Computing the action of the matrix generating function of Bernoulli polynomials on a vector with an application to non-local boundary value problems
This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say $$q(\tau ,A)$$ q ( τ , A ) , on a vector when A is a large and sparse matrix. This problem occurs when solving some non-local boundary value problems. Methods ba...
Saved in:
Published in | Advances in computational mathematics Vol. 51; no. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say $$q(\tau ,A)$$ q ( τ , A ) , on a vector when A is a large and sparse matrix. This problem occurs when solving some non-local boundary value problems. Methods based on the Fourier expansion of $$q(\tau ,w)$$ q ( τ , w ) have already been addressed in the scientific literature. The contribution of this paper is twofold. First, we place these methods in the classical framework of Krylov-Lanczos (polynomial-rational) techniques for accelerating Fourier series. This allows us to apply the convergence results developed in this context to our function. Second, we design a new acceleration scheme. Some numerical results are presented to show the effectiveness of the proposed algorithms. |
---|---|
AbstractList | This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say q(τ,A), on a vector when A is a large and sparse matrix. This problem occurs when solving some non-local boundary value problems. Methods based on the Fourier expansion of q(τ,w) have already been addressed in the scientific literature. The contribution of this paper is twofold. First, we place these methods in the classical framework of Krylov-Lanczos (polynomial-rational) techniques for accelerating Fourier series. This allows us to apply the convergence results developed in this context to our function. Second, we design a new acceleration scheme. Some numerical results are presented to show the effectiveness of the proposed algorithms. This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say $$q(\tau ,A)$$ q ( τ , A ) , on a vector when A is a large and sparse matrix. This problem occurs when solving some non-local boundary value problems. Methods based on the Fourier expansion of $$q(\tau ,w)$$ q ( τ , w ) have already been addressed in the scientific literature. The contribution of this paper is twofold. First, we place these methods in the classical framework of Krylov-Lanczos (polynomial-rational) techniques for accelerating Fourier series. This allows us to apply the convergence results developed in this context to our function. Second, we design a new acceleration scheme. Some numerical results are presented to show the effectiveness of the proposed algorithms. |
ArticleNumber | 19 |
Author | Gemignani, Luca Aceto, Lidia |
Author_xml | – sequence: 1 givenname: Lidia orcidid: 0000-0002-4537-2444 surname: Aceto fullname: Aceto, Lidia – sequence: 2 givenname: Luca orcidid: 0000-0001-8000-4906 surname: Gemignani fullname: Gemignani, Luca |
BookMark | eNo9UMtOAyEUJaYmttUfcEXiGuXOsyy18ZU0caNrAjPQ0jAwMky1_-EHS1vj6j7OueeenBmaOO8UQtdAb4HS-m4AWhQFoVlJgGY5EDhDUyjrjLAETFJPgZEaqsUFmg3DllLKqrqcop-l7_oxGrfGcaOwaKLxDnt9nDoRg_nGa-VUEEeOHt0_40EF50drDe693TvfGWEHnDCBd6qJPuAvEzdYpEXfW9OI42H0OHkn1jfCYulH14qwxzthR4X74KVV3XCJznXSUld_dY4-nh7fly9k9fb8urxfkSars0h0CY1qgBUV0yBzIXMqMwBRlaKsKwYCdFsAUCbLFlopCqUk1bpqc1XotmL5HN2cdNPjz1ENkW_9GFx6yXNYLGpWQH1gZSdWE_wwBKV5H0yXXHOg_JA-P6XPU_r8mD6H_Bd-M31q |
Cites_doi | 10.1137/0913071 10.1016/j.apnum.2023.05.026 10.1016/0898-1221(81)90036-5 10.1007/s11075-024-01946-1 10.2307/2005818 10.1155/2013/315748 10.3390/fractalfract5010015 10.1093/imanum/drp043 10.1002/nla.2141 10.1063/1.3047921 10.1137/0729014 10.2307/2035062 10.1007/s10496-007-0228-0 10.1016/j.na.2007.12.007 10.1007/BFb0072427 10.1007/s10444-021-09917-z |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10444-025-10231-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_025_10231_1 |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX ABRTQ |
ID | FETCH-LOGICAL-c272t-f51cec19469f1b3ab30b211a65a57691a1fd41109b5d1dba4eeb0ff6d3e4fd693 |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 09:47:21 EDT 2025 Tue Jul 01 05:11:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c272t-f51cec19469f1b3ab30b211a65a57691a1fd41109b5d1dba4eeb0ff6d3e4fd693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8000-4906 0000-0002-4537-2444 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10444-025-10231-1.pdf |
PQID | 3188794179 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_3188794179 crossref_primary_10_1007_s10444_025_10231_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | L Gemignani (10231_CR11) 2023; 192 E Gallopoulos (10231_CR10) 1992; 13 10231_CR13 10231_CR17 10231_CR16 JN Lyness (10231_CR15) 1974; 28 10231_CR9 10231_CR8 Y Saad (10231_CR19) 1992; 29 P Boito (10231_CR4) 2018; 25 10231_CR6 10231_CR18 R Bellman (10231_CR3) 1966; 17 P Boito (10231_CR5) 2022; 48 10231_CR1 JE Kiefer (10231_CR12) 1981; 7 C Lanczos (10231_CR14) 1966 A Barkhudaryan (10231_CR2) 2007; 23 A Boucherif (10231_CR7) 2009; 70 |
References_xml | – ident: 10231_CR13 – ident: 10231_CR9 – volume: 13 start-page: 1236 issue: 5 year: 1992 ident: 10231_CR10 publication-title: SIAM J. Sci. Statist. Comput. doi: 10.1137/0913071 – volume: 192 start-page: 57 year: 2023 ident: 10231_CR11 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2023.05.026 – volume: 7 start-page: 527 issue: 6 year: 1981 ident: 10231_CR12 publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(81)90036-5 – ident: 10231_CR6 doi: 10.1007/s11075-024-01946-1 – volume: 28 start-page: 81 year: 1974 ident: 10231_CR15 publication-title: Math. Comp. doi: 10.2307/2005818 – ident: 10231_CR18 doi: 10.1155/2013/315748 – ident: 10231_CR16 doi: 10.3390/fractalfract5010015 – ident: 10231_CR17 doi: 10.1093/imanum/drp043 – volume: 25 start-page: e2141, 13 issue: 6 year: 2018 ident: 10231_CR4 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.2141 – ident: 10231_CR1 doi: 10.1063/1.3047921 – volume: 29 start-page: 209 issue: 1 year: 1992 ident: 10231_CR19 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0729014 – volume: 17 start-page: 68 year: 1966 ident: 10231_CR3 publication-title: Proc. Amer. Math. Soc. doi: 10.2307/2035062 – volume: 23 start-page: 228 issue: 3 year: 2007 ident: 10231_CR2 publication-title: Anal. Theory Appl. doi: 10.1007/s10496-007-0228-0 – volume: 70 start-page: 364 issue: 1 year: 2009 ident: 10231_CR7 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2007.12.007 – ident: 10231_CR8 doi: 10.1007/BFb0072427 – volume: 48 start-page: 1 issue: 1 year: 2022 ident: 10231_CR5 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-021-09917-z – volume-title: Discourse on Fourier Series year: 1966 ident: 10231_CR14 |
SSID | ssj0009675 |
Score | 2.3803463 |
Snippet | This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say $$q(\tau ,A)$$ q ( τ... This paper deals with efficient numerical methods for computing the action of the matrix generating function of Bernoulli polynomials, say q(τ,A), on a vector... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Algorithms Boundary value problems Computation Fourier series Mathematics Numerical methods Polynomials Sparse matrices |
Title | Computing the action of the matrix generating function of Bernoulli polynomials on a vector with an application to non-local boundary value problems |
URI | https://www.proquest.com/docview/3188794179 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLagu8CBjQFibCAfuEVGseMkzbFFq6ZplEsr9WbZiS1xWIraDDF-Bz-YZ8eOU0AIuESpEzVW3pf3nv3e-x5Cb7OMSc6MIYoXNeElb-DMpERnjEpaSqWNy_JdFldrfr3JN7Fnq6su6dS7-ttv60r-R6owBnK1VbL_INnhT2EAzkG-cAQJw_GvZNy3ZAgFT77rtw_631ru_a-2Q7KlTXb5kmDCwh1zvWu3Ng5kuzTc29JkR6PcJjL54vbxQ9FbMopwWz-13bbE2b9EuYZMu_vE8oXbcivXmWY_9nZnfYKBS7mt3VzD1uPtwBZ7sO_A8lG6ynjf0SZV21DHUBfj1Cg4jgRWYr1m1V61loxUac_2GHSvJ5v9FJfAv6j0NJQ4cw4TYJY3FXxSQqMBC0H75UexWN_ciNXlZvUQHTFYOLAJOpot5vNlJGIuHPnyMENfSOXLKX96xqGzcmirnQOyOkFP_MoBz3oYPEUPdHuKjv0qAnsdvT9Fjz_Ed_sMfR8wgmEU9xjBW-N-9RjBESM4YMTeMWAEjzCC4ZrEPUawxQiWMBAxgrstHjCCA0awwwgOGHmO1ovL1fsr4jtxkJqVrCMmp7WuacWLylCVSZWlilEqi1zCerWCr9o03HLXqryhjZJca5UaUzSZ5qYpquwFmsCz9UuEC5XTRpbN1EaAuZwq8GFlNs10YVgujT5DSXjl4nNPuCIitbYVkAABCScgQc_QRZCK8B_mXoCZmoKZAVPz6s-Xz9GjiOwLNOl2d_o1-JideuNh8wPy2YST |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+the+action+of+the+matrix+generating+function+of+Bernoulli+polynomials+on+a+vector+with+an+application+to+non-local+boundary+value+problems&rft.jtitle=Advances+in+computational+mathematics&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=51&rft.issue=2&rft_id=info:doi/10.1007%2Fs10444-025-10231-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |