Nonlinear transient response analysis of revolution doubly curved shells

At present, the rapid advancements in the high-end manufacturing industry have driven an increasingly urgent demand for corresponding theoretical research. Particularly in the domains of aviation, aerospace, and marine engineering, there is a substantial demand for the application of axisymmetric re...

Full description

Saved in:
Bibliographic Details
Published inArchives of Civil and Mechanical Engineering Vol. 25; no. 3; p. 145
Main Authors Fan, Yu-Hao, She, Gui-Lin, Li, Cheng
Format Journal Article
LanguageEnglish
Published London Springer London 23.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2083-3318
1644-9665
2083-3318
DOI10.1007/s43452-025-01187-6

Cover

Loading…
Abstract At present, the rapid advancements in the high-end manufacturing industry have driven an increasingly urgent demand for corresponding theoretical research. Particularly in the domains of aviation, aerospace, and marine engineering, there is a substantial demand for the application of axisymmetric revolution doubly curved shells. Consequently, further research on these shells needs to be intensified. However, there is almost no research on the nonlinear transient response of revolution doubly curved shells undergoing spinning motion. This paper, for the first time, discusses the transient response characteristics with initial geometric imperfection. First, when establishing the model, the uniform distribution of graphene platelets and porosity distribution are considered. The displacement field is formulated in accordance with the first-order shear deformation shell theory, and the mechanical model is derived by incorporating von Kármán geometric nonlinearity to account for moderate rotational deformations in the shell structure. Then the Euler–Lagrange equation is used to obtain the equations of motion, and the modal function under traditional boundary conditions is introduced. Subsequently, we apply the Galerkin method to reduce the dimensionality. Finally, the corresponding vibration information is obtained using the Runge–Kutta method. In the present study, we first validate the natural frequencies of the model to ensure the rationality and accuracy of the analysis results. In addition, the influence of various parameters on nonlinear vibration behavior is studied in detail.
AbstractList At present, the rapid advancements in the high-end manufacturing industry have driven an increasingly urgent demand for corresponding theoretical research. Particularly in the domains of aviation, aerospace, and marine engineering, there is a substantial demand for the application of axisymmetric revolution doubly curved shells. Consequently, further research on these shells needs to be intensified. However, there is almost no research on the nonlinear transient response of revolution doubly curved shells undergoing spinning motion. This paper, for the first time, discusses the transient response characteristics with initial geometric imperfection. First, when establishing the model, the uniform distribution of graphene platelets and porosity distribution are considered. The displacement field is formulated in accordance with the first-order shear deformation shell theory, and the mechanical model is derived by incorporating von Kármán geometric nonlinearity to account for moderate rotational deformations in the shell structure. Then the Euler–Lagrange equation is used to obtain the equations of motion, and the modal function under traditional boundary conditions is introduced. Subsequently, we apply the Galerkin method to reduce the dimensionality. Finally, the corresponding vibration information is obtained using the Runge–Kutta method. In the present study, we first validate the natural frequencies of the model to ensure the rationality and accuracy of the analysis results. In addition, the influence of various parameters on nonlinear vibration behavior is studied in detail.
ArticleNumber 145
Author Fan, Yu-Hao
She, Gui-Lin
Li, Cheng
Author_xml – sequence: 1
  givenname: Yu-Hao
  surname: Fan
  fullname: Fan, Yu-Hao
  organization: College of Mechanical and Vehicle Engineering, Chongqing University
– sequence: 2
  givenname: Gui-Lin
  orcidid: 0000-0001-7722-5441
  surname: She
  fullname: She, Gui-Lin
  email: sheguilin@cqu.edu.cn
  organization: College of Mechanical and Vehicle Engineering, Chongqing University
– sequence: 3
  givenname: Cheng
  surname: Li
  fullname: Li, Cheng
  organization: School of Automotive Engineering, Changzhou Institute of Technology
BookMark eNp9kE9Lw0AQxRepYK39Ap4CnqM7O8lucpTiPyh60fOySSaaEnfrTlLotzdaQU-e5jG893j8TsXMB09CnIO8BCnNFWeY5SqVKk8lQGFSfSTmShaYIkIx-6NPxJJ5I6UEaRTofC7uH4PvO08uJkN0njvyQxKJt8EzJc67fs8dJ6GdnrvQj0MXfNKEser3ST3GHTUJv1Hf85k4bl3PtPy5C_Fye_O8uk_XT3cPq-t1WiujhpQANRhdNpXRKnNF2ZIz1BaT1tJhVlNdZs5gAeCquiLErEGdV6B0XUpEXIiLQ-82ho-ReLCbMMZpJ1tUgKUsZQaTSx1cdQzMkVq7jd27i3sL0n5BswdodoJmv6FZPYXwEOLJ7F8p_lb_k_oEhEFxGw
Cites_doi 10.1016/j.actaastro.2022.01.005
10.1016/j.jmps.2024.105554
10.12989/cac.2025.35.1.059
10.1016/j.engstruct.2020.111356
10.1016/j.chaos.2023.113709
10.1016/j.ast.2024.108910
10.1016/j.enganabound.2021.10.009
10.1016/j.compstruct.2014.01.006
10.1007/s10483-024-3124-7
10.3390/ma15186469
10.1016/j.compstruct.2018.04.035
10.1016/j.jsv.2022.117095
10.1007/s43452-024-00894-w
10.1016/j.tws.2021.108243
10.1016/j.compstruct.2011.02.006
10.1177/03093247241311390
10.1016/j.engstruct.2024.118291
10.1016/j.tws.2020.106943
10.1007/s43452-023-00743-2
10.1177/10775463221075440
10.1007/s42417-024-01651-2
10.1016/j.compstruct.2019.111630
10.1016/j.ijmecsci.2017.10.036
10.1016/j.compstruct.2015.07.051
10.12989/gae.2025.40.3.183
10.1016/j.tws.2019.106472
10.1007/s43452-023-00846-w
10.1016/j.tws.2025.113018
10.1016/j.compstruct.2024.118178
10.1007/s11071-019-05297-8
10.1016/j.jsv.2018.08.036
10.1142/S0219455423501973
10.1016/j.tws.2024.112283
10.1016/j.actaastro.2020.04.024
10.1007/s43452-021-00330-3
10.1007/s40962-023-00990-2
10.1007/s00170-023-11623-7
10.1016/j.tws.2024.111995
10.1007/s00419-024-02654-x
10.1016/j.ijmecsci.2022.107844
10.1016/j.enganabound.2022.08.018
10.1016/j.actaastro.2024.05.037
10.1016/j.engstruct.2024.119241
10.1002/aisy.202300699
10.1142/S0219455422501383
10.1007/s43452-024-00973-y
ContentType Journal Article
Copyright Wroclaw University of Science and Technology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: Wroclaw University of Science and Technology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. May 2025
DBID AAYXX
CITATION
DOI 10.1007/s43452-025-01187-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2083-3318
ExternalDocumentID 10_1007_s43452_025_01187_6
GrantInformation_xml – fundername: Graduate research and innovation foundation-of Chongqing
  grantid: CYB240010
GroupedDBID --M
.~1
1~.
23M
2JY
4.4
406
457
4G.
5GY
7-5
8P~
AACDK
AAEDT
AAEPC
AAHNG
AAIKJ
AAJBT
AALRI
AAOAW
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABJNI
ABMQK
ABTEG
ABTKH
ABTMW
ABXRA
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACPIV
ACZOJ
ADBBV
ADEZE
ADTZH
AECPX
AEFQL
AEIIB
AEKER
AEMSY
AENEX
AESKC
AEZWR
AFBBN
AFDZB
AFOHR
AFQWF
AFTJW
AGHFR
AGMZJ
AGQEE
AGUBO
AGYEJ
AHPBZ
AIGIU
AILAN
AIXLP
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ATHPR
AYFIA
BLXMC
DPUIP
EBLON
EBS
ESX
FDB
FEDTE
FIGPU
FIRID
FNPLU
GBLVA
HVGLF
IKXTQ
IWAJR
JJJVA
LLZTM
MAGPM
MO0
NPVJJ
NQJWS
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
PT4
Q38
ROL
RSV
SDF
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
SSZ
Y2W
~G-
AAYXX
ACSTC
AFHIU
AHWEU
CITATION
JZLTJ
ABRTQ
ID FETCH-LOGICAL-c272t-e1361769db7624a89fea7ef824a60a34cec94a73811abcbe334d365b126c90333
ISSN 2083-3318
1644-9665
IngestDate Fri Jul 25 09:25:20 EDT 2025
Thu Jul 03 08:21:53 EDT 2025
Wed Jun 11 01:22:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nonlinear transient response
Spinning
Blast pulse load
Revolution doubly curved shell
Initial geometric imperfection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c272t-e1361769db7624a89fea7ef824a60a34cec94a73811abcbe334d365b126c90333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7722-5441
PQID 3213909041
PQPubID 6587200
ParticipantIDs proquest_journals_3213909041
crossref_primary_10_1007_s43452_025_01187_6
springer_journals_10_1007_s43452_025_01187_6
PublicationCentury 2000
PublicationDate 2025-04-23
PublicationDateYYYYMMDD 2025-04-23
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Wrocław
PublicationTitle Archives of Civil and Mechanical Engineering
PublicationTitleAbbrev Arch. Civ. Mech. Eng
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References J Xu (1187_CR21) 2024; 146
T Ye (1187_CR35) 2015; 133
S Kwak (1187_CR14) 2022; 134
YS Lian (1187_CR13) 2023; 29
A Zingoni (1187_CR18) 2020; 146
YH Dong (1187_CR23) 2018; 437
YP Li (1187_CR36) 2025; 323
YH Dong (1187_CR25) 2022; 535
Y Xu (1187_CR3) 2024; 6
PM Vuong (1187_CR30) 2023; 23
S Daghighi (1187_CR17) 2020; 233
YP