Computing the action of the matrix generating function of Bernoulli polynomials on a vector with an application to non-local boundary value problems

This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say $$q(\tau ,A)$$ q ( τ , A ) , on a vector when A is a large and sparse matrix. This problem occurs when solving some non-local boundary value problems. Methods ba...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 51; no. 2
Main Authors Aceto, Lidia, Gemignani, Luca
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say $$q(\tau ,A)$$ q ( τ , A ) , on a vector when A is a large and sparse matrix. This problem occurs when solving some non-local boundary value problems. Methods based on the Fourier expansion of $$q(\tau ,w)$$ q ( τ , w ) have already been addressed in the scientific literature. The contribution of this paper is twofold. First, we place these methods in the classical framework of Krylov-Lanczos (polynomial-rational) techniques for accelerating Fourier series. This allows us to apply the convergence results developed in this context to our function. Second, we design a new acceleration scheme. Some numerical results are presented to show the effectiveness of the proposed algorithms.
AbstractList This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say q(τ,A), on a vector when A is a large and sparse matrix. This problem occurs when solving some non-local boundary value problems. Methods based on the Fourier expansion of q(τ,w) have already been addressed in the scientific literature. The contribution of this paper is twofold. First, we place these methods in the classical framework of Krylov-Lanczos (polynomial-rational) techniques for accelerating Fourier series. This allows us to apply the convergence results developed in this context to our function. Second, we design a new acceleration scheme. Some numerical results are presented to show the effectiveness of the proposed algorithms.
This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say $$q(\tau ,A)$$ q ( τ , A ) , on a vector when A is a large and sparse matrix. This problem occurs when solving some non-local boundary value problems. Methods based on the Fourier expansion of $$q(\tau ,w)$$ q ( τ , w ) have already been addressed in the scientific literature. The contribution of this paper is twofold. First, we place these methods in the classical framework of Krylov-Lanczos (polynomial-rational) techniques for accelerating Fourier series. This allows us to apply the convergence results developed in this context to our function. Second, we design a new acceleration scheme. Some numerical results are presented to show the effectiveness of the proposed algorithms.
ArticleNumber 19
Author Gemignani, Luca
Aceto, Lidia
Author_xml – sequence: 1
  givenname: Lidia
  orcidid: 0000-0002-4537-2444
  surname: Aceto
  fullname: Aceto, Lidia
– sequence: 2
  givenname: Luca
  orcidid: 0000-0001-8000-4906
  surname: Gemignani
  fullname: Gemignani, Luca
BookMark eNo9UMtOAyEUJaYmttUfcEXiGuXOsyy18ZU0caNrAjPQ0jAwMky1_-EHS1vj6j7OueeenBmaOO8UQtdAb4HS-m4AWhQFoVlJgGY5EDhDUyjrjLAETFJPgZEaqsUFmg3DllLKqrqcop-l7_oxGrfGcaOwaKLxDnt9nDoRg_nGa-VUEEeOHt0_40EF50drDe693TvfGWEHnDCBd6qJPuAvEzdYpEXfW9OI42H0OHkn1jfCYulH14qwxzthR4X74KVV3XCJznXSUld_dY4-nh7fly9k9fb8urxfkSars0h0CY1qgBUV0yBzIXMqMwBRlaKsKwYCdFsAUCbLFlopCqUk1bpqc1XotmL5HN2cdNPjz1ENkW_9GFx6yXNYLGpWQH1gZSdWE_wwBKV5H0yXXHOg_JA-P6XPU_r8mD6H_Bd-M31q
Cites_doi 10.1137/0913071
10.1016/j.apnum.2023.05.026
10.1016/0898-1221(81)90036-5
10.1007/s11075-024-01946-1
10.2307/2005818
10.1155/2013/315748
10.3390/fractalfract5010015
10.1093/imanum/drp043
10.1002/nla.2141
10.1063/1.3047921
10.1137/0729014
10.2307/2035062
10.1007/s10496-007-0228-0
10.1016/j.na.2007.12.007
10.1007/BFb0072427
10.1007/s10444-021-09917-z
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s10444-025-10231-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_025_10231_1
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
ABRTQ
ID FETCH-LOGICAL-c272t-f51cec19469f1b3ab30b211a65a57691a1fd41109b5d1dba4eeb0ff6d3e4fd693
ISSN 1019-7168
IngestDate Fri Jul 25 09:47:21 EDT 2025
Tue Jul 01 05:11:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c272t-f51cec19469f1b3ab30b211a65a57691a1fd41109b5d1dba4eeb0ff6d3e4fd693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8000-4906
0000-0002-4537-2444
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10444-025-10231-1.pdf
PQID 3188794179
PQPubID 2043875
ParticipantIDs proquest_journals_3188794179
crossref_primary_10_1007_s10444_025_10231_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References L Gemignani (10231_CR11) 2023; 192
E Gallopoulos (10231_CR10) 1992; 13
10231_CR13
10231_CR17
10231_CR16
JN Lyness (10231_CR15) 1974; 28
10231_CR9
10231_CR8
Y Saad (10231_CR19) 1992; 29
P Boito (10231_CR4) 2018; 25
10231_CR6
10231_CR18
R Bellman (10231_CR3) 1966; 17
P Boito (10231_CR5) 2022; 48
10231_CR1
JE Kiefer (10231_CR12) 1981; 7
C Lanczos (10231_CR14) 1966
A Barkhudaryan (10231_CR2) 2007; 23
A Boucherif (10231_CR7) 2009; 70
References_xml – ident: 10231_CR13
– ident: 10231_CR9
– volume: 13
  start-page: 1236
  issue: 5
  year: 1992
  ident: 10231_CR10
  publication-title: SIAM J. Sci. Statist. Comput.
  doi: 10.1137/0913071
– volume: 192
  start-page: 57
  year: 2023
  ident: 10231_CR11
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2023.05.026
– volume: 7
  start-page: 527
  issue: 6
  year: 1981
  ident: 10231_CR12
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(81)90036-5
– ident: 10231_CR6
  doi: 10.1007/s11075-024-01946-1
– volume: 28
  start-page: 81
  year: 1974
  ident: 10231_CR15
  publication-title: Math. Comp.
  doi: 10.2307/2005818
– ident: 10231_CR18
  doi: 10.1155/2013/315748
– ident: 10231_CR16
  doi: 10.3390/fractalfract5010015
– ident: 10231_CR17
  doi: 10.1093/imanum/drp043
– volume: 25
  start-page: e2141, 13
  issue: 6
  year: 2018
  ident: 10231_CR4
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.2141
– ident: 10231_CR1
  doi: 10.1063/1.3047921
– volume: 29
  start-page: 209
  issue: 1
  year: 1992
  ident: 10231_CR19
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0729014
– volume: 17
  start-page: 68
  year: 1966
  ident: 10231_CR3
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.2307/2035062
– volume: 23
  start-page: 228
  issue: 3
  year: 2007
  ident: 10231_CR2
  publication-title: Anal. Theory Appl.
  doi: 10.1007/s10496-007-0228-0
– volume: 70
  start-page: 364
  issue: 1
  year: 2009
  ident: 10231_CR7
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2007.12.007
– ident: 10231_CR8
  doi: 10.1007/BFb0072427
– volume: 48
  start-page: 1
  issue: 1
  year: 2022
  ident: 10231_CR5
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-021-09917-z
– volume-title: Discourse on Fourier Series
  year: 1966
  ident: 10231_CR14
SSID ssj0009675
Score 2.3803463
Snippet This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say $$q(\tau ,A)$$ q ( τ...
This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say q(τ,A), on a vector...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Algorithms
Boundary value problems
Computation
Fourier series
Mathematics
Numerical methods
Polynomials
Sparse matrices
Title Computing the action of the matrix generating function of Bernoulli polynomials on a vector with an application to non-local boundary value problems
URI https://www.proquest.com/docview/3188794179
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLagu8CBjQFibCAfuEVGseMkzbFFq6ZplEsr9WbZiS1xWIraDDF-Bz-YZ8eOU0AIuESpEzVW3pf3nv3e-x5Cb7OMSc6MIYoXNeElb-DMpERnjEpaSqWNy_JdFldrfr3JN7Fnq6su6dS7-ttv60r-R6owBnK1VbL_INnhT2EAzkG-cAQJw_GvZNy3ZAgFT77rtw_631ru_a-2Q7KlTXb5kmDCwh1zvWu3Ng5kuzTc29JkR6PcJjL54vbxQ9FbMopwWz-13bbE2b9EuYZMu_vE8oXbcivXmWY_9nZnfYKBS7mt3VzD1uPtwBZ7sO_A8lG6ynjf0SZV21DHUBfj1Cg4jgRWYr1m1V61loxUac_2GHSvJ5v9FJfAv6j0NJQ4cw4TYJY3FXxSQqMBC0H75UexWN_ciNXlZvUQHTFYOLAJOpot5vNlJGIuHPnyMENfSOXLKX96xqGzcmirnQOyOkFP_MoBz3oYPEUPdHuKjv0qAnsdvT9Fjz_Ed_sMfR8wgmEU9xjBW-N-9RjBESM4YMTeMWAEjzCC4ZrEPUawxQiWMBAxgrstHjCCA0awwwgOGHmO1ovL1fsr4jtxkJqVrCMmp7WuacWLylCVSZWlilEqi1zCerWCr9o03HLXqryhjZJca5UaUzSZ5qYpquwFmsCz9UuEC5XTRpbN1EaAuZwq8GFlNs10YVgujT5DSXjl4nNPuCIitbYVkAABCScgQc_QRZCK8B_mXoCZmoKZAVPz6s-Xz9GjiOwLNOl2d_o1-JideuNh8wPy2YST
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+the+action+of+the+matrix+generating+function+of+Bernoulli+polynomials+on+a+vector+with+an+application+to+non-local+boundary+value+problems&rft.jtitle=Advances+in+computational+mathematics&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=51&rft.issue=2&rft_id=info:doi/10.1007%2Fs10444-025-10231-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon