A Novel Approximation Method for Computing the Adjustment Coefficient of a Nonlinear Cramér-Lundberg Risk Model with Gamma Claims

This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient ( r ) when the claims have gamma distribution. The linear models are not always adequate because an insurance company’s premium income does not always increase linearly. Therefore, in this study, a m...

Full description

Saved in:
Bibliographic Details
Published inMethodology and computing in applied probability Vol. 27; no. 3; p. 64
Main Authors Gever Ekinci, Basak, Hanalioglu, Zulfiye, Khaniyev, Tahir
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient ( r ) when the claims have gamma distribution. The linear models are not always adequate because an insurance company’s premium income does not always increase linearly. Therefore, in this study, a more realistic non-linear Cramér-Lundberg risk model is mathematically constructed. Then, the ruin probability of this non-linear risk model is studied when the premium function is in the form of square root function, i.e., p ( t ) = c t . It leads to analyzing the adjustment coefficient ( r ) , as examining this coefficient is required for finding an upper bound while investigating the ruin probability. However, in general case, it is a challenging procedure to calculate the exact value of r from an integral equation. Thus, in this study, the adjustment coefficient r is explored by computational methods and a new approximate formula for the practical calculation of the adjustment coefficient is proposed. Moreover, an implementation of the obtained approximate formula, which investigates ruin probability, is included as an example at the end of the paper.
AbstractList This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient ( r ) when the claims have gamma distribution. The linear models are not always adequate because an insurance company’s premium income does not always increase linearly. Therefore, in this study, a more realistic non-linear Cramér-Lundberg risk model is mathematically constructed. Then, the ruin probability of this non-linear risk model is studied when the premium function is in the form of square root function, i.e., p ( t ) = c t . It leads to analyzing the adjustment coefficient ( r ) , as examining this coefficient is required for finding an upper bound while investigating the ruin probability. However, in general case, it is a challenging procedure to calculate the exact value of r from an integral equation. Thus, in this study, the adjustment coefficient r is explored by computational methods and a new approximate formula for the practical calculation of the adjustment coefficient is proposed. Moreover, an implementation of the obtained approximate formula, which investigates ruin probability, is included as an example at the end of the paper.
This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient (r) when the claims have gamma distribution. The linear models are not always adequate because an insurance company’s premium income does not always increase linearly. Therefore, in this study, a more realistic non-linear Cramér-Lundberg risk model is mathematically constructed. Then, the ruin probability of this non-linear risk model is studied when the premium function is in the form of square root function, i.e., p(t)=ct. It leads to analyzing the adjustment coefficient (r), as examining this coefficient is required for finding an upper bound while investigating the ruin probability. However, in general case, it is a challenging procedure to calculate the exact value of r from an integral equation. Thus, in this study, the adjustment coefficient r is explored by computational methods and a new approximate formula for the practical calculation of the adjustment coefficient is proposed. Moreover, an implementation of the obtained approximate formula, which investigates ruin probability, is included as an example at the end of the paper.
ArticleNumber 64
Author Khaniyev, Tahir
Gever Ekinci, Basak
Hanalioglu, Zulfiye
Author_xml – sequence: 1
  givenname: Basak
  surname: Gever Ekinci
  fullname: Gever Ekinci, Basak
  email: bgever@thk.edu.tr
  organization: Department of Industrial Engineering, University of Turkish Aeronautical Association
– sequence: 2
  givenname: Zulfiye
  surname: Hanalioglu
  fullname: Hanalioglu, Zulfiye
  organization: Department of Actuarial Sciences, Karabuk University
– sequence: 3
  givenname: Tahir
  surname: Khaniyev
  fullname: Khaniyev, Tahir
  organization: Department of Industrial Engineering, TOBB University of Economics and Technology, The Center of Digital Economics, Azerbaijan State University of Economics
BookMark eNp9kM1KAzEUhYNUsFVfwFXAdTQ_M5OZZSlahaogug5pkmlTO0lNMv5sfRufwxcztYI7V_fAPedc7jcCA-edAeCE4DOCMT-PJI8GYVoigklTILoHhqTkDHFO2CBrVnNU1gU5AKMYVxhTUrJiCD7G8Na_mDUcbzbBv9lOJusdvDFp6TVsfYAT3236ZN0CpqWBY73qY-qMS3lh2tYqu9W-hTIXubV1RuZMkN3XZ0Cz3um5CQt4b-MTvPE6H3q1aQmnsusknKyl7eIR2G_lOprj33kIHi8vHiZXaHY3vZ6MZ0hRThNq2byRtKFK01rWDBOsqMJKMqJ0UZtKt01TlFXVyLowvKzmXBGGlSFMaS1lwQ7B6a43P_rcm5jEyvfB5ZOCUUbLklcFzS66c6ngYwymFZuQqYR3QbDYshY71iKzFj-sxTbEdqGYzW5hwl_1P6lvEaGFIA
Cites_doi 10.1007/978-1-4613-0111-0
10.1016/j.insmatheco.2011.01.013
10.1080/03610918.2018.1468449
10.1080/03610926.2012.655877
10.1016/j.insmatheco.2020.06.003
10.1016/j.insmatheco.2006.09.001
10.1007/978-3-030-35176-2
10.1137/S0040585X9797987
10.1080/03610926.2021.1931887
10.1080/03461230050131885
10.1007/978-3-540-70998-5
10.7494/OpMath.2015.35.3.333
10.1080/03610920802662150
10.1214/aoap/1060202834
10.1016/j.insmatheco.2013.12.004
10.1080/03461238.2017.1402817
10.1016/j.insmatheco.2020.02.003
10.1007/s10958-013-1640-y
10.1017/jpr.2021.99
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11009-025-10194-2
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1573-7713
ExternalDocumentID 10_1007_s11009_025_10194_2
GroupedDBID -~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BENPR
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EBU
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9R
PF0
PT4
PT5
QOS
QWB
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
-Y2
1SB
2P1
2VQ
88I
8AO
8FE
8FG
8FW
AARHV
AAYXX
ABJCF
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AFKRA
AGGDS
AGQPQ
AHQJS
AHSBF
AJBLW
AMVHM
AZQEC
BDATZ
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EBO
EJD
FINBP
FRNLG
FSGXE
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
H13
HZ~
IHE
K1G
K6V
K7-
L6V
M0C
M2P
M7S
N2Q
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
Q2X
RIG
RNI
RZC
RZE
RZK
TEORI
TH9
~8M
JQ2
ID FETCH-LOGICAL-c272t-f3b9a292cd28a83010c2c0ca31cd48e6df9945669a84e756b7c130ce13cddaa43
IEDL.DBID U2A
ISSN 1387-5841
IngestDate Fri Jul 25 04:26:38 EDT 2025
Thu Jul 31 00:35:33 EDT 2025
Thu Jul 24 02:01:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Ruin probability
Gamma distribution
Non-linear Cramér-Lundberg risk model
62P05
91G60
Approximate formula for adjustment coefficient
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-f3b9a292cd28a83010c2c0ca31cd48e6df9945669a84e756b7c130ce13cddaa43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3232557642
PQPubID 26119
ParticipantIDs proquest_journals_3232557642
crossref_primary_10_1007_s11009_025_10194_2
springer_journals_10_1007_s11009_025_10194_2
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Methodology and computing in applied probability
PublicationTitleAbbrev Methodol Comput Appl Probab
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References R Aliyev (10194_CR3) 2009; 39
S Asmussen (10194_CR5) 2020
T Rolski (10194_CR19) 2009
10194_CR6
GE Willmot (10194_CR23) 2001
H Yang (10194_CR24) 1999; 1999
S Anastasiadis (10194_CR4) 2012; 51
10194_CR8
F Gökpinar (10194_CR12) 2019; 48
R Aliyev (10194_CR2) 2014; 43
10194_CR9
Z Hanalioglu (10194_CR13) 2022; 6
G Temnov (10194_CR20) 2014; 196
T Mikosch (10194_CR17) 2004
R Kaas (10194_CR14) 2008
AL Martire (10194_CR16) 2022; 435
VK Malinovskii (10194_CR15) 2014; 55
R Gauchon (10194_CR11) 2020; 91
10194_CR22
M Abramowitz (10194_CR1) 1948
L Tian (10194_CR21) 2022; 51
J Gaier (10194_CR10) 2003; 13
S Chadjiconstantinidis (10194_CR7) 2007; 41
10194_CR18
References_xml – volume-title: Lundberg Approximations for Compound Distributions with Insurance Applications
  year: 2001
  ident: 10194_CR23
  doi: 10.1007/978-1-4613-0111-0
– volume: 51
  start-page: 222
  issue: 1
  year: 2012
  ident: 10194_CR4
  publication-title: Insur Math Econ
  doi: 10.1016/j.insmatheco.2011.01.013
– volume: 48
  start-page: 2679
  issue: 9
  year: 2019
  ident: 10194_CR12
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2018.1468449
– volume: 43
  start-page: 90
  issue: 1
  year: 2014
  ident: 10194_CR2
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2012.655877
– ident: 10194_CR8
  doi: 10.1016/j.insmatheco.2020.06.003
– volume: 41
  start-page: 41
  issue: 1
  year: 2007
  ident: 10194_CR7
  publication-title: Insur Math Econ
  doi: 10.1016/j.insmatheco.2006.09.001
– volume-title: Risk and Insurance
  year: 2020
  ident: 10194_CR5
  doi: 10.1007/978-3-030-35176-2
– volume-title: An Introduction with Stochastic Processes Non-life insurance mathematics
  year: 2004
  ident: 10194_CR17
– ident: 10194_CR6
  doi: 10.1137/S0040585X9797987
– volume: 51
  start-page: 1622
  issue: 6
  year: 2022
  ident: 10194_CR21
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2021.1931887
– volume: 1999
  start-page: 66
  issue: 1
  year: 1999
  ident: 10194_CR24
  publication-title: Scand Actuar J
  doi: 10.1080/03461230050131885
– volume: 6
  start-page: 1065
  issue: 1
  year: 2022
  ident: 10194_CR13
  publication-title: J Turk Oper Manag
– volume-title: Modern Actuarial Risk Theory
  year: 2008
  ident: 10194_CR14
  doi: 10.1007/978-3-540-70998-5
– ident: 10194_CR18
  doi: 10.7494/OpMath.2015.35.3.333
– volume-title: Stochastic Processes for Insurance and Finance
  year: 2009
  ident: 10194_CR19
– volume: 435
  year: 2022
  ident: 10194_CR16
  publication-title: Appl Math Comput
– volume: 39
  start-page: 130
  issue: 1
  year: 2009
  ident: 10194_CR3
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610920802662150
– volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  year: 1948
  ident: 10194_CR1
– volume: 13
  start-page: 1054
  issue: 3
  year: 2003
  ident: 10194_CR10
  publication-title: Annals Appl Probab
  doi: 10.1214/aoap/1060202834
– volume: 55
  start-page: 301
  year: 2014
  ident: 10194_CR15
  publication-title: Insur Math Econ
  doi: 10.1016/j.insmatheco.2013.12.004
– ident: 10194_CR9
  doi: 10.1080/03461238.2017.1402817
– volume: 91
  start-page: 202
  year: 2020
  ident: 10194_CR11
  publication-title: Insur Math Econ
  doi: 10.1016/j.insmatheco.2020.02.003
– volume: 196
  start-page: 84
  year: 2014
  ident: 10194_CR20
  publication-title: J Math Sci
  doi: 10.1007/s10958-013-1640-y
– ident: 10194_CR22
  doi: 10.1017/jpr.2021.99
SSID ssj0021534
Score 2.3496552
Snippet This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient ( r ) when the claims have gamma distribution. The linear...
This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient (r) when the claims have gamma distribution. The linear...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 64
SubjectTerms Applied mathematics
Business and Management
Economics
Electrical Engineering
Integral equations
Life Sciences
Mathematics and Statistics
Probability
Probability distribution functions
Random variables
Risk
Statistical analysis
Statistics
Stochastic models
Upper bounds
Title A Novel Approximation Method for Computing the Adjustment Coefficient of a Nonlinear Cramér-Lundberg Risk Model with Gamma Claims
URI https://link.springer.com/article/10.1007/s11009-025-10194-2
https://www.proquest.com/docview/3232557642
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQO1AGBAVEoVQe2CBS4jh_Y1T1R0A7ICqVKXJsRyq0KWpaxMzb8By8GGcnaQSCgS2R44uU8-W-s---Q-jSZCLwdIKDByEKdTxmMGomhpDCIw43bW6reufR2B1O6M3UmRZFYVmZ7V4eSeo_dVXsZumNfKKYMyH0NuDHW3dU7A6reELCbZgFNpy3sgXzAfdqFaUyv8v47o4qjPnjWFR7m_4B2i9gIg5zvR6iHZk20W5ZRZw10d5oy7cKdw2FGXPK5SP0HuLx8lXCbMUX_jbLixPxSPeKxgBScd7KAV6MQQYOxdMm08nmMCA1pYS6XiaYgSDNpMFgzootPj9Wxt0mFSonDN_PsmesWqnNsdrMxQO2WDDcnbPZIjtGk37voTs0ilYLBiceWRuJHQeMBIQL4jMfjN7khJuc2RYX1JeuSIIAoJYbMJ9Kz3Fjj4Pz49KyuRCMUfsE1dJlKk8RFjYnVASUSEopEZL5HnXNGHCZgPk8aaGr8otHLzmjRlRxJyv9RKCfSOsnIi3ULpUSFdaVRTbAQAcCJQrD16WiquG_pZ397_Fz1CBqreiUsjaqrVcbeQEYZB13UD0cPN72OnrpfQGEldSY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQGVoGBAVEoYAHNoiUOM7fWFWUAm0H1ErdLMd2pELToqZFzLwNz8GLcXaSViAY2BI5vkg5X-47--47hC5tLqPAJDgEEKJQL-AWp3ZiSSUD4gnbFa6ud-4P_O6I3o-9cVEUlpXZ7uWRpPlTb4rdHLORTzRzJoTeFvx4twEMhDqRa0Ra6zALbDhvZQvmA-7VKUplfpfx3R1tMOaPY1HjbTp7aLeAibiV63UfbalZHVXLKuKsjnb6a75VuKtpzJhTLh-g9xYezF8VzNZ84W-TvDgR902vaAwgFeetHODFGGTglnxaZSbZHAaUoZTQ1_MEcxBkmDQ4zFnw9PNjYfVWM6lzwvDjJHvGupXaFOvNXHzL05Tj9pRP0uwQjTo3w3bXKlotWIIEZGklbhxxEhEhSchDMHpbEGEL7jpC0lD5MokigFp-xEOqAs-PAwHOTyjHFVJyTt0jVJnNZ-oYYekKQmVEiaKUEql4GFDfjgGXSZgvkga6Kr84e8kZNdiGO1nrh4F-mNEPIw3ULJXCCuvKmAsw0INAicLwdamozfDf0k7-9_gFqnaH_R7r3Q0eTlGN6HVj0suaqLJcrNQZ4JFlfG6W3xcBuNX3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PT8IwFG8MJv45GEWNKGoP3nRh67p_R4IiKhBjJOG2dG2XoDAIA-PZb-Pn8Iv52jGmRg_etnR9S_ravt9r3_s9hM5MJgJPBzh44KJQx2MGo2ZsCCk84nDT5rbKd-503VaP3vad_pcsfh3tnl9JZjkNiqUpmdUmIq4ViW-WPtQnikUT3HADNuFV2I4tNa97pL50uWA9Z2VtYSmBqbUWaTO_y_humgq8-eOKVFue5jbaWkBGXM90vINWZFJG63lGcVpGm50l9yq8bSj8mNEv76K3Ou6OXyT0Vtzhr4MsURF3dN1oDIAVZ2Ud4McYZOC6eJqnOvAcGqSml1DP4xgzEKRZNRj0mbLRx_vUaM8ToeLD8MMgfcaqrNoQq4NdfM1GI4YbQzYYpXuo17x6bLSMRdkFgxOPzIzYjgJGAsIF8ZkPG4DJCTc5sy0uqC9dEQcBwC43YD6VnuNGHgdDyKVlcyEYo_Y-KiXjRB4gLGxOqAgokZRSIiTzPeqaEWA0Af15XEHn-YiHk4xdIyx4lJV-QtBPqPUTkgqq5koJFystDW2AhA44TRSaL3JFFc1_Szv83-enaO3-shm2b7p3R2iDqGmjI82qqDSbzuUxQJNZdKJn3yd9D9oz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Approximation+Method+for+Computing+the+Adjustment+Coefficient+of+a+Nonlinear+Cram%C3%A9r-Lundberg+Risk+Model+with+Gamma+Claims&rft.jtitle=Methodology+and+computing+in+applied+probability&rft.au=Gever+Ekinci%2C+Basak&rft.au=Hanalioglu%2C+Zulfiye&rft.au=Khaniyev%2C+Tahir&rft.date=2025-09-01&rft.issn=1387-5841&rft.eissn=1573-7713&rft.volume=27&rft.issue=3&rft_id=info:doi/10.1007%2Fs11009-025-10194-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11009_025_10194_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-5841&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-5841&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-5841&client=summon