Contour-Aware contrastive learning for 3D knee segmentation from MR images

Automatic segmentation of knee MR images plays an important role in the diagnosis and treatment of knee osteoarthritis. Existing deep learning-based methods usually require considerable annotated samples, and manual labeling of knee MR images is tedious and time-consuming. To address the above probl...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 28; no. 3
Main Authors Dong, Xianda, Zhang, Lei, Zhao, Xing, Zhou, Shoujun, Wang, Yuanquan, Xia, Jun, Zhang, Tao
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-025-01494-x

Cover

Loading…
Abstract Automatic segmentation of knee MR images plays an important role in the diagnosis and treatment of knee osteoarthritis. Existing deep learning-based methods usually require considerable annotated samples, and manual labeling of knee MR images is tedious and time-consuming. To address the above problem, we propose a novel semi-supervised method, named as Contour-Aware Contrastive Learning Network (CACL-Net), for segmentation of femoral cartilage, tibial internal cartilage, and tibial external cartilage in knee MR images. The CACL-Net takes an encoder-decoder structure similar to the V-Net as backbone, and adopts a novel contrastive learning auxiliary task called Progressive Encoding Module, which can maintain the key high-level semantic information of the image and attenuate the irrelevant low-level semantic information. We also coin a contour-based self-attention module to prompt the network to pay more attention to edge details during the decoding process, thereby obtaining accurate segmentation results. Extensive experimental results demonstrate the proposed CACL-Net outperforms some other semi-supervised methods for knee MR image segmentation, and shows the potential usage of CACL-Net in the domain of semi-supervised segmentation problems. Our code is available at https://github.com/ldcdm/CLASS-Net .
AbstractList Automatic segmentation of knee MR images plays an important role in the diagnosis and treatment of knee osteoarthritis. Existing deep learning-based methods usually require considerable annotated samples, and manual labeling of knee MR images is tedious and time-consuming. To address the above problem, we propose a novel semi-supervised method, named as Contour-Aware Contrastive Learning Network (CACL-Net), for segmentation of femoral cartilage, tibial internal cartilage, and tibial external cartilage in knee MR images. The CACL-Net takes an encoder-decoder structure similar to the V-Net as backbone, and adopts a novel contrastive learning auxiliary task called Progressive Encoding Module, which can maintain the key high-level semantic information of the image and attenuate the irrelevant low-level semantic information. We also coin a contour-based self-attention module to prompt the network to pay more attention to edge details during the decoding process, thereby obtaining accurate segmentation results. Extensive experimental results demonstrate the proposed CACL-Net outperforms some other semi-supervised methods for knee MR image segmentation, and shows the potential usage of CACL-Net in the domain of semi-supervised segmentation problems. Our code is available at https://github.com/ldcdm/CLASS-Net.
Automatic segmentation of knee MR images plays an important role in the diagnosis and treatment of knee osteoarthritis. Existing deep learning-based methods usually require considerable annotated samples, and manual labeling of knee MR images is tedious and time-consuming. To address the above problem, we propose a novel semi-supervised method, named as Contour-Aware Contrastive Learning Network (CACL-Net), for segmentation of femoral cartilage, tibial internal cartilage, and tibial external cartilage in knee MR images. The CACL-Net takes an encoder-decoder structure similar to the V-Net as backbone, and adopts a novel contrastive learning auxiliary task called Progressive Encoding Module, which can maintain the key high-level semantic information of the image and attenuate the irrelevant low-level semantic information. We also coin a contour-based self-attention module to prompt the network to pay more attention to edge details during the decoding process, thereby obtaining accurate segmentation results. Extensive experimental results demonstrate the proposed CACL-Net outperforms some other semi-supervised methods for knee MR image segmentation, and shows the potential usage of CACL-Net in the domain of semi-supervised segmentation problems. Our code is available at https://github.com/ldcdm/CLASS-Net .
ArticleNumber 121
Author Wang, Yuanquan
Dong, Xianda
Xia, Jun
Zhao, Xing
Zhang, Lei
Zhou, Shoujun
Zhang, Tao
Author_xml – sequence: 1
  givenname: Xianda
  surname: Dong
  fullname: Dong, Xianda
  organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT)
– sequence: 2
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT)
– sequence: 3
  givenname: Xing
  surname: Zhao
  fullname: Zhao, Xing
  organization: School of Mathematical Sciences, Capital Normal University
– sequence: 4
  givenname: Shoujun
  surname: Zhou
  fullname: Zhou, Shoujun
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
– sequence: 5
  givenname: Yuanquan
  surname: Wang
  fullname: Wang, Yuanquan
  email: wangyuanquan@scse.hebut.edu.cn
  organization: School of Artificial Intelligence, Hebei University of Technology (HeBUT)
– sequence: 6
  givenname: Jun
  surname: Xia
  fullname: Xia, Jun
  email: xiajun@email.szu.edu.cn
  organization: Department of radiology, Shenzhen Second People’s Hospital/ the First Affiliated Hospital of Shenzhen University
– sequence: 7
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  organization: Tianjin Hospital, Tianjin University
BookMark eNp9UMtOwzAQtFCRaAs_wMkSZ4PtjZPmWJW3ipAQSNwsJ11HKa1d7BTK32MIghuXfUgzs7MzIgPnHRJyLPip4Lw4i6lmGeNSMS6yMmO7PTIUGQArlHoe_M6ZOCCjGJecA4CcDMntzLvObwObvpuAtE5bMLFr35Cu0ATXuoZaHyic0xeHSCM2a3Sd6VrvqA1-Te8eaLs2DcZDsm_NKuLRTx-Tp8uLx9k1m99f3cymc1bLQnbMFnIxQeBQp0Ep5GVd1mqhjKpKqBCkMUWuRJ3nEyGtNbnEZF5AVSqVJRCMyUmvuwn-dYux08v0gEsnNUhRCAUFlwkle1QdfIwBrd6E5DN8aMH1V2a6z0ynzPR3ZnqXSNCTYgK7BsOf9D-sT6bVcJ8
Cites_doi 10.1109/CVPR52733.2024.02161
10.1109/TNN.2009.2015974
10.1109/CVPR.2018.00393
10.1002/mrm.27920
10.1016/j.joca.2008.06.016
10.2174/1573405620666230515090557
10.1109/CVPR46437.2021.01549
10.1016/j.eswa.2022.119105
10.1109/CVPR46437.2021.00264
10.1007/978-3-031-16443-9_45
10.1007/s44336-024-00007-4
10.1109/ACCESS.2019.2907564
10.3390/rs16091477
10.1109/CVPR52733.2024.01167
10.1007/978-3-031-16452-1_11
10.1007/978-3-030-58545-7_19
10.1111/mice.13315
10.1109/LGRS.2024.3409351
10.1609/aaai.v35i10.17066
10.1016/j.media.2018.11.009
10.1109/CVPR52733.2024.01767
10.1145/3664931
10.1109/CVPR42600.2020.00975
10.3934/ipi.2020057
10.1109/TMI.2024.3468896
10.1016/j.bspc.2021.102684
10.1109/TEECCON54414.2022.9854515
10.1007/978-3-030-32245-8_67
10.1007/978-3-030-59710-8_54
10.1002/mrm.28111
10.3389/fbioe.2023.1080241
10.4324/9781003524724-13
10.1016/j.cmpb.2025.108613
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s10044-025-01494-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_025_01494_x
GrantInformation_xml – fundername: National Key R&D Project of China
  grantid: No. 2018YFA0704102 and No. 2018YFA0704104
– fundername: Shenzhen Technology Innovation Commission
  grantid: No. JCYJ20200109114610201 and JSGG20220831110400001
– fundername: Natural Science Foundation of Guangdong Province
  grantid: No. 2023A1515010673
– fundername: National Science Foundation of China (NSFC)
  grantid: 61827809; 61976241
– fundername: Shenzhen Engineering Laboratory for Diagnosis & Treatment Key Technologies of Interventional Surgical Robots
  grantid: XMHT20220104009
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEIIB
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
ACSTC
AFHIU
AHWEU
CITATION
ABRTQ
ID FETCH-LOGICAL-c272t-f72d8e303c72d55e09c9c5d5a5b93be32aa7651c66812ffa62e14313b9554a5b3
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 09:27:59 EDT 2025
Thu Jul 03 08:44:17 EDT 2025
Tue Jun 10 01:12:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Contour-based self-attention
Knee MRI
Segmentation
Semi-supervised learning
Contrastive learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-f72d8e303c72d55e09c9c5d5a5b93be32aa7651c66812ffa62e14313b9554a5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3217153702
PQPubID 2043691
ParticipantIDs proquest_journals_3217153702
crossref_primary_10_1007_s10044_025_01494_x
springer_journals_10_1007_s10044_025_01494_x
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 1494_CR10
1494_CR32
1494_CR31
1494_CR8
1494_CR30
1494_CR9
O Chapelle (1494_CR11) 2009; 20
JB Grill (1494_CR34) 2020; 33
1494_CR3
M Caron (1494_CR29) 2020; 33
1494_CR5
W Shen (1494_CR14) 2020; 15
1494_CR18
1494_CR39
1494_CR16
1494_CR38
1494_CR37
J Gao (1494_CR2) 2023; 11
1494_CR36
1494_CR35
1494_CR21
1494_CR20
1494_CR42
Y Hou (1494_CR27) 2024; 1
1494_CR41
H Zhang (1494_CR12) 2021; 68
M Cai (1494_CR33) 2024; 15
Y Bazi (1494_CR24) 2024; 16
W Wang (1494_CR13) 2019; 7
C Zhao (1494_CR15) 2023; 214
PJ Chun (1494_CR17) 2024; 39
YM Al-Worafi (1494_CR1) 2024
CG Peterfy (1494_CR40) 2008; 16
Q Li (1494_CR19) 2024; 62
1494_CR28
1494_CR26
1494_CR25
S Gaj (1494_CR7) 2020; 84
1494_CR23
F Ambellan (1494_CR4) 2019; 52
R Cheng (1494_CR6) 2020; 83
1494_CR22
References_xml – ident: 1494_CR38
  doi: 10.1109/CVPR52733.2024.02161
– volume: 20
  start-page: 542
  issue: 3
  year: 2009
  ident: 1494_CR11
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2009.2015974
– ident: 1494_CR30
  doi: 10.1109/CVPR.2018.00393
– volume: 33
  start-page: 9912
  year: 2020
  ident: 1494_CR29
  publication-title: Adv Neural Inf Process Syst
– ident: 1494_CR36
– volume: 62
  start-page: 1
  year: 2024
  ident: 1494_CR19
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 83
  start-page: 139
  issue: 1
  year: 2020
  ident: 1494_CR6
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27920
– volume: 16
  start-page: 1433
  issue: 12
  year: 2008
  ident: 1494_CR40
  publication-title: Osteoarthr Cartil
  doi: 10.1016/j.joca.2008.06.016
– start-page: 1
  volume-title: Handbook of medical and health sciences in developing countries: education, practice, and research
  year: 2024
  ident: 1494_CR1
– ident: 1494_CR3
  doi: 10.2174/1573405620666230515090557
– ident: 1494_CR35
  doi: 10.1109/CVPR46437.2021.01549
– volume: 214
  start-page: 119105
  year: 2023
  ident: 1494_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119105
– ident: 1494_CR23
  doi: 10.1109/CVPR46437.2021.00264
– ident: 1494_CR10
  doi: 10.1007/978-3-031-16443-9_45
– volume: 1
  start-page: 6
  issue: 1
  year: 2024
  ident: 1494_CR27
  publication-title: Vicinagearth
  doi: 10.1007/s44336-024-00007-4
– volume: 7
  start-page: 47918
  year: 2019
  ident: 1494_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907564
– volume: 16
  start-page: 1477
  issue: 9
  year: 2024
  ident: 1494_CR24
  publication-title: Remote Sens
  doi: 10.3390/rs16091477
– ident: 1494_CR18
– ident: 1494_CR28
  doi: 10.1109/CVPR52733.2024.01167
– ident: 1494_CR41
  doi: 10.1007/978-3-031-16452-1_11
– ident: 1494_CR39
  doi: 10.1007/978-3-030-58545-7_19
– volume: 39
  start-page: 2642
  issue: 17
  year: 2024
  ident: 1494_CR17
  publication-title: Computer‐Aided Civil Infrastructure Eng
  doi: 10.1111/mice.13315
– ident: 1494_CR20
  doi: 10.1109/LGRS.2024.3409351
– ident: 1494_CR26
  doi: 10.1609/aaai.v35i10.17066
– volume: 52
  start-page: 109
  year: 2019
  ident: 1494_CR4
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.11.009
– ident: 1494_CR37
  doi: 10.1109/CVPR52733.2024.01767
– volume: 15
  start-page: 1
  issue: 5
  year: 2024
  ident: 1494_CR33
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/3664931
– ident: 1494_CR31
  doi: 10.1109/CVPR42600.2020.00975
– volume: 15
  start-page: 1333
  issue: 6
  year: 2020
  ident: 1494_CR14
