Microbial enhancement of plant aluminum tolerance
Aluminum (Al) toxicity is a major limiting factor for crop production in acidic soils. The diverse mechanisms by which microbes enhance plant tolerance to Al toxicity, such as Al ion absorption, regulation of metal ion transport, adjustment of rhizosphere pH, filtration of Al ions through mycelial n...
Saved in:
Published in | Biology and fertility of soils Vol. 61; no. 6; pp. 985 - 997 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aluminum (Al) toxicity is a major limiting factor for crop production in acidic soils. The diverse mechanisms by which microbes enhance plant tolerance to Al toxicity, such as Al ion absorption, regulation of metal ion transport, adjustment of rhizosphere pH, filtration of Al ions through mycelial networks, and interaction with root traits, have attracted increasing attention. In this review, we focus on the physiological and biochemical effects of Al toxicity on plants, as well as the mechanisms of plant resistance to Al toxicity. We particularly emphasize the interaction between plants and microorganisms, and how microbes could be used to enhance plant tolerance to Al toxicity. Notably, microbial inoculation strategies often face challenges due to the soil properties and competitive exclusion by indigenous soil microbiomes. Despite these challenges, we propose that combining omics techniques with synthetic microbial consortia designed for Al stress may be a more effective approach to addressing the related issues in this research area. These advancements will pave the way for harnessing microbiome engineering as a powerful tool to enhance agricultural production and optimize practices in Al-challenged environments. |
---|---|
AbstractList | Aluminum (Al) toxicity is a major limiting factor for crop production in acidic soils. The diverse mechanisms by which microbes enhance plant tolerance to Al toxicity, such as Al ion absorption, regulation of metal ion transport, adjustment of rhizosphere pH, filtration of Al ions through mycelial networks, and interaction with root traits, have attracted increasing attention. In this review, we focus on the physiological and biochemical effects of Al toxicity on plants, as well as the mechanisms of plant resistance to Al toxicity. We particularly emphasize the interaction between plants and microorganisms, and how microbes could be used to enhance plant tolerance to Al toxicity. Notably, microbial inoculation strategies often face challenges due to the soil properties and competitive exclusion by indigenous soil microbiomes. Despite these challenges, we propose that combining omics techniques with synthetic microbial consortia designed for Al stress may be a more effective approach to addressing the related issues in this research area. These advancements will pave the way for harnessing microbiome engineering as a powerful tool to enhance agricultural production and optimize practices in Al-challenged environments. |
Author | Cheng, Lang Hartmann, Martin Tran, Lam-Son Phan Nian, Hai Galindo-Castañeda, Tania Lian, Tengxiang Liu, Qi |
Author_xml | – sequence: 1 givenname: Lang surname: Cheng fullname: Cheng, Lang organization: Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University – sequence: 2 givenname: Qi surname: Liu fullname: Liu, Qi organization: Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University – sequence: 3 givenname: Hai surname: Nian fullname: Nian, Hai organization: Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University – sequence: 4 givenname: Martin surname: Hartmann fullname: Hartmann, Martin organization: Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich – sequence: 5 givenname: Lam-Son Phan surname: Tran fullname: Tran, Lam-Son Phan email: son.tran@ttu.edu organization: Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University – sequence: 6 givenname: Tania surname: Galindo-Castañeda fullname: Galindo-Castañeda, Tania email: tania.galindocastaneda@usys.ethz.ch organization: Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich – sequence: 7 givenname: Tengxiang orcidid: 0000-0003-1131-2491 surname: Lian fullname: Lian, Tengxiang email: liantx@scau.edu.cn organization: Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich |
BookMark | eNp9kE9LxDAQxYOsYHf1C3gqeI5OkqZpj7L4D1a86Dmk2Yl2adM1aQ9-e1MrePM0A_N-M_Pemqz84JGQSwbXDEDdRAChCgpcUmA1B1qekIwVglNQVb0iGTBVUa5KfkbWMR4AmKxYnRH23NowNK3pcvQfxlvs0Y_54PJjZ1Jjuqlv_dTn49BhmOfn5NSZLuLFb92Qt_u71-0j3b08PG1vd9RyxUeKe2XRgjK2KBthVFPwwlQoVY3C2RL3nCuhJDgQpVVoGDTSuQSlJ5kwUmzI1bL3GIbPCeOoD8MUfDqpBee1TAbkrOKLKrmIMaDTx9D2JnxpBnqORi_R6BSN_olGlwkSCxST2L9j-Fv9D_UNngpn4g |
Cites_doi | 10.3389/fpls.2018.00258 10.46488/nept.2023.v22i1.039 10.3390/microorganisms11082061 10.14715/cmb/2017.63.6.16 10.3390/ijms222413677 10.1038/ncomms15300 10.1016/j.chemosphere.2023.138188 10.3390/ijms23136910 10.1016/j.ecoenv.2019.109828 10.1080/15226514.2011.619230 10.1016/j.tim.2022.12.005 10.1080/01904160903150891 10.1006/anbo.2001.1405 10.1146/annurev-arplant-043014-114822 10.1038/s41596-020-00444-7 10.1016/j.tim.2023.10.003 10.1105/tpc.17.00864 10.3389/fpls.2019.00845 10.1038/s41587-023-01932-3 10.1111/ppl0.13382 10.1016/j.scitotenv.2020.142744 10.1016/j.jenvman.2023.118796 10.1111/j.1462-2920.2010.02200.x 10.1016/j.geoderma.2023.116500 10.1016/j.ecoenv.2019.05.006 10.1007/s00374-020-01451-2 10.1016/j.fgb.2010.03.003 10.1093/jxb/erad249 10.1007/s11104-019-04089-8 10.1186/s12870-023-04403-8 10.3390/plants12173102 10.3390/ijms19103073 10.3390/agriculture13081508 10.1186/s12870-020-02719-3 10.1016/j.btre.2023.e00781 10.1016/j.chom.2017.07.004 10.1073/pnas0.2201072119 10.1038/s43016-023-00848 10.1128/spectrum.03310-22 10.1016/j.micres.2015.01.007 10.1016/j.pmpp.2021.101754 10.1007/BF817932 10.1038/s43016-023-00848-0 10.3389/fpls.2022.1050132 10.1371/journal.pone0.0212644 10.1016/j.plaphy.2023.107941 10.1016/j.apsoil.2022.104720 10.1016/j.tibs.2022.07.001 10.3390/vaccines8030503 10.3390/molecules20033628 10.3389/fpls.2019.01216 10.1105/tpc.17.00211 10.1111/j.1365-313X.2004.02306.x 10.3389/fpls.2020.602625 10.1007/3-540-26609-7_10 10.1016/j.btre.2019.e00305 10.3389/fphys.2017.00667 10.1016/j.ecoenv.2021.112042 10.1016/j.ecoenv.2018.02.002 10.1038/s41579-020-0412-1 10.1146/annurev.arplant.50.1.695 10.3389/fpls.2024.1423617 10.1007/s00572-019-00894-2 10.3389/fpls.2017.01377 10.1016/S1360-1385(01)01961-6 10.1016/j.mib.2017.07.001 10.1139/cjfr-31-4-694 10.3389/fmicb.2021.747541 10.1111/tpj0.15135 10.1046/j.1469-8137.2000.00761.x 10.1128/msystems.01022-21 10.1007/s13562-021-00743-4 10.1007/s00572-006-0084-3 10.1186/s40168-021-01014-z 10.3389/fpls.2019.00695 10.1016/j.plaphy.2020.04.030 10.1007/s00344-023-11138-1 10.3390/jof7070531 10.1016/j.tibtech.2009.03.009 10.1126/science.abo0383 10.3390/plants12010036 10.3389/fmicb.2020.01996 10.3390/horticulturae10080855 10.1186/s12870-020-02338-y 10.1007/s00374-024-01798-w 10.1111/j.1469-8137.2012.04183.x 10.1016/j.fmre.2023.03.004 10.1038/s41592-019-0616-3 10.1111/pce0.14395 10.1016/j.chemosphere.2023.139475 10.1111/gcb0.16604 10.3389/fmicb.2020.569512 10.1111/j.1365-3040.2004.01240.x 10.1016/j.soilbio.2008.11.013 10.3969/j.issn.1009-7791.2023.01.002 10.1002/jsfa.10088 10.1093/aob/mcw073 10.1016/j.pedsph.2022.06.029 10.1007/s11104-005-2287-3 10.1007/s00374-012-0723-0 10.1038/s41467-022-35452-6 10.1016/j.cub.2024.09.039 10.1111/sum0.12811 10.1016/j.jhazmat.2018.03.009 10.4161/psb0.19312 10.1016/j.pedsph.2022.10.001 10.3389/fpls.2017.01834 10.1016/j.sjbs.2019.05.004 10.3389/fpls.2018.01273 10.1007/978-3-319-19968-9_11 10.3389/fagro.2023.1194896 10.1111/j.1469-8137.2010.03386.x 10.1016/S0074-7696(07)64005-4 10.1016/j.envres.2023.116724 10.1038/s41467-024-54616-0 10.1080/07388551.2021.1874282 10.1016/j.jhazmat.2023.131621 10.1590/1678-4499.20230120 10.1016/j.micres.2017.04.004 10.1186/s40168-018-0445-0 10.33885/sf.2021.51.1304 10.1016/B978-0-323-91001-9.00016-5 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
DBID | AAYXX CITATION 7SN 7T7 7UA 8FD C1K F1W FR3 H95 L.G P64 |
DOI | 10.1007/s00374-025-01920-6 |
DatabaseName | CrossRef Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Ecology |
EISSN | 1432-0789 |
EndPage | 997 |
ExternalDocumentID | 10_1007_s00374_025_01920_6 |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: Grant No. 2024YFD1201400 – fundername: China-Africa Joint Center for Research and Education, Chinese Academy of SciencesSouth China Agricultural University-La Domei Group Industry College Joint Open Research Project grantid: Grant No. KLERUECSCMARAC202303 – fundername: Double First Class University Plan grantid: 2021B10564001 funderid: http://dx.doi.org/10.13039/501100012172 – fundername: Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams grantid: Grant No. 2024CXTD06 funderid: http://dx.doi.org/10.13039/100022960 – fundername: Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops grantid: Grant No. FCBRCE-202506 – fundername: National Natural Science Foundation of China grantid: Grant No. 32470090 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Science and Technology Plan Project of Guangzhou grantid: Grant No. 2024A04J5487 – fundername: Science and Technology Plan Project of Shanwei grantid: Grant No. 2024E005 |
GroupedDBID | -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7X2 7XC 88I 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L8X LAS LK8 LLZTM M0K M2P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~A9 ~EX ~KM AAYXX CITATION 7SN 7T7 7UA 8FD C1K F1W FR3 H95 L.G P64 |
ID | FETCH-LOGICAL-c272t-ed7cec07ac46b3a7b424a8e579e3fc6ed2273750f036c7ea10b5ffd7c27613a53 |
IEDL.DBID | U2A |
ISSN | 0178-2762 |
IngestDate | Sun Jul 27 14:38:34 EDT 2025 Wed Jul 16 16:38:22 EDT 2025 Sun Jul 13 01:10:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Fungi Bacteria Microbial consortium Aluminum toxicity Omics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-ed7cec07ac46b3a7b424a8e579e3fc6ed2273750f036c7ea10b5ffd7c27613a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1131-2491 |
PQID | 3229515855 |
PQPubID | 54160 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3229515855 crossref_primary_10_1007_s00374_025_01920_6 springer_journals_10_1007_s00374_025_01920_6 |
PublicationCentury | 2000 |
PublicationDate | 20250800 2025-08-00 20250801 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250800 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Biology and fertility of soils |
PublicationTitleAbbrev | Biol Fertil Soils |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | X Gu (1920_CR31) 2021; 213 L Xie (1920_CR107) 2022; 8 F Bibi (1920_CR11) 2023; 13 S Dhiman (1920_CR22) 2023; 44 1920_CR1108 MA Rahman (1920_CR81) 2018; 19 Y Jiang (1920_CR43) 2024; 34 R Langenfeld-Heyser (1920_CR51) 2007; 17 A Paravar (1920_CR77) 2023; 37 EJ Joner (1920_CR44) 2005; 275 J Moormann (1920_CR68) 2022; 47 Y Zhu (1920_CR117) 2023; 338 T Shah (1920_CR92) 2023; 322 DK Chauhan (1920_CR17) 2021; 41 Q Liu (1920_CR61) 2023; 29 1920_CR48 K Pramanik (1920_CR78) 2018; 351 M Abedinzadeh (1920_CR2) 2019; 21 Y Li (1920_CR56) 2020; 56 1920_CR120 1920_CR124 PB Larsen (1920_CR52) 2005; 41 1920_CR123 1920_CR122 P Jian (1920_CR110) 2024; 10 1920_CR121 P Trivedi (1920_CR100) 2020; 18 1920_CR6 1920_CR3 MO Alotaibi (1920_CR4) 2021; 7 XF Zhu (1920_CR116) 2024; 4 S Dhandapani (1920_CR21) 2024; 15 D Kar (1920_CR45) 2021; 30 Q Shi (1920_CR95) 2020; 11 T Lian (1920_CR57) 2019; 440 X Qu (1920_CR80) 2020; 152 A Ranjan (1920_CR83) 2021; 173 H Xia (1920_CR105) 2023; 345 L Xu (1920_CR108) 2021; 9 J Sukweenadhi (1920_CR97) 2015; 172 X Zhou (1920_CR115) 2022; 13 M Houben (1920_CR38) 2019; 10 T Nagayama (1920_CR71) 2019; 10 V Zelinova (1920_CR111) 2009; 32 R Shetty (1920_CR94) 2021; 765 1920_CR119 M O’Callaghan (1920_CR75) 2022; 38 1920_CR26 ME-A Farh (1920_CR28) 2017; 200 LV Kochian (1920_CR47) 2015; 66 P Nannipieri (1920_CR72) 2012; 48 C Sánchez-Cañizares (1920_CR89) 2017; 38 M Dudhane (1920_CR24) 2012; 14 G Recorbet (1920_CR85) 2010; 47 NH Nguyen (1920_CR73) 2020; 8 T Haruma (1920_CR33) 2022; 12 A Wahab (1920_CR102) 2023; 12 ME McCully (1920_CR66) 1999; 50 E Delhaize (1920_CR20) 2012; 195 P Arora (1920_CR7) 2017; 63 A Seguel (1920_CR91) 2020; 100 KG Cabugao (1920_CR14) 2017; 8 QA Panhwar (1920_CR76) 2015; 20 M Riaz (1920_CR86) 2018; 153 J Che (1920_CR18) 2023; 33 T Haruma (1920_CR34) 2019; 14 X Mo (1920_CR67) 2023; 435 JT Morton (1920_CR69) 2019; 16 R Garcidueñas-Piña (1920_CR30) 1996; 9 Z Wen (1920_CR104) 2023; 11 N Zhang (1920_CR113) 2022; 7 L Liu (1920_CR60) 2023; 455 D Hemathilake (1920_CR37) 2022 JM Barea (1920_CR10) 2005 J-H Li (1920_CR53) 2023; 31 MA Hassani (1920_CR35) 2018; 6 PM Kopittke (1920_CR49) 2017; 8 S Zhang (1920_CR114) 2020; 11 JJ Gallo-Franco (1920_CR29) 2020; 11 S Silambarasan (1920_CR96) 2019; 180 M Shahid (1920_CR93) 2023; 1 S Bilal (1920_CR12) 2018; 9 S Tiwari (1920_CR99) 2023; 33 M Abdalla (1920_CR1) 2023; 74 L Campos-Soriano (1920_CR15) 2010; 188 P Zuccarini (1920_CR118) 2023; 29 G Rufyikiri (1920_CR88) 2000; 148 Y Xiang (1920_CR106) 2023; 182 J Huang (1920_CR40) 2023; 202 K Klugh-Stewart (1920_CR46) 2009; 41 D Qi (1920_CR79) 2022; 377 H He (1920_CR36) 2012; 7 H Bisht (1920_CR13) 2023; 22 M Schöttelndreier (1920_CR90) 2001; 87 R Eichmann (1920_CR25) 2021; 105 S Huang (1920_CR41) 2018; 9 D Richardson (1920_CR87) 2009; 27 JK Jansson (1920_CR42) 2023; 41 J Ye (1920_CR109) 2017; 29 S Li (1920_CR55) 2022; 13 J Zhang (1920_CR112) 2021; 16 H Niu (1920_CR74) 2020; 187 M Sun (1920_CR98) 2022; 23 JA Vorholt (1920_CR101) 2017; 22 G Huang (1920_CR39) 2022; 119 R Andrade (1920_CR5) 2023; 82 HB Lux (1920_CR62) 2011; 31 M Chieb (1920_CR19) 2023; 23 JF Ma (1920_CR64) 2001; 6 SA Ramesh (1920_CR82) 2018; 30 JF Ma (1920_CR63) 2007; 264 Z Ma (1920_CR65) 2024; 15 Y Carreón-Abud (1920_CR16) 2021; 51 H Liu (1920_CR59) 2020; 20 I Dimkić (1920_CR23) 2022; 117 K Li (1920_CR54) 2023; 52 C Balzergue (1920_CR9) 2017; 8 MM Aslam (1920_CR8) 2022; 45 C Liu (1920_CR58) 2023; 4 IM Rao (1920_CR84) 2016; 118 Y Wang (1920_CR103) 2020; 20 C Guerrero-Galán (1920_CR32) 2019; 29 ÁT Kovács (1920_CR50) 2023; 32 |
References_xml | – volume: 9 start-page: 258 year: 2018 ident: 1920_CR41 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00258 – volume: 22 start-page: 411 year: 2023 ident: 1920_CR13 publication-title: Nat Environ Pollution Technol doi: 10.46488/nept.2023.v22i1.039 – ident: 1920_CR121 doi: 10.3390/microorganisms11082061 – volume: 63 start-page: 79 year: 2017 ident: 1920_CR7 publication-title: Cell Mol Biol doi: 10.14715/cmb/2017.63.6.16 – ident: 1920_CR122 doi: 10.3390/ijms222413677 – volume: 8 start-page: 15300 year: 2017 ident: 1920_CR9 publication-title: Nat Commun doi: 10.1038/ncomms15300 – volume: 322 start-page: 138 year: 2023 ident: 1920_CR92 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.138188 – volume: 23 start-page: 6910 year: 2022 ident: 1920_CR98 publication-title: Int J Mol Sci doi: 10.3390/ijms23136910 – volume: 187 start-page: 109828 year: 2020 ident: 1920_CR74 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.109828 – volume: 14 start-page: 643 year: 2012 ident: 1920_CR24 publication-title: Int J Phytorem doi: 10.1080/15226514.2011.619230 – volume: 31 start-page: 616 year: 2023 ident: 1920_CR53 publication-title: Trends Microbiol doi: 10.1016/j.tim.2022.12.005 – volume: 32 start-page: 1633 year: 2009 ident: 1920_CR111 publication-title: J Plant Nutr doi: 10.1080/01904160903150891 – volume: 87 start-page: 769 year: 2001 ident: 1920_CR90 publication-title: Ann Bot doi: 10.1006/anbo.2001.1405 – volume: 66 start-page: 571 year: 2015 ident: 1920_CR47 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-043014-114822 – volume: 16 start-page: 988 year: 2021 ident: 1920_CR112 publication-title: Nat Protoc doi: 10.1038/s41596-020-00444-7 – volume: 32 start-page: 1 year: 2023 ident: 1920_CR50 publication-title: Trends Microbiol doi: 10.1016/j.tim.2023.10.003 – volume: 30 start-page: 1147 issue: 5 year: 2018 ident: 1920_CR82 publication-title: Plant Cell doi: 10.1105/tpc.17.00864 – ident: 1920_CR48 doi: 10.3389/fpls.2019.00845 – volume: 41 start-page: 1716 year: 2023 ident: 1920_CR42 publication-title: Nat Biotechnol doi: 10.1038/s41587-023-01932-3 – volume: 173 start-page: 1765 year: 2021 ident: 1920_CR83 publication-title: Physiol Plant doi: 10.1111/ppl0.13382 – volume: 765 start-page: 142744 year: 2021 ident: 1920_CR94 publication-title: Sci Tot Environ doi: 10.1016/j.scitotenv.2020.142744 – volume: 345 start-page: 118796 year: 2023 ident: 1920_CR105 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2023.118796 – ident: 1920_CR119 doi: 10.1111/j.1462-2920.2010.02200.x – volume: 435 start-page: 116500 year: 2023 ident: 1920_CR67 publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116500 – volume: 180 start-page: 63 year: 2019 ident: 1920_CR96 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.05.006 – volume: 56 start-page: 771 year: 2020 ident: 1920_CR56 publication-title: Biol Fertil Soils doi: 10.1007/s00374-020-01451-2 – volume: 47 start-page: 608 year: 2010 ident: 1920_CR85 publication-title: Fungal Genet Biology doi: 10.1016/j.fgb.2010.03.003 – volume: 74 start-page: 4808 year: 2023 ident: 1920_CR1 publication-title: J Exp Bot doi: 10.1093/jxb/erad249 – volume: 440 start-page: 409 year: 2019 ident: 1920_CR57 publication-title: Plant Soil doi: 10.1007/s11104-019-04089-8 – volume: 23 start-page: 407 year: 2023 ident: 1920_CR19 publication-title: BMC Plant Biol doi: 10.1186/s12870-023-04403-8 – volume: 12 start-page: 3102 year: 2023 ident: 1920_CR102 publication-title: Plants doi: 10.3390/plants12173102 – volume: 19 start-page: 3073 year: 2018 ident: 1920_CR81 publication-title: Int J Mol Sci doi: 10.3390/ijms19103073 – volume: 13 start-page: 1508 year: 2023 ident: 1920_CR11 publication-title: Agriculture-london doi: 10.3390/agriculture13081508 – volume: 20 start-page: 1 year: 2020 ident: 1920_CR59 publication-title: BMC Plant Biol doi: 10.1186/s12870-020-02719-3 – volume: 37 start-page: e00781 year: 2023 ident: 1920_CR77 publication-title: Biotechnol Rep doi: 10.1016/j.btre.2023.e00781 – volume: 22 start-page: 142 year: 2017 ident: 1920_CR101 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.07.004 – volume: 119 start-page: e2201072119 year: 2022 ident: 1920_CR39 publication-title: PNAS doi: 10.1073/pnas0.2201072119 – volume: 4 start-page: 912 year: 2023 ident: 1920_CR58 publication-title: Nat Food doi: 10.1038/s43016-023-00848 – volume: 11 start-page: e03310 year: 2023 ident: 1920_CR104 publication-title: Microbiol Spectr doi: 10.1128/spectrum.03310-22 – volume: 172 start-page: 7 year: 2015 ident: 1920_CR97 publication-title: Microbiol Res doi: 10.1016/j.micres.2015.01.007 – volume: 117 start-page: 101754 year: 2022 ident: 1920_CR23 publication-title: Physiol Mol Plant Pathol doi: 10.1016/j.pmpp.2021.101754 – volume: 9 start-page: 311 year: 1996 ident: 1920_CR30 publication-title: Med doi: 10.1007/BF817932 – volume: 29 start-page: 187 year: 2023 ident: 1920_CR61 publication-title: Plant Biotechnol J doi: 10.1038/s43016-023-00848-0 – volume: 13 start-page: 1050132 year: 2022 ident: 1920_CR55 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.1050132 – volume: 14 start-page: e0212644 year: 2019 ident: 1920_CR34 publication-title: PLoS ONE doi: 10.1371/journal.pone0.0212644 – volume: 202 start-page: 107941 year: 2023 ident: 1920_CR40 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2023.107941 – volume: 8 start-page: e09560 year: 2022 ident: 1920_CR107 publication-title: Heliyon doi: 10.1016/j.apsoil.2022.104720 – volume: 47 start-page: 839 year: 2022 ident: 1920_CR68 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2022.07.001 – volume: 8 start-page: 503 year: 2020 ident: 1920_CR73 publication-title: Vaccines (Basel) doi: 10.3390/vaccines8030503 – volume: 20 start-page: 3628 year: 2015 ident: 1920_CR76 publication-title: Molecules doi: 10.3390/molecules20033628 – volume: 10 start-page: 1216 year: 2019 ident: 1920_CR71 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.01216 – volume: 29 start-page: 2249 year: 2017 ident: 1920_CR109 publication-title: Plant Cell doi: 10.1105/tpc.17.00211 – volume: 41 start-page: 353 year: 2005 ident: 1920_CR52 publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02306.x – volume: 11 start-page: 602625 year: 2020 ident: 1920_CR29 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.602625 – start-page: 195 volume-title: Microorganisms in soils: roles in genesis and functions year: 2005 ident: 1920_CR10 doi: 10.1007/3-540-26609-7_10 – volume: 21 start-page: e00305 year: 2019 ident: 1920_CR2 publication-title: Biotechnol Rep doi: 10.1016/j.btre.2019.e00305 – ident: 1920_CR123 doi: 10.3389/fphys.2017.00667 – volume: 213 start-page: 112042 year: 2021 ident: 1920_CR31 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2021.112042 – volume: 153 start-page: 107 year: 2018 ident: 1920_CR86 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2018.02.002 – volume: 18 start-page: 607 year: 2020 ident: 1920_CR100 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-020-0412-1 – volume: 50 start-page: 695 year: 1999 ident: 1920_CR66 publication-title: Annu Rev Plant Phys doi: 10.1146/annurev.arplant.50.1.695 – volume: 15 start-page: 1423617 year: 2024 ident: 1920_CR21 publication-title: Front Plant Sci doi: 10.3389/fpls.2024.1423617 – volume: 29 start-page: 291 year: 2019 ident: 1920_CR32 publication-title: Mycorrhiza doi: 10.1007/s00572-019-00894-2 – volume: 8 start-page: 1377 year: 2017 ident: 1920_CR49 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01377 – volume: 6 start-page: 273 year: 2001 ident: 1920_CR64 publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(01)01961-6 – volume: 38 start-page: 188 year: 2017 ident: 1920_CR89 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2017.07.001 – volume: 31 start-page: 694 year: 2011 ident: 1920_CR62 publication-title: Can J Res doi: 10.1139/cjfr-31-4-694 – ident: 1920_CR6 doi: 10.3389/fmicb.2021.747541 – volume: 105 start-page: 518 year: 2021 ident: 1920_CR25 publication-title: Plant J doi: 10.1111/tpj0.15135 – volume: 148 start-page: 343 year: 2000 ident: 1920_CR88 publication-title: New Phytol doi: 10.1046/j.1469-8137.2000.00761.x – volume: 7 start-page: e01022 year: 2022 ident: 1920_CR113 publication-title: mSystems doi: 10.1128/msystems.01022-21 – volume: 30 start-page: 1008 year: 2021 ident: 1920_CR45 publication-title: J Plant Biochem Biotechnol doi: 10.1007/s13562-021-00743-4 – volume: 17 start-page: 121 year: 2007 ident: 1920_CR51 publication-title: Mycorrhiza doi: 10.1007/s00572-006-0084-3 – volume: 9 start-page: 1 year: 2021 ident: 1920_CR108 publication-title: Microbiome doi: 10.1186/s40168-021-01014-z – volume: 10 start-page: 695 year: 2019 ident: 1920_CR38 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00695 – volume: 152 start-page: 12 year: 2020 ident: 1920_CR80 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2020.04.030 – volume: 44 start-page: 1352 year: 2023 ident: 1920_CR22 publication-title: J Plant Growth Regul doi: 10.1007/s00344-023-11138-1 – volume: 7 start-page: 531 year: 2021 ident: 1920_CR4 publication-title: J Fungi doi: 10.3390/jof7070531 – volume: 27 start-page: 388 year: 2009 ident: 1920_CR87 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2009.03.009 – volume: 377 start-page: 1544 year: 2022 ident: 1920_CR79 publication-title: Sci (New York NY) doi: 10.1126/science.abo0383 – volume: 12 start-page: 36 year: 2022 ident: 1920_CR33 publication-title: Plants doi: 10.3390/plants12010036 – volume: 11 start-page: 1996 year: 2020 ident: 1920_CR95 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.01996 – volume: 10 start-page: 855 year: 2024 ident: 1920_CR110 publication-title: Horticulturae doi: 10.3390/horticulturae10080855 – volume: 20 start-page: 122 year: 2020 ident: 1920_CR103 publication-title: BMC Plant Biol doi: 10.1186/s12870-020-02338-y – ident: 1920_CR120 doi: 10.1007/s00374-024-01798-w – volume: 195 start-page: 609 year: 2012 ident: 1920_CR20 publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04183.x – volume: 4 start-page: 1533 year: 2024 ident: 1920_CR116 publication-title: Fundam Res doi: 10.1016/j.fmre.2023.03.004 – volume: 16 start-page: 1306 year: 2019 ident: 1920_CR69 publication-title: Nat Methods doi: 10.1038/s41592-019-0616-3 – volume: 45 start-page: 2861 year: 2022 ident: 1920_CR8 publication-title: PLANT CELL ENVIRON doi: 10.1111/pce0.14395 – volume: 338 start-page: 139475 year: 2023 ident: 1920_CR117 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.139475 – volume: 29 start-page: 2067 year: 2023 ident: 1920_CR118 publication-title: Glob Change Biol doi: 10.1111/gcb0.16604 – volume: 11 start-page: 569512 year: 2020 ident: 1920_CR114 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.569512 – ident: 1920_CR124 doi: 10.1111/j.1365-3040.2004.01240.x – volume: 41 start-page: 367 year: 2009 ident: 1920_CR46 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2008.11.013 – volume: 52 start-page: 9 issue: 1 year: 2023 ident: 1920_CR54 publication-title: Subtropical Plant Sci doi: 10.3969/j.issn.1009-7791.2023.01.002 – volume: 100 start-page: 803 year: 2020 ident: 1920_CR91 publication-title: J Sci Food Agric doi: 10.1002/jsfa.10088 – volume: 118 start-page: 593 year: 2016 ident: 1920_CR84 publication-title: Ann Bot-london doi: 10.1093/aob/mcw073 – volume: 33 start-page: 153 year: 2023 ident: 1920_CR99 publication-title: Pedosphere doi: 10.1016/j.pedsph.2022.06.029 – volume: 275 start-page: 295 year: 2005 ident: 1920_CR44 publication-title: Plant Soil doi: 10.1007/s11104-005-2287-3 – volume: 48 start-page: 743 year: 2012 ident: 1920_CR72 publication-title: Biol Fertil Soils doi: 10.1007/s00374-012-0723-0 – volume: 182 start-page: 104720 year: 2023 ident: 1920_CR106 publication-title: Appl Soil Ecol doi: 10.1016/j.jenvman.2023.118796 – volume: 13 start-page: 7890 year: 2022 ident: 1920_CR115 publication-title: Nat Commun doi: 10.1038/s41467-022-35452-6 – volume: 34 start-page: 5017 year: 2024 ident: 1920_CR43 publication-title: Curr Biol doi: 10.1016/j.cub.2024.09.039 – volume: 38 start-page: 1340 year: 2022 ident: 1920_CR75 publication-title: Soil Use Manage doi: 10.1111/sum0.12811 – volume: 351 start-page: 317 year: 2018 ident: 1920_CR78 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.03.009 – volume: 7 start-page: 469 year: 2012 ident: 1920_CR36 publication-title: Plant Signal Behav doi: 10.4161/psb0.19312 – volume: 33 start-page: 14 year: 2023 ident: 1920_CR18 publication-title: Pedosphere doi: 10.1016/j.pedsph.2022.10.001 – volume: 8 start-page: 1834 year: 2017 ident: 1920_CR14 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01834 – ident: 1920_CR1108 doi: 10.1016/j.sjbs.2019.05.004 – volume: 9 start-page: 1273 year: 2018 ident: 1920_CR12 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01273 – ident: 1920_CR3 doi: 10.1007/978-3-319-19968-9_11 – ident: 1920_CR26 doi: 10.3389/fagro.2023.1194896 – volume: 188 start-page: 597 year: 2010 ident: 1920_CR15 publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03386.x – volume: 264 start-page: 225 year: 2007 ident: 1920_CR63 publication-title: Int Rev Cytol doi: 10.1016/S0074-7696(07)64005-4 – volume: 1 start-page: 116724 year: 2023 ident: 1920_CR93 publication-title: Environ Res doi: 10.1016/j.envres.2023.116724 – volume: 15 start-page: 10148 year: 2024 ident: 1920_CR65 publication-title: Nat Commun doi: 10.1038/s41467-024-54616-0 – volume: 41 start-page: 715 year: 2021 ident: 1920_CR17 publication-title: Crit Rev Biotechnol doi: 10.1080/07388551.2021.1874282 – volume: 455 start-page: 131621 year: 2023 ident: 1920_CR60 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2023.131621 – volume: 82 start-page: e20230120 year: 2023 ident: 1920_CR5 publication-title: Bragantia doi: 10.1590/1678-4499.20230120 – volume: 200 start-page: 45 year: 2017 ident: 1920_CR28 publication-title: Microbiol Res doi: 10.1016/j.micres.2017.04.004 – volume: 6 start-page: 58 year: 2018 ident: 1920_CR35 publication-title: Microbiome doi: 10.1186/s40168-018-0445-0 – volume: 51 start-page: e1304 year: 2021 ident: 1920_CR16 publication-title: Scientia Fungorum doi: 10.33885/sf.2021.51.1304 – start-page: 539 volume-title: Future foods year: 2022 ident: 1920_CR37 doi: 10.1016/B978-0-323-91001-9.00016-5 |
SSID | ssj0015819 |
Score | 2.4550676 |
SecondaryResourceType | review_article |
Snippet | Aluminum (Al) toxicity is a major limiting factor for crop production in acidic soils. The diverse mechanisms by which microbes enhance plant tolerance to Al... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 985 |
SubjectTerms | Acidic soils Acidification Agricultural production Agriculture Aluminium Aluminum Antioxidants Bacteria Biomedical and Life Sciences Climate change Crop production Defense Enzymes Fungi Inoculation Ion transport Kinases Life Sciences Limiting factors Metal ions Microbiomes Microorganisms Physiological effects Physiology Plant resistance Plants Pollution tolerance Review Rhizosphere Soil microorganisms Soil properties Soil Science & Conservation Toxicity VOCs Volatile organic compounds |
Title | Microbial enhancement of plant aluminum tolerance |
URI | https://link.springer.com/article/10.1007/s00374-025-01920-6 https://www.proquest.com/docview/3229515855 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RiIkejKJGFMkO3rQJrOu6HYcBiQZOkuBpWcerkuggMA78976WDaLRg6ct6drD99a-r7--D-DWSBWKNNRMh1oxTycBU4icSaHamkvKiNos6A-Gfn_kPY3FuLgUtixPu5dbknak3l52s1IpzNivGlpCk559qAqau5uDXCM32u4diMDaeRjfeeZSXy-uyvzexvd0tOOYP7ZFbbbpncBxQROdaBPXU9jDrAZH0duikMrAGhxsbCTX9Na10tPrM2gPplZYiapi9m4Cahb_nJl25h8EoZPQUDTNVp9OPvtAY6mB5zDqdV8e-qwwRWCpK92c4USmmLZkknq-4olUnuslAQoZItepjxOXCAnRAE2pKZWYtFtKaE2VCIo2TwS_gEo2y_ASHBUqT7T4BI0IEU94QFxESZqvKQwDKqvDXYlNPN9oX8RblWOLZExIxhbJ2K9Do4QvLvrBMubGLZwiIkQd7ktId8V_t3b1v8-v4dC1UTUn8xpQyRcrvCG2kKsmVKNepzM0z8fX527T_ixfCje3Aw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB6KIupBtCpWq-5BTxpok02ze_BQfNBq68lCb-tmO9GCbqUPpP_HH-ok3a0oevDQ20IeLDOTeeTxfQAnFqpQJqFhJjSa-SYOmEYUTEldNUJRRDR2Q799X2t0_Nuu7BbgI38L426750eSzlPPH7s5qBRm6VdtWkJFT3aV8g6n71SojS6aV6TVU85vrh8uGyzjEmAJV3zMsKcSTCoqTvyaFrHSPvfjAKUKUZikhj1OcZyipyGPniiMqxUtjaFBnOp8EVtuCHL0y5R8BHbtdHh9flYhA0cfYnnuGfXm2dOc3__5e_j7yml_HMO66HazCRtZWurVZ3a0BQVMi7Befxpm0BxYhJUZbeWUvq4d1PV0G6rtvgNyoqGYPlsDspuN3sB4by-kMi8m19dPJ6_eePCClsIDd6CzEMHtwlI6SHEPPB1qX1ZEDy3okYhFQLmPVlQfagwDaivBWS6b6G2GtRHNUZWdJCOSZOQkGdVKUM7FF2XrbhQJy05OGpGyBOe5SL-a_55t_3_dj2G18dBuRa3m_d0BrHGnYXsrsAxL4-EEDylTGesjZygePC7aMj8B6c_x0g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5VIBAMiKcozwwwgUVrx3UyMFRARXmJgUpsIU7PUKmkVZsK9V_xEzm7SREIBga2SH4oujv77mzf9wEcWKhCmYSGmdBo5ps4YBpRMCV11QhFHtHYA_3bu9ply796lI8leC9qYdxr9-JKclLTYFGa0uyk3zYn08I3B5vCLBWrDVEoAcqfVV7j-I2StuFp85w0fMh54-Lh7JLlvAIs4YpnDNsqwaSi4sSvaREr7XM_DlCqEIVJatjm5NPJkxra3ROFcbWipTE0iFPOL2LLE0Gb_qxvq49pBbV4fXpvIQNHJWI57xn15nmZzs___NUVfsa3365knadrLMNSHqJ69YlNrUAJ01VYrD8PcpgOXIW5CYXlmL4uHOz1eA2qtx0H6kRDMX2xxmQPHr2e8fpdUp8X0zbYSUevXtbroqXzwHVo_YvgNmAm7aW4CZ4OtS8roo0WAEnEIqA4SCvKFTWGAbWV4aiQTdSf4G5EU4RlJ8mIJBk5SUa1MuwU4ovyNTiMhGUqJ41IWYbjQqSfzb_PtvW37vswf3_eiG6ad9fbsMCdgu0DwR2YyQYj3KWgJdN7zk48ePpvw_wAdev2BQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+enhancement+of+plant+aluminum+tolerance&rft.jtitle=Biology+and+fertility+of+soils&rft.au=Cheng%2C+Lang&rft.au=Liu%2C+Qi&rft.au=Nian%2C+Hai&rft.au=Hartmann%2C+Martin&rft.date=2025-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2762&rft.eissn=1432-0789&rft.volume=61&rft.issue=6&rft.spage=985&rft.epage=997&rft_id=info:doi/10.1007%2Fs00374-025-01920-6&rft.externalDocID=10_1007_s00374_025_01920_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2762&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2762&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2762&client=summon |