajm75OVYlyYA0KlZyIrk9BmOkB0w0RkCHSjgIGOgkQ1yHklxnQyR81Ia3xkFHoKQk-d0FPRIM1K0uliB81Sn7f8EGLXOGmQi0r6Nflvbof_-_2UrD1dd9OH2_79EdngThewLqdJVsrpmzmGkKOUJ06rPgAGfMxo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmentally+Friendly+Gel+Tape+Casting+of+Silicon+Nitride+Ceramic+Substrates+with+Enhanced+Thermal+Conductivity&rft.jtitle=SILICON&rft.au=Liu%2C+Yuanfei&rft.au=Fu%2C+Jie&rft.au=Liu%2C+Yuan&rft.au=Gao%2C+Zhengxia&rft.date=2025-04-01&rft.pub=Springer+Netherlands&rft.issn=1876-990X&rft.eissn=1876-9918&rft.volume=17&rft.issue=5&rft.spage=1091&rft.epage=1101&rft_id=info:doi/10.1007%2Fs12633-025-03234-6&rft.externalDocID=10_1007_s12633_025_03234_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1876-990X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1876-990X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1876-990X&client=summon