  publication-title: Inverse Probl Imaging
  doi: 10.3934/ipi.2020057
– ident: 1494_CR42
  doi: 10.1109/TMI.2024.3468896
– ident: 1494_CR22
– volume: 33
  start-page: 21271
  year: 2020
  ident: 1494_CR34
  publication-title: Adv Neural Inf Process Syst
– volume: 68
  start-page: 102684
  year: 2021
  ident: 1494_CR12
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102684
– ident: 1494_CR32
– ident: 1494_CR8
  doi: 10.1109/TEECCON54414.2022.9854515
– ident: 1494_CR21
  doi: 10.1007/978-3-030-32245-8_67
– ident: 1494_CR9
– ident: 1494_CR25
  doi: 10.1007/978-3-030-59710-8_54
– volume: 84
  start-page: 437
  issue: 1
  year: 2020
  ident: 1494_CR7
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28111
– volume: 11
  start-page: 1080241
  year: 2023
  ident: 1494_CR2
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2023.1080241
– ident: 1494_CR5
  doi: 10.4324/9781003524724-13
– ident: 1494_CR16
  doi: 10.1016/j.cmpb.2025.108613
SSID ssj0033328
Score 2.388906
Snippet Automatic segmentation of knee MR images plays an important role in the diagnosis and treatment of knee osteoarthritis. Existing deep learning-based methods...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Attention
Cartilage
Computer Science
Contours
Decoding
Deep learning
Encoders-Decoders
Image segmentation
Knee
Modules
Original Article
Pattern Recognition
Semantics
Title Contour-Aware contrastive learning for 3D knee segmentation from MR images
URI https://link.springer.com/article/10.1007/s10044-025-01494-x
https://www.proquest.com/docview/3217153702
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SXrz4Fqu15OBNA928dvdYtLVU6kEs1NOSpEkRcZVuRX--k21CVfTgbckmOXyTzHxD5oHQmUkcz3JniBTUEs51RhT1VUSllrkDn0gqn408vpXDCR9NxTQkhVUx2j0-Sdaa-kuyW5dz4tuvelrPCTDHpgDf3Z_rCe1F_csYqzuqAhFgJBU8Cakyv-_x3RytOeaPZ9Ha2gx20Fagibi3kusu2rDlHtoOlBGHC1nBUOzKEMf20cgXnIL1pPeuFhbXseiq8loNhxYRcwxMFbMr_FRaiys7fw4JSCX22SZ4fIcfn0HPVAdoMujfXw5J6JhADE3pkriUzjILVsnAhxC2m5vciJlQQudMW0aVSqVIjPRVx5xTklqAKWE6B1YBk9ghapQvpT1CeGZU7pxj4EBqTq1RGeyWJQzEmSTM6hY6j8AVr6vCGMW6BLKHuQCYixrm4qOF2hHbIlySqmDgDoHCTbu0hS4i3uvff-92_L_pJ2iT1iL3kWFt1Fgu3uwpUIml7qBm7_rhpt-pT9AnQfLBBg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6hcoALsDxEl7L4wA2MGj_yOFa7ZcujHBCV4BTZrl0hRFiRIhC_nnFqq4DYA7fIcUbxzHj8jTwPgH2TOJEXztBUMkuF0DlVzFcRTXVaOPSJUuWzkYcX6WAkTq_ldUgKq2O0e7ySbCz1u2S3rhDUt1_1sF5QRI6LAn1w2YLF3t-bs360wJzzpqcqQgFOMymSkCzzNZWPB9IcZX66GG3Om-NVGMU_nYWZ3B09TfWRef1UxPG7S1mDlQBASW-mMT9gwVbrsBrAKAlbvcah2O8hjm3AqS9lhd_T3rN6tKSJcle1t5ckNJ-YEMTAhP8hd5W1pLaT-5DaVBGfx0KGl-T2Hi1YvQmj4_7V7wENvRioYRmbUpexcW7xvDP4IKXtFqYwciyV1AXXljOlslQmJvX1zJxTKbPI_oTrAvEKTuJb0KoeKrsNZGxU4Zzj6JpqwaxROVLLE46KkiTc6jYcRIGU_2YlN8p5cWXPuRI5VzacK1_a0IkyK8P2q0uOjhaa8qzL2nAYRTB__X9qP783fQ-WBlfD8_L85OJsB5ZZI1Eff9aB1vTxye4iYJnqX0E_3wCUzt-X
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQbz4FqtVc_Cmod089nEs1qLVFhELvYUkTYpI19Jd0Z_vZLtLq-jB25LN5vDNZuYLmW8GoQsTOB4nzpBQUEs41zFR1FcRDXWYODgThcqrkfuD8HbIeyMxWlHxF9nu1ZXkQtPgqzSleXM2ds0V4VuLc-JbsXqKzwmwyHVwx4FP6hrSduWLGWNFd1UgBYxEggelbOb3Nb6HpiXf_HFFWkSe7g7aKikjbi9svIvWbLqHtkv6iMvNmcFQ1aGhGttHPV98Cr4n7Q81t7jIS1eZ93C4bBcxwcBaMevg19RanNnJtBQjpdgrT3D_Cb9MwedkB2jYvXm-viVl9wRiaERz4iI6ji1EKAMPQthWYhIjxkIJnTBtGVUqCkVgQl-BzDkVUgswBUwnwDBgEjtEtfQttUcIj41KnHMMDpOaU2tUDKvFAQPTBgGzuo4uK-DkbFEkQy7LIXuYJcAsC5jlZx01KmxluWEyyeBoBM43atE6uqrwXr7-e7Xj_00_RxuPna58uBvcn6BNWljfJ4w1UC2fv9tTYBi5Pit-oi_4x8ah
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contour-Aware+contrastive+learning+for+3D+knee+segmentation+from+MR+images&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=3&rft_id=info:doi/10.1007%2Fs10044-025-01494-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon