Design and implementation of a fractal microstrip patch array for vehicle-to-vehicle communication using meta-heuristic techniques
A new novel designed 1 × 2 patch array antenna, which is fractal geometry based, is optimized using the genetic ant colony optimization (GACO) hybrid evolutionary algorithm for better V2V communication. Portions of a genetic algorithm (GA), ant colony optimization (ACO), and GACO optimization focus...
Saved in:
Published in | Journal of computational electronics Vol. 24; no. 4; p. 110 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1569-8025 1572-8137 |
DOI | 10.1007/s10825-025-02355-w |
Cover
Loading…
Abstract | A new novel designed 1 × 2 patch array antenna, which is fractal geometry based, is optimized using the genetic ant colony optimization (GACO) hybrid evolutionary algorithm for better V2V communication. Portions of a genetic algorithm (GA), ant colony optimization (ACO), and GACO optimization focus on a fitness evaluation process, where GACO determines the most optimal antenna dimensions. First, one patch antenna is designed with an estimated gain of 13 dB and a bandwidth of 4500 MHz. Then, an array factor is estimated with the wave number as 2π/λ and φ = 0, followed by the development of a uniformly spaced 1 × 2 patch array. The array configuration brings about a higher gain of 14 dB and a greater bandwidth of 5200 MHz, thus providing high signal reliability for V2V communications. The results claim supporting evidence for the effectiveness of GACO in antenna parameter optimization and suggest using GACO in high-performance antenna for next-generation wireless communication systems. After simulating and testing, it was noticed that the GACO method provided better dimension optimizations, thereby enhancing the antenna's characteristics in terms of S11 and gain with a faster convergence rate compared with GA and ACO. |
---|---|
AbstractList | A new novel designed 1 × 2 patch array antenna, which is fractal geometry based, is optimized using the genetic ant colony optimization (GACO) hybrid evolutionary algorithm for better V2V communication. Portions of a genetic algorithm (GA), ant colony optimization (ACO), and GACO optimization focus on a fitness evaluation process, where GACO determines the most optimal antenna dimensions. First, one patch antenna is designed with an estimated gain of 13 dB and a bandwidth of 4500 MHz. Then, an array factor is estimated with the wave number as 2π/λ and φ = 0, followed by the development of a uniformly spaced 1 × 2 patch array. The array configuration brings about a higher gain of 14 dB and a greater bandwidth of 5200 MHz, thus providing high signal reliability for V2V communications. The results claim supporting evidence for the effectiveness of GACO in antenna parameter optimization and suggest using GACO in high-performance antenna for next-generation wireless communication systems. After simulating and testing, it was noticed that the GACO method provided better dimension optimizations, thereby enhancing the antenna's characteristics in terms of S11 and gain with a faster convergence rate compared with GA and ACO. A new novel designed 1 × 2 patch array antenna, which is fractal geometry based, is optimized using the genetic ant colony optimization (GACO) hybrid evolutionary algorithm for better V2V communication. Portions of a genetic algorithm (GA), ant colony optimization (ACO), and GACO optimization focus on a fitness evaluation process, where GACO determines the most optimal antenna dimensions. First, one patch antenna is designed with an estimated gain of 13 dB and a bandwidth of 4500 MHz. Then, an array factor is estimated with the wave number as 2π/λ and φ = 0, followed by the development of a uniformly spaced 1 × 2 patch array. The array configuration brings about a higher gain of 14 dB and a greater bandwidth of 5200 MHz, thus providing high signal reliability for V2V communications. The results claim supporting evidence for the effectiveness of GACO in antenna parameter optimization and suggest using GACO in high-performance antenna for next-generation wireless communication systems. After simulating and testing, it was noticed that the GACO method provided better dimension optimizations, thereby enhancing the antenna's characteristics in terms of S11 and gain with a faster convergence rate compared with GA and ACO. |
ArticleNumber | 110 |
Author | Karanam, Raghavendra Kakkar, Deepti |
Author_xml | – sequence: 1 givenname: Raghavendra orcidid: 0000-0002-5381-5938 surname: Karanam fullname: Karanam, Raghavendra email: kr.ec.20@nitj.ac.in organization: Department of ECE, Dr. B.R Ambedkar National Institute of Technology – sequence: 2 givenname: Deepti orcidid: 0000-0002-9681-1291 surname: Kakkar fullname: Kakkar, Deepti organization: Department of ECE, Dr. B.R Ambedkar National Institute of Technology |
BookMark | eNp9UMtKAzEUDaJgW_0BVwHX0STzyiylPqHgRtdDkkk6KZ1kTDKWrv0Rv8Uvc6ZTcOficC_c8-CeOTi1zioArgi-IRgXt4FgRjOED0iyDO1OwIxkBUWMJMXpuOclYsP9HMxD2GBMMU3JDHzdq2DWFnJbQ9N2W9UqG3k0zkKnIf_51p7LyLewNdK7EL3pYMejbCD3nu-hdh5-qsbIrULRoeMKpWvb3ho5OfXB2DVsVeSoUb03IRoJo5KNNR-9ChfgTPNtUJfHuQDvjw9vy2e0en16Wd6tkKQFjUhTQbDWqSp4zUqWUi4SKQglRFCFC5plmucsr8tSF4KUlGghci2yulScsaROFuB68u28G3NjtXG9t0NklVCSF0la0nJg0Yk1_hu80lXnTcv9viK4GsuuprIrfMBQdrUbRMkkCgPZrpX_s_5H9Qs3Eoj1 |
Cites_doi | 10.1016/j.vehcom.2019.100164 10.3390/electronics13204009 10.3934/electreng.2021016 10.1002/ett.4620 10.1016/j.eswa.2023.120802 10.1109/ACCESS.2020.3004779 10.1007/978-981-16-8248-3_12 10.35940/ijeat.A1019.1291S519 10.1016/j.proeng.2012.04.210 10.1109/ACCESS.2019.2929241 10.1051/itmconf/20246904011 10.1080/00207217.2024.2390154 10.1016/j.aej.2017.01.043 10.1109/ICNC.2014.6975905 10.51983/ajsat-2021.10.2.3044 10.3390/app10134546 10.1016/j.asoc.2006.10.012 10.1016/j.aeue.2021.153797 10.1109/GAST60528.2024.10520747 10.1080/03772063.2021.1912657 10.1007/978-981-97-7862-1_30 10.1007/s10470-025-02301-7 10.1016/j.eswa.2021.115299 10.1007/s42979-024-03273-7 10.1016/j.jestch.2021.06.013 10.14419/ijet.v7i2.7.10889 10.1142/S021968670500059X |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s10825-025-02355-w |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1572-8137 |
ExternalDocumentID | 10_1007_s10825_025_02355_w |
GroupedDBID | .86 .VR 06D 0R~ 0VY 1N0 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9P PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 2P1 2VQ AARHV AAYXX ABJCF ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFGCZ AFKRA AGJBK AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- M7S N2Q O9- OVD PHGZM PHGZT PQGLB PTHSS RNI RZC RZE TEORI JQ2 |
ID | FETCH-LOGICAL-c272t-f2b10ff4e7ad89842ab3cb1211b2e07255fa686d99f7b1921fbb6fb5d9ea883d3 |
IEDL.DBID | U2A |
ISSN | 1569-8025 |
IngestDate | Fri Aug 08 05:10:47 EDT 2025 Thu Aug 14 00:02:05 EDT 2025 Thu Aug 07 06:04:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | mm wave Vehicle-to-vehicle application Fractal microstrip antenna Evolutionary algorithm Swarm intelligence approach |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-f2b10ff4e7ad89842ab3cb1211b2e07255fa686d99f7b1921fbb6fb5d9ea883d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5381-5938 0000-0002-9681-1291 |
PQID | 3216734929 |
PQPubID | 2043855 |
ParticipantIDs | proquest_journals_3216734929 crossref_primary_10_1007_s10825_025_02355_w springer_journals_10_1007_s10825_025_02355_w |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Journal of computational electronics |
PublicationTitleAbbrev | J Comput Electron |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | TS Mneesy (2355_CR23) 2020; 10 NVK Maha Lakshmi (2355_CR1) 2024; 2024 G Singh (2355_CR20) 2023; 232 M Vasujadevi (2355_CR11) 2018; 7 I Bahlaouane (2355_CR14) 2024; 69 G Singh (2355_CR19) 2023; 69 DS Mahesh (2355_CR18) 2024; 5 S Dange (2355_CR8) 2021; 10 CR Storck (2355_CR6) 2020; 8 GN Jyothi Sree (2355_CR22) 2021; 137 R Karanam (2355_CR10) 2025; 122 I Bahlaouane (2355_CR17) 2024; 69 2355_CR15 R Karanam (2355_CR24) 2024 M Li (2355_CR3) 2024; 13 WA Godaymi Al-Tumah (2355_CR21) 2022; 29 Z-J Lee (2355_CR25) 2008; 8 GM Kumar (2355_CR28) 2005; 4 W-G Zhang (2355_CR27) 2012; 37 K Raghavendra (2355_CR5) 2022; 33 A Kumar (2355_CR9) 2018; 57 A Rahim (2355_CR4) 2019; 9 K Raghavendra (2355_CR12) 2022 L Zhang (2355_CR7) 2019; 7 JMJW Jayasinghe (2355_CR13) 2021; 5 PK Singh (2355_CR2) 2019; 18 G Singh (2355_CR16) 2021; 184 2355_CR26 |
References_xml | – volume: 18 start-page: 100164 year: 2019 ident: 2355_CR2 publication-title: Vehicular Communications doi: 10.1016/j.vehcom.2019.100164 – volume: 13 start-page: 4009 issue: 20 year: 2024 ident: 2355_CR3 publication-title: Electronics doi: 10.3390/electronics13204009 – volume: 5 start-page: 315 year: 2021 ident: 2355_CR13 publication-title: AIMS Electron. Electr. Eng. doi: 10.3934/electreng.2021016 – volume: 33 start-page: 4620 issue: 12 year: 2022 ident: 2355_CR5 publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.4620 – volume: 232 start-page: 120802 year: 2023 ident: 2355_CR20 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120802 – volume: 8 start-page: 117593 year: 2020 ident: 2355_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004779 – volume-title: Recent Innovations in Computing. Lecture Notes in Electrical Engineering year: 2022 ident: 2355_CR12 doi: 10.1007/978-981-16-8248-3_12 – volume: 9 start-page: 66 year: 2019 ident: 2355_CR4 publication-title: Int. J. Eng. Adv. Technol. doi: 10.35940/ijeat.A1019.1291S519 – volume: 37 start-page: 101 year: 2012 ident: 2355_CR27 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.04.210 – volume: 7 start-page: 117460 year: 2019 ident: 2355_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929241 – volume: 69 start-page: 04011 year: 2024 ident: 2355_CR14 publication-title: ITM Web Conf. doi: 10.1051/itmconf/20246904011 – volume: 2024 start-page: 1 year: 2024 ident: 2355_CR1 publication-title: Int. J. Electron. doi: 10.1080/00207217.2024.2390154 – volume: 57 start-page: 1125 issue: 2 year: 2018 ident: 2355_CR9 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2017.01.043 – ident: 2355_CR26 doi: 10.1109/ICNC.2014.6975905 – volume: 10 start-page: 15 year: 2021 ident: 2355_CR8 publication-title: Asian J. Sci. Appl. Technol. doi: 10.51983/ajsat-2021.10.2.3044 – volume: 10 start-page: 4546 issue: 13 year: 2020 ident: 2355_CR23 publication-title: Appl. Sci. doi: 10.3390/app10134546 – volume: 8 start-page: 55 issue: 1 year: 2008 ident: 2355_CR25 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2006.10.012 – volume: 137 start-page: 153797 year: 2021 ident: 2355_CR22 publication-title: AEU Int. J. Electron. Commun. doi: 10.1016/j.aeue.2021.153797 – ident: 2355_CR15 doi: 10.1109/GAST60528.2024.10520747 – volume: 69 start-page: 3518 issue: 6 year: 2023 ident: 2355_CR19 publication-title: IETE J. Res. doi: 10.1080/03772063.2021.1912657 – volume-title: Proceedings of International conference on Recent Innovations in Computing, ICRIC 2023. Lecture Notes in Electrical Engineering year: 2024 ident: 2355_CR24 doi: 10.1007/978-981-97-7862-1_30 – volume: 122 start-page: 7 year: 2025 ident: 2355_CR10 publication-title: Analog Integr. Circ. Sig. Process doi: 10.1007/s10470-025-02301-7 – volume: 184 year: 2021 ident: 2355_CR16 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115299 – volume: 69 start-page: 4011 year: 2024 ident: 2355_CR17 publication-title: ITM Web Conf. doi: 10.1051/itmconf/20246904011 – volume: 5 start-page: 918 year: 2024 ident: 2355_CR18 publication-title: SN Comput. Sci. doi: 10.1007/s42979-024-03273-7 – volume: 29 start-page: 101002 year: 2022 ident: 2355_CR21 publication-title: Eng. Sci. Technol. Int. J. doi: 10.1016/j.jestch.2021.06.013 – volume: 7 start-page: 602 year: 2018 ident: 2355_CR11 publication-title: Int. J. Eng. Technol. doi: 10.14419/ijet.v7i2.7.10889 – volume: 4 start-page: 103 issue: 1 year: 2005 ident: 2355_CR28 publication-title: J. Adv. Manuf. Syst. doi: 10.1142/S021968670500059X |
SSID | ssj0020241 |
Score | 2.3492804 |
Snippet | A new novel designed 1 × 2 patch array antenna, which is fractal geometry based, is optimized using the genetic ant colony optimization (GACO) hybrid... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 110 |
SubjectTerms | Algorithms Ant colony optimization Antenna arrays Antennas Bandwidths Communications systems Computer centers Data transmission Electrical Engineering Engineering Evolutionary algorithms Fractal geometry Fractals Genetic algorithms Geometry Heuristic methods Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Optical and Electronic Materials Optimization techniques Patch antennas Roads & highways Theoretical Vehicles Virtual private networks Wireless communication systems |
Title | Design and implementation of a fractal microstrip patch array for vehicle-to-vehicle communication using meta-heuristic techniques |
URI | https://link.springer.com/article/10.1007/s10825-025-02355-w https://www.proquest.com/docview/3216734929 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxELUgaaBAnCIckQs6sLSx11cZcQokKiKFamVnx4Qih5INETU_wrfwZdh7kICgoLC00q6mmPHOIb_3jNCJYhZsBJJI4IrEQnCilU-GTjLJIbLSQI7yvRc3nfi2y7slKWxaod2rI8k8Uy-R3fw0Q6J8-SpJ5quozv3sHoB8Hdr-GrN81SlUUoX2-Zfykirzu43v5WjRY_44Fs2rzdUm2ijbRNwu4rqFVmC4jdaXxAN30NtFDr7AZpji50EFAw9-xiOHzce7CwQob2QQMHfheo4xHvvE28dmMjGv2Her-AX6wT7JRqR8xL1lxggOsPgnPIDMkD7MClVn_KX7Ot1FnavLh_MbUl6pQHpU0ow4aluRczFIkyqtYmos69kg82YpRNLPF84IJVKtnbRBKs1ZK5zlqQajFEvZHqoNR0PYR5j1mNXAQPMYYhEpC6nRwvkJh1MZGddAp5Vnk3GhnJEsNJJDHJIoXz4OybyBjirnJ-VfNE0YbQkZ5BN1A51VAVm8_tvawf8-P0RrNN8TAdd3hGrZZAbHvtfIbBPV29ePd5fNfIt9At4r0SI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y6HlUEopYtul9aG3YhTsxI_jike35XFiJThFdjJmEdqHdrNF5cof6W_pL6udB7tF9MDBUqREo8TjzMwnf_MZ4IviFm2EkkpMFI2FSKhWPhg6yWWCkZUGS5bvmej14x8XyUXdFDZr2O7NlmQZqZea3TyaoVE5fJakty9hJfYYPG7BSvfb5fHhA9DyeafSSRXaR2CW1M0yT1v5NyEtqsxHG6Nlvjlag37zphXN5GZ3Xtjd7O6RiONzP-UtvKkLUNKtVsw6vMDRO1hdkiXcgPuDktZBzCgn18OGYB48SMaOmD-_XWit8kaGgc0XDv6YkIkP6QNiplPzi_g6mPzEQbBPizGtL0m23ItCAuH-igyxMHSA80ovmjwoys7eQ__o8Hy_R-vDGmjGJCuoY3Yvci5GaXKlVcyM5ZkNAnKWYSQ9cnFGKJFr7aQNImzOWuFskms0SvGcb0JrNB7hFhCecauRo05ijEWkLOZGC-exU8JkZFwbvjYeSyeVJke6UF8OU5tG5fBTm962odM4Na3_z1nK2Z6QQZhRt2Gn8dHi9v-tfXje45_hVe_89CQ9-X52_BFes9LlgT3YgVYxneO2r2gK-6lewH8BPNDvtg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL2ig1S1Cx5tUYdXveiuNQQ78WOJCgMtCHVRJLqK7OSaQdVkRkOmCLb8CN_Cl9XOgxkQXVRdWIqU6Crxde5DPucY4KPiFm2EkkpMFI2FSKhWPhg6yWWCkZUGK5TviTg8jb-dJWczLP4K7d5uSdachqDSVJTbo9xtzxDffGdDo2r4jEmvXsB8HMTZOzC_e_DzaP-h6fI5qNZMFdpHY5Y0xJnnrTxOTtOK88kmaZV7eotg2reuISe_tial3cpungg6_s9nLcFCU5iS3XolLcMcFm_g9Yxc4Vu43avgHsQUObkYtMDz4FkydMTc37lAufJGBgHlFw4EGZGRD_V9YsZjc018fUx-Yz_Yp-WQNpckm-WokADEPycDLA3t46TWkSYPSrOX7-C0t__jyyFtDnGgGZOspI7Znci5GKXJlVYxM5ZnNgjLWYaR9B2NM0KJXGsnbRBnc9YKZ5Nco1GK53wFOsWwwPdAeMatRo46iTEWkbKYGy2c76kSJiPjuvCp9V46qrU60qkqc5jaNKqGn9r0qgvrrYPT5r-9TDnbETIINuoufG79Nb39d2ur__b4B3j5fa-XHn89OVqDV6zyeAAVrkOnHE9wwxc6pd1s1vIfkYr4mg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+implementation+of+a%C2%A0fractal+microstrip+patch+array+for+vehicle-to-vehicle+communication+using+meta-heuristic+techniques&rft.jtitle=Journal+of+computational+electronics&rft.au=Karanam%2C+Raghavendra&rft.au=Kakkar%2C+Deepti&rft.date=2025-08-01&rft.pub=Springer+US&rft.issn=1569-8025&rft.eissn=1572-8137&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1007%2Fs10825-025-02355-w&rft.externalDocID=10_1007_s10825_025_02355_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8025&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8025&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8025&client=summon |