A Novel Approximation Method for Computing the Adjustment Coefficient of a Nonlinear Cramér-Lundberg Risk Model with Gamma Claims
This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient ( r ) when the claims have gamma distribution. The linear models are not always adequate because an insurance company’s premium income does not always increase linearly. Therefore, in this study, a m...
Saved in:
Published in | Methodology and computing in applied probability Vol. 27; no. 3; p. 64 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient
(
r
)
when the claims have gamma distribution. The linear models are not always adequate because an insurance company’s premium income does not always increase linearly. Therefore, in this study, a more realistic non-linear Cramér-Lundberg risk model is mathematically constructed. Then, the ruin probability of this non-linear risk model is studied when the premium function is in the form of square root function, i.e.,
p
(
t
)
=
c
t
. It leads to analyzing the adjustment coefficient
(
r
)
, as examining this coefficient is required for finding an upper bound while investigating the ruin probability. However, in general case, it is a challenging procedure to calculate the exact value of
r
from an integral equation. Thus, in this study, the adjustment coefficient
r
is explored by computational methods and a new approximate formula for the practical calculation of the adjustment coefficient is proposed. Moreover, an implementation of the obtained approximate formula, which investigates ruin probability, is included as an example at the end of the paper. |
---|---|
AbstractList | This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient
(
r
)
when the claims have gamma distribution. The linear models are not always adequate because an insurance company’s premium income does not always increase linearly. Therefore, in this study, a more realistic non-linear Cramér-Lundberg risk model is mathematically constructed. Then, the ruin probability of this non-linear risk model is studied when the premium function is in the form of square root function, i.e.,
p
(
t
)
=
c
t
. It leads to analyzing the adjustment coefficient
(
r
)
, as examining this coefficient is required for finding an upper bound while investigating the ruin probability. However, in general case, it is a challenging procedure to calculate the exact value of
r
from an integral equation. Thus, in this study, the adjustment coefficient
r
is explored by computational methods and a new approximate formula for the practical calculation of the adjustment coefficient is proposed. Moreover, an implementation of the obtained approximate formula, which investigates ruin probability, is included as an example at the end of the paper. This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient (r) when the claims have gamma distribution. The linear models are not always adequate because an insurance company’s premium income does not always increase linearly. Therefore, in this study, a more realistic non-linear Cramér-Lundberg risk model is mathematically constructed. Then, the ruin probability of this non-linear risk model is studied when the premium function is in the form of square root function, i.e., p(t)=ct. It leads to analyzing the adjustment coefficient (r), as examining this coefficient is required for finding an upper bound while investigating the ruin probability. However, in general case, it is a challenging procedure to calculate the exact value of r from an integral equation. Thus, in this study, the adjustment coefficient r is explored by computational methods and a new approximate formula for the practical calculation of the adjustment coefficient is proposed. Moreover, an implementation of the obtained approximate formula, which investigates ruin probability, is included as an example at the end of the paper. |
ArticleNumber | 64 |
Author | Khaniyev, Tahir Gever Ekinci, Basak Hanalioglu, Zulfiye |
Author_xml | – sequence: 1 givenname: Basak surname: Gever Ekinci fullname: Gever Ekinci, Basak email: bgever@thk.edu.tr organization: Department of Industrial Engineering, University of Turkish Aeronautical Association – sequence: 2 givenname: Zulfiye surname: Hanalioglu fullname: Hanalioglu, Zulfiye organization: Department of Actuarial Sciences, Karabuk University – sequence: 3 givenname: Tahir surname: Khaniyev fullname: Khaniyev, Tahir organization: Department of Industrial Engineering, TOBB University of Economics and Technology, The Center of Digital Economics, Azerbaijan State University of Economics |
BookMark | eNp9kM1KAzEUhYNUsFVfwFXAdTQ_M5OZZSlahaogug5pkmlTO0lNMv5sfRufwxcztYI7V_fAPedc7jcCA-edAeCE4DOCMT-PJI8GYVoigklTILoHhqTkDHFO2CBrVnNU1gU5AKMYVxhTUrJiCD7G8Na_mDUcbzbBv9lOJusdvDFp6TVsfYAT3236ZN0CpqWBY73qY-qMS3lh2tYqu9W-hTIXubV1RuZMkN3XZ0Cz3um5CQt4b-MTvPE6H3q1aQmnsusknKyl7eIR2G_lOprj33kIHi8vHiZXaHY3vZ6MZ0hRThNq2byRtKFK01rWDBOsqMJKMqJ0UZtKt01TlFXVyLowvKzmXBGGlSFMaS1lwQ7B6a43P_rcm5jEyvfB5ZOCUUbLklcFzS66c6ngYwymFZuQqYR3QbDYshY71iKzFj-sxTbEdqGYzW5hwl_1P6lvEaGFIA |
Cites_doi | 10.1007/978-1-4613-0111-0 10.1016/j.insmatheco.2011.01.013 10.1080/03610918.2018.1468449 10.1080/03610926.2012.655877 10.1016/j.insmatheco.2020.06.003 10.1016/j.insmatheco.2006.09.001 10.1007/978-3-030-35176-2 10.1137/S0040585X9797987 10.1080/03610926.2021.1931887 10.1080/03461230050131885 10.1007/978-3-540-70998-5 10.7494/OpMath.2015.35.3.333 10.1080/03610920802662150 10.1214/aoap/1060202834 10.1016/j.insmatheco.2013.12.004 10.1080/03461238.2017.1402817 10.1016/j.insmatheco.2020.02.003 10.1007/s10958-013-1640-y 10.1017/jpr.2021.99 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s11009-025-10194-2 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Mathematics |
EISSN | 1573-7713 |
ExternalDocumentID | 10_1007_s11009_025_10194_2 |
GroupedDBID | -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 7WY 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BENPR BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EBU EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9R PF0 PT4 PT5 QOS QWB R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR -Y2 1SB 2P1 2VQ 88I 8AO 8FE 8FG 8FW AARHV AAYXX ABJCF ABQSL ABULA ABUWG ACBXY ADHKG AEBTG AEKMD AFGCZ AFKRA AGGDS AGQPQ AHQJS AHSBF AJBLW AMVHM AZQEC BDATZ BEZIV BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO EBO EJD FINBP FRNLG FSGXE GNUQQ GROUPED_ABI_INFORM_RESEARCH H13 HZ~ IHE K1G K6V K7- L6V M0C M2P M7S N2Q O9- OVD P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS Q2X RIG RNI RZC RZE RZK TEORI TH9 ~8M JQ2 |
ID | FETCH-LOGICAL-c272t-f3b9a292cd28a83010c2c0ca31cd48e6df9945669a84e756b7c130ce13cddaa43 |
IEDL.DBID | U2A |
ISSN | 1387-5841 |
IngestDate | Fri Jul 25 04:26:38 EDT 2025 Thu Jul 31 00:35:33 EDT 2025 Thu Jul 24 02:01:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Ruin probability Gamma distribution Non-linear Cramér-Lundberg risk model 62P05 91G60 Approximate formula for adjustment coefficient |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-f3b9a292cd28a83010c2c0ca31cd48e6df9945669a84e756b7c130ce13cddaa43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3232557642 |
PQPubID | 26119 |
ParticipantIDs | proquest_journals_3232557642 crossref_primary_10_1007_s11009_025_10194_2 springer_journals_10_1007_s11009_025_10194_2 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Methodology and computing in applied probability |
PublicationTitleAbbrev | Methodol Comput Appl Probab |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | R Aliyev (10194_CR3) 2009; 39 S Asmussen (10194_CR5) 2020 T Rolski (10194_CR19) 2009 10194_CR6 GE Willmot (10194_CR23) 2001 H Yang (10194_CR24) 1999; 1999 S Anastasiadis (10194_CR4) 2012; 51 10194_CR8 F Gökpinar (10194_CR12) 2019; 48 R Aliyev (10194_CR2) 2014; 43 10194_CR9 Z Hanalioglu (10194_CR13) 2022; 6 G Temnov (10194_CR20) 2014; 196 T Mikosch (10194_CR17) 2004 R Kaas (10194_CR14) 2008 AL Martire (10194_CR16) 2022; 435 VK Malinovskii (10194_CR15) 2014; 55 R Gauchon (10194_CR11) 2020; 91 10194_CR22 M Abramowitz (10194_CR1) 1948 L Tian (10194_CR21) 2022; 51 J Gaier (10194_CR10) 2003; 13 S Chadjiconstantinidis (10194_CR7) 2007; 41 10194_CR18 |
References_xml | – volume-title: Lundberg Approximations for Compound Distributions with Insurance Applications year: 2001 ident: 10194_CR23 doi: 10.1007/978-1-4613-0111-0 – volume: 51 start-page: 222 issue: 1 year: 2012 ident: 10194_CR4 publication-title: Insur Math Econ doi: 10.1016/j.insmatheco.2011.01.013 – volume: 48 start-page: 2679 issue: 9 year: 2019 ident: 10194_CR12 publication-title: Commun Stat Simul Comput doi: 10.1080/03610918.2018.1468449 – volume: 43 start-page: 90 issue: 1 year: 2014 ident: 10194_CR2 publication-title: Commun Stat Theory Methods doi: 10.1080/03610926.2012.655877 – ident: 10194_CR8 doi: 10.1016/j.insmatheco.2020.06.003 – volume: 41 start-page: 41 issue: 1 year: 2007 ident: 10194_CR7 publication-title: Insur Math Econ doi: 10.1016/j.insmatheco.2006.09.001 – volume-title: Risk and Insurance year: 2020 ident: 10194_CR5 doi: 10.1007/978-3-030-35176-2 – volume-title: An Introduction with Stochastic Processes Non-life insurance mathematics year: 2004 ident: 10194_CR17 – ident: 10194_CR6 doi: 10.1137/S0040585X9797987 – volume: 51 start-page: 1622 issue: 6 year: 2022 ident: 10194_CR21 publication-title: Commun Stat Theory Methods doi: 10.1080/03610926.2021.1931887 – volume: 1999 start-page: 66 issue: 1 year: 1999 ident: 10194_CR24 publication-title: Scand Actuar J doi: 10.1080/03461230050131885 – volume: 6 start-page: 1065 issue: 1 year: 2022 ident: 10194_CR13 publication-title: J Turk Oper Manag – volume-title: Modern Actuarial Risk Theory year: 2008 ident: 10194_CR14 doi: 10.1007/978-3-540-70998-5 – ident: 10194_CR18 doi: 10.7494/OpMath.2015.35.3.333 – volume-title: Stochastic Processes for Insurance and Finance year: 2009 ident: 10194_CR19 – volume: 435 year: 2022 ident: 10194_CR16 publication-title: Appl Math Comput – volume: 39 start-page: 130 issue: 1 year: 2009 ident: 10194_CR3 publication-title: Commun Stat Theory Methods doi: 10.1080/03610920802662150 – volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables year: 1948 ident: 10194_CR1 – volume: 13 start-page: 1054 issue: 3 year: 2003 ident: 10194_CR10 publication-title: Annals Appl Probab doi: 10.1214/aoap/1060202834 – volume: 55 start-page: 301 year: 2014 ident: 10194_CR15 publication-title: Insur Math Econ doi: 10.1016/j.insmatheco.2013.12.004 – ident: 10194_CR9 doi: 10.1080/03461238.2017.1402817 – volume: 91 start-page: 202 year: 2020 ident: 10194_CR11 publication-title: Insur Math Econ doi: 10.1016/j.insmatheco.2020.02.003 – volume: 196 start-page: 84 year: 2014 ident: 10194_CR20 publication-title: J Math Sci doi: 10.1007/s10958-013-1640-y – ident: 10194_CR22 doi: 10.1017/jpr.2021.99 |
SSID | ssj0021534 |
Score | 2.3496552 |
Snippet | This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient
(
r
)
when the claims have gamma distribution. The linear... This study considers a non-linear Cramér-Lundberg risk model and examines the adjustment coefficient (r) when the claims have gamma distribution. The linear... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 64 |
SubjectTerms | Applied mathematics Business and Management Economics Electrical Engineering Integral equations Life Sciences Mathematics and Statistics Probability Probability distribution functions Random variables Risk Statistical analysis Statistics Stochastic models Upper bounds |
Title | A Novel Approximation Method for Computing the Adjustment Coefficient of a Nonlinear Cramér-Lundberg Risk Model with Gamma Claims |
URI | https://link.springer.com/article/10.1007/s11009-025-10194-2 https://www.proquest.com/docview/3232557642 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQO1AGBAVEoVQe2CBS4jh_Y1T1R0A7ICqVKXJsRyq0KWpaxMzb8By8GGcnaQSCgS2R44uU8-W-s---Q-jSZCLwdIKDByEKdTxmMGomhpDCIw43bW6reufR2B1O6M3UmRZFYVmZ7V4eSeo_dVXsZumNfKKYMyH0NuDHW3dU7A6reELCbZgFNpy3sgXzAfdqFaUyv8v47o4qjPnjWFR7m_4B2i9gIg5zvR6iHZk20W5ZRZw10d5oy7cKdw2FGXPK5SP0HuLx8lXCbMUX_jbLixPxSPeKxgBScd7KAV6MQQYOxdMm08nmMCA1pYS6XiaYgSDNpMFgzootPj9Wxt0mFSonDN_PsmesWqnNsdrMxQO2WDDcnbPZIjtGk37voTs0ilYLBiceWRuJHQeMBIQL4jMfjN7khJuc2RYX1JeuSIIAoJYbMJ9Kz3Fjj4Pz49KyuRCMUfsE1dJlKk8RFjYnVASUSEopEZL5HnXNGHCZgPk8aaGr8otHLzmjRlRxJyv9RKCfSOsnIi3ULpUSFdaVRTbAQAcCJQrD16WiquG_pZ397_Fz1CBqreiUsjaqrVcbeQEYZB13UD0cPN72OnrpfQGEldSY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQGVoGBAVEoYAHNoiUOM7fWFWUAm0H1ErdLMd2pELToqZFzLwNz8GLcXaSViAY2BI5vkg5X-47--47hC5tLqPAJDgEEKJQL-AWp3ZiSSUD4gnbFa6ud-4P_O6I3o-9cVEUlpXZ7uWRpPlTb4rdHLORTzRzJoTeFvx4twEMhDqRa0Ra6zALbDhvZQvmA-7VKUplfpfx3R1tMOaPY1HjbTp7aLeAibiV63UfbalZHVXLKuKsjnb6a75VuKtpzJhTLh-g9xYezF8VzNZ84W-TvDgR902vaAwgFeetHODFGGTglnxaZSbZHAaUoZTQ1_MEcxBkmDQ4zFnw9PNjYfVWM6lzwvDjJHvGupXaFOvNXHzL05Tj9pRP0uwQjTo3w3bXKlotWIIEZGklbhxxEhEhSchDMHpbEGEL7jpC0lD5MokigFp-xEOqAs-PAwHOTyjHFVJyTt0jVJnNZ-oYYekKQmVEiaKUEql4GFDfjgGXSZgvkga6Kr84e8kZNdiGO1nrh4F-mNEPIw3ULJXCCuvKmAsw0INAicLwdamozfDf0k7-9_gFqnaH_R7r3Q0eTlGN6HVj0suaqLJcrNQZ4JFlfG6W3xcBuNX3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PT8IwFG8MJv45GEWNKGoP3nRh67p_R4IiKhBjJOG2dG2XoDAIA-PZb-Pn8Iv52jGmRg_etnR9S_ravt9r3_s9hM5MJgJPBzh44KJQx2MGo2ZsCCk84nDT5rbKd-503VaP3vad_pcsfh3tnl9JZjkNiqUpmdUmIq4ViW-WPtQnikUT3HADNuFV2I4tNa97pL50uWA9Z2VtYSmBqbUWaTO_y_humgq8-eOKVFue5jbaWkBGXM90vINWZFJG63lGcVpGm50l9yq8bSj8mNEv76K3Ou6OXyT0Vtzhr4MsURF3dN1oDIAVZ2Ud4McYZOC6eJqnOvAcGqSml1DP4xgzEKRZNRj0mbLRx_vUaM8ToeLD8MMgfcaqrNoQq4NdfM1GI4YbQzYYpXuo17x6bLSMRdkFgxOPzIzYjgJGAsIF8ZkPG4DJCTc5sy0uqC9dEQcBwC43YD6VnuNGHgdDyKVlcyEYo_Y-KiXjRB4gLGxOqAgokZRSIiTzPeqaEWA0Af15XEHn-YiHk4xdIyx4lJV-QtBPqPUTkgqq5koJFystDW2AhA44TRSaL3JFFc1_Szv83-enaO3-shm2b7p3R2iDqGmjI82qqDSbzuUxQJNZdKJn3yd9D9oz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Approximation+Method+for+Computing+the+Adjustment+Coefficient+of+a+Nonlinear+Cram%C3%A9r-Lundberg+Risk+Model+with+Gamma+Claims&rft.jtitle=Methodology+and+computing+in+applied+probability&rft.au=Gever+Ekinci%2C+Basak&rft.au=Hanalioglu%2C+Zulfiye&rft.au=Khaniyev%2C+Tahir&rft.date=2025-09-01&rft.issn=1387-5841&rft.eissn=1573-7713&rft.volume=27&rft.issue=3&rft_id=info:doi/10.1007%2Fs11009-025-10194-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11009_025_10194_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-5841&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-5841&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-5841&client=summon |