Contour-Aware contrastive learning for 3D knee segmentation from MR images
Automatic segmentation of knee MR images plays an important role in the diagnosis and treatment of knee osteoarthritis. Existing deep learning-based methods usually require considerable annotated samples, and manual labeling of knee MR images is tedious and time-consuming. To address the above probl...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 28; no. 3 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.09.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-025-01494-x |
Cover
Loading…
Abstract | Automatic segmentation of knee MR images plays an important role in the diagnosis and treatment of knee osteoarthritis. Existing deep learning-based methods usually require considerable annotated samples, and manual labeling of knee MR images is tedious and time-consuming. To address the above problem, we propose a novel semi-supervised method, named as Contour-Aware Contrastive Learning Network (CACL-Net), for segmentation of femoral cartilage, tibial internal cartilage, and tibial external cartilage in knee MR images. The CACL-Net takes an encoder-decoder structure similar to the V-Net as backbone, and adopts a novel contrastive learning auxiliary task called Progressive Encoding Module, which can maintain the key high-level semantic information of the image and attenuate the irrelevant low-level semantic information. We also coin a contour-based self-attention module to prompt the network to pay more attention to edge details during the decoding process, thereby obtaining accurate segmentation results. Extensive experimental results demonstrate the proposed CACL-Net outperforms some other semi-supervised methods for knee MR image segmentation, and shows the potential usage of CACL-Net in the domain of semi-supervised segmentation problems. Our code is available at
https://github.com/ldcdm/CLASS-Net
. |
---|---|
AbstractList | Automatic segmentation of knee MR images plays an important role in the diagnosis and treatment of knee osteoarthritis. Existing deep learning-based methods usually require considerable annotated samples, and manual labeling of knee MR images is tedious and time-consuming. To address the above problem, we propose a novel semi-supervised method, named as Contour-Aware Contrastive Learning Network (CACL-Net), for segmentation of femoral cartilage, tibial internal cartilage, and tibial external cartilage in knee MR images. The CACL-Net takes an encoder-decoder structure similar to the V-Net as backbone, and adopts a novel contrastive learning auxiliary task called Progressive Encoding Module, which can maintain the key high-level semantic information of the image and attenuate the irrelevant low-level semantic information. We also coin a contour-based self-attention module to prompt the network to pay more attention to edge details during the decoding process, thereby obtaining accurate segmentation results. Extensive experimental results demonstrate the proposed CACL-Net outperforms some other semi-supervised methods for knee MR image segmentation, and shows the potential usage of CACL-Net in the domain of semi-supervised segmentation problems. Our code is available at https://github.com/ldcdm/CLASS-Net. Automatic segmentation of knee MR images plays an important role in the diagnosis and treatment of knee osteoarthritis. Existing deep learning-based methods usually require considerable annotated samples, and manual labeling of knee MR images is tedious and time-consuming. To address the above problem, we propose a novel semi-supervised method, named as Contour-Aware Contrastive Learning Network (CACL-Net), for segmentation of femoral cartilage, tibial internal cartilage, and tibial external cartilage in knee MR images. The CACL-Net takes an encoder-decoder structure similar to the V-Net as backbone, and adopts a novel contrastive learning auxiliary task called Progressive Encoding Module, which can maintain the key high-level semantic information of the image and attenuate the irrelevant low-level semantic information. We also coin a contour-based self-attention module to prompt the network to pay more attention to edge details during the decoding process, thereby obtaining accurate segmentation results. Extensive experimental results demonstrate the proposed CACL-Net outperforms some other semi-supervised methods for knee MR image segmentation, and shows the potential usage of CACL-Net in the domain of semi-supervised segmentation problems. Our code is available at https://github.com/ldcdm/CLASS-Net . |
ArticleNumber | 121 |
Author | Wang, Yuanquan Dong, Xianda Xia, Jun Zhao, Xing Zhang, Lei Zhou, Shoujun Zhang, Tao |
Author_xml | – sequence: 1 givenname: Xianda surname: Dong fullname: Dong, Xianda organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT) – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT) – sequence: 3 givenname: Xing surname: Zhao fullname: Zhao, Xing organization: School of Mathematical Sciences, Capital Normal University – sequence: 4 givenname: Shoujun surname: Zhou fullname: Zhou, Shoujun organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences – sequence: 5 givenname: Yuanquan surname: Wang fullname: Wang, Yuanquan email: wangyuanquan@scse.hebut.edu.cn organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT) – sequence: 6 givenname: Jun surname: Xia fullname: Xia, Jun email: xiajun@email.szu.edu.cn organization: Department of radiology, Shenzhen Second People’s Hospital/ the First Affiliated Hospital of Shenzhen University – sequence: 7 givenname: Tao surname: Zhang fullname: Zhang, Tao organization: Tianjin Hospital, Tianjin University |
BookMark | eNp9UMtOwzAQtFCRaAs_wMkSZ4PtjZPmWJW3ipAQSNwsJ11HKa1d7BTK32MIghuXfUgzs7MzIgPnHRJyLPip4Lw4i6lmGeNSMS6yMmO7PTIUGQArlHoe_M6ZOCCjGJecA4CcDMntzLvObwObvpuAtE5bMLFr35Cu0ATXuoZaHyic0xeHSCM2a3Sd6VrvqA1-Te8eaLs2DcZDsm_NKuLRTx-Tp8uLx9k1m99f3cymc1bLQnbMFnIxQeBQp0Ep5GVd1mqhjKpKqBCkMUWuRJ3nEyGtNbnEZF5AVSqVJRCMyUmvuwn-dYux08v0gEsnNUhRCAUFlwkle1QdfIwBrd6E5DN8aMH1V2a6z0ynzPR3ZnqXSNCTYgK7BsOf9D-sT6bVcJ8 |
Cites_doi | 10.1109/CVPR52733.2024.02161 10.1109/TNN.2009.2015974 10.1109/CVPR.2018.00393 10.1002/mrm.27920 10.1016/j.joca.2008.06.016 10.2174/1573405620666230515090557 10.1109/CVPR46437.2021.01549 10.1016/j.eswa.2022.119105 10.1109/CVPR46437.2021.00264 10.1007/978-3-031-16443-9_45 10.1007/s44336-024-00007-4 10.1109/ACCESS.2019.2907564 10.3390/rs16091477 10.1109/CVPR52733.2024.01167 10.1007/978-3-031-16452-1_11 10.1007/978-3-030-58545-7_19 10.1111/mice.13315 10.1109/LGRS.2024.3409351 10.1609/aaai.v35i10.17066 10.1016/j.media.2018.11.009 10.1109/CVPR52733.2024.01767 10.1145/3664931 10.1109/CVPR42600.2020.00975 10.3934/ipi.2020057 10.1109/TMI.2024.3468896 10.1016/j.bspc.2021.102684 10.1109/TEECCON54414.2022.9854515 10.1007/978-3-030-32245-8_67 10.1007/978-3-030-59710-8_54 10.1002/mrm.28111 10.3389/fbioe.2023.1080241 10.4324/9781003524724-13 10.1016/j.cmpb.2025.108613 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-025-01494-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_025_01494_x |
GrantInformation_xml | – fundername: National Key R&D Project of China grantid: No. 2018YFA0704102 and No. 2018YFA0704104 – fundername: Shenzhen Technology Innovation Commission grantid: No. JCYJ20200109114610201 and JSGG20220831110400001 – fundername: Natural Science Foundation of Guangdong Province grantid: No. 2023A1515010673 – fundername: National Science Foundation of China (NSFC) grantid: 61827809; 61976241 – fundername: Shenzhen Engineering Laboratory for Diagnosis & Treatment Key Technologies of Interventional Surgical Robots grantid: XMHT20220104009 |
GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEIIB AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ACSTC AFHIU AHWEU CITATION ABRTQ |
ID | FETCH-LOGICAL-c272t-f72d8e303c72d55e09c9c5d5a5b93be32aa7651c66812ffa62e14313b9554a5b3 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 09:27:59 EDT 2025 Thu Jul 03 08:44:17 EDT 2025 Tue Jun 10 01:12:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Contour-based self-attention Knee MRI Segmentation Semi-supervised learning Contrastive learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-f72d8e303c72d55e09c9c5d5a5b93be32aa7651c66812ffa62e14313b9554a5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3217153702 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_3217153702 crossref_primary_10_1007_s10044_025_01494_x springer_journals_10_1007_s10044_025_01494_x |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2025 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | 1494_CR10 1494_CR32 1494_CR31 1494_CR8 1494_CR30 1494_CR9 O Chapelle (1494_CR11) 2009; 20 JB Grill (1494_CR34) 2020; 33 1494_CR3 M Caron (1494_CR29) 2020; 33 1494_CR5 W Shen (1494_CR14) 2020; 15 1494_CR18 1494_CR39 1494_CR16 1494_CR38 1494_CR37 J Gao (1494_CR2) 2023; 11 1494_CR36 1494_CR35 1494_CR21 1494_CR20 1494_CR42 Y Hou (1494_CR27) 2024; 1 1494_CR41 H Zhang (1494_CR12) 2021; 68 M Cai (1494_CR33) 2024; 15 Y Bazi (1494_CR24) 2024; 16 W Wang (1494_CR13) 2019; 7 C Zhao (1494_CR15) 2023; 214 PJ Chun (1494_CR17) 2024; 39 YM Al-Worafi (1494_CR1) 2024 CG Peterfy (1494_CR40) 2008; 16 Q Li (1494_CR19) 2024; 62 1494_CR28 1494_CR26 1494_CR25 S Gaj (1494_CR7) 2020; 84 1494_CR23 F Ambellan (1494_CR4) 2019; 52 R Cheng (1494_CR6) 2020; 83 1494_CR22 |
References_xml | – ident: 1494_CR38 doi: 10.1109/CVPR52733.2024.02161 – volume: 20 start-page: 542 issue: 3 year: 2009 ident: 1494_CR11 publication-title: IEEE Trans Neural Networks doi: 10.1109/TNN.2009.2015974 – ident: 1494_CR30 doi: 10.1109/CVPR.2018.00393 – volume: 33 start-page: 9912 year: 2020 ident: 1494_CR29 publication-title: Adv Neural Inf Process Syst – ident: 1494_CR36 – volume: 62 start-page: 1 year: 2024 ident: 1494_CR19 publication-title: IEEE Trans Geosci Remote Sens – volume: 83 start-page: 139 issue: 1 year: 2020 ident: 1494_CR6 publication-title: Magn Reson Med doi: 10.1002/mrm.27920 – volume: 16 start-page: 1433 issue: 12 year: 2008 ident: 1494_CR40 publication-title: Osteoarthr Cartil doi: 10.1016/j.joca.2008.06.016 – start-page: 1 volume-title: Handbook of medical and health sciences in developing countries: education, practice, and research year: 2024 ident: 1494_CR1 – ident: 1494_CR3 doi: 10.2174/1573405620666230515090557 – ident: 1494_CR35 doi: 10.1109/CVPR46437.2021.01549 – volume: 214 start-page: 119105 year: 2023 ident: 1494_CR15 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119105 – ident: 1494_CR23 doi: 10.1109/CVPR46437.2021.00264 – ident: 1494_CR10 doi: 10.1007/978-3-031-16443-9_45 – volume: 1 start-page: 6 issue: 1 year: 2024 ident: 1494_CR27 publication-title: Vicinagearth doi: 10.1007/s44336-024-00007-4 – volume: 7 start-page: 47918 year: 2019 ident: 1494_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907564 – volume: 16 start-page: 1477 issue: 9 year: 2024 ident: 1494_CR24 publication-title: Remote Sens doi: 10.3390/rs16091477 – ident: 1494_CR18 – ident: 1494_CR28 doi: 10.1109/CVPR52733.2024.01167 – ident: 1494_CR41 doi: 10.1007/978-3-031-16452-1_11 – ident: 1494_CR39 doi: 10.1007/978-3-030-58545-7_19 – volume: 39 start-page: 2642 issue: 17 year: 2024 ident: 1494_CR17 publication-title: Computer‐Aided Civil Infrastructure Eng doi: 10.1111/mice.13315 – ident: 1494_CR20 doi: 10.1109/LGRS.2024.3409351 – ident: 1494_CR26 doi: 10.1609/aaai.v35i10.17066 – volume: 52 start-page: 109 year: 2019 ident: 1494_CR4 publication-title: Med Image Anal doi: 10.1016/j.media.2018.11.009 – ident: 1494_CR37 doi: 10.1109/CVPR52733.2024.01767 – volume: 15 start-page: 1 issue: 5 year: 2024 ident: 1494_CR33 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/3664931 – ident: 1494_CR31 doi: 10.1109/CVPR42600.2020.00975 – volume: 15 start-page: 1333 issue: 6 year: 2020 ident: 1494_CR14 publication-title: Inverse Probl Imaging doi: 10.3934/ipi.2020057 – ident: 1494_CR42 doi: 10.1109/TMI.2024.3468896 – ident: 1494_CR22 – volume: 33 start-page: 21271 year: 2020 ident: 1494_CR34 publication-title: Adv Neural Inf Process Syst – volume: 68 start-page: 102684 year: 2021 ident: 1494_CR12 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102684 – ident: 1494_CR32 – ident: 1494_CR8 doi: 10.1109/TEECCON54414.2022.9854515 – ident: 1494_CR21 doi: 10.1007/978-3-030-32245-8_67 – ident: 1494_CR9 – ident: 1494_CR25 doi: 10.1007/978-3-030-59710-8_54 – volume: 84 start-page: 437 issue: 1 year: 2020 ident: 1494_CR7 publication-title: Magn Reson Med doi: 10.1002/mrm.28111 – volume: 11 start-page: 1080241 year: 2023 ident: 1494_CR2 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2023.1080241 – ident: 1494_CR5 doi: 10.4324/9781003524724-13 – ident: 1494_CR16 doi: 10.1016/j.cmpb.2025.108613 |
SSID | ssj0033328 |
Score | 2.388906 |
Snippet | Automatic segmentation of knee MR images plays an important role in the diagnosis and treatment of knee osteoarthritis. Existing deep learning-based methods... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Attention Cartilage Computer Science Contours Decoding Deep learning Encoders-Decoders Image segmentation Knee Modules Original Article Pattern Recognition Semantics |
Title | Contour-Aware contrastive learning for 3D knee segmentation from MR images |
URI | https://link.springer.com/article/10.1007/s10044-025-01494-x https://www.proquest.com/docview/3217153702 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SXrz4Fqu15OBNA928dvdYtLVU6kEs1NOSpEkRcZVuRX--k21CVfTgbckmOXyTzHxD5oHQmUkcz3JniBTUEs51RhT1VUSllrkDn0gqn408vpXDCR9NxTQkhVUx2j0-Sdaa-kuyW5dz4tuvelrPCTDHpgDf3Z_rCe1F_csYqzuqAhFgJBU8Cakyv-_x3RytOeaPZ9Ha2gx20Fagibi3kusu2rDlHtoOlBGHC1nBUOzKEMf20cgXnIL1pPeuFhbXseiq8loNhxYRcwxMFbMr_FRaiys7fw4JSCX22SZ4fIcfn0HPVAdoMujfXw5J6JhADE3pkriUzjILVsnAhxC2m5vciJlQQudMW0aVSqVIjPRVx5xTklqAKWE6B1YBk9ghapQvpT1CeGZU7pxj4EBqTq1RGeyWJQzEmSTM6hY6j8AVr6vCGMW6BLKHuQCYixrm4qOF2hHbIlySqmDgDoHCTbu0hS4i3uvff-92_L_pJ2iT1iL3kWFt1Fgu3uwpUIml7qBm7_rhpt-pT9AnQfLBBg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6hcoALsDxEl7L4wA2MGj_yOFa7ZcujHBCV4BTZrl0hRFiRIhC_nnFqq4DYA7fIcUbxzHj8jTwPgH2TOJEXztBUMkuF0DlVzFcRTXVaOPSJUuWzkYcX6WAkTq_ldUgKq2O0e7ySbCz1u2S3rhDUt1_1sF5QRI6LAn1w2YLF3t-bs360wJzzpqcqQgFOMymSkCzzNZWPB9IcZX66GG3Om-NVGMU_nYWZ3B09TfWRef1UxPG7S1mDlQBASW-mMT9gwVbrsBrAKAlbvcah2O8hjm3AqS9lhd_T3rN6tKSJcle1t5ckNJ-YEMTAhP8hd5W1pLaT-5DaVBGfx0KGl-T2Hi1YvQmj4_7V7wENvRioYRmbUpexcW7xvDP4IKXtFqYwciyV1AXXljOlslQmJvX1zJxTKbPI_oTrAvEKTuJb0KoeKrsNZGxU4Zzj6JpqwaxROVLLE46KkiTc6jYcRIGU_2YlN8p5cWXPuRI5VzacK1_a0IkyK8P2q0uOjhaa8qzL2nAYRTB__X9qP783fQ-WBlfD8_L85OJsB5ZZI1Eff9aB1vTxye4iYJnqX0E_3wCUzt-X |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQbz4FqtVc_Cmod089nEs1qLVFhELvYUkTYpI19Jd0Z_vZLtLq-jB25LN5vDNZuYLmW8GoQsTOB4nzpBQUEs41zFR1FcRDXWYODgThcqrkfuD8HbIeyMxWlHxF9nu1ZXkQtPgqzSleXM2ds0V4VuLc-JbsXqKzwmwyHVwx4FP6hrSduWLGWNFd1UgBYxEggelbOb3Nb6HpiXf_HFFWkSe7g7aKikjbi9svIvWbLqHtkv6iMvNmcFQ1aGhGttHPV98Cr4n7Q81t7jIS1eZ93C4bBcxwcBaMevg19RanNnJtBQjpdgrT3D_Cb9MwedkB2jYvXm-viVl9wRiaERz4iI6ji1EKAMPQthWYhIjxkIJnTBtGVUqCkVgQl-BzDkVUgswBUwnwDBgEjtEtfQttUcIj41KnHMMDpOaU2tUDKvFAQPTBgGzuo4uK-DkbFEkQy7LIXuYJcAsC5jlZx01KmxluWEyyeBoBM43atE6uqrwXr7-e7Xj_00_RxuPna58uBvcn6BNWljfJ4w1UC2fv9tTYBi5Pit-oi_4x8ah |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contour-Aware+contrastive+learning+for+3D+knee+segmentation+from+MR+images&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=3&rft_id=info:doi/10.1007%2Fs10044-025-01494-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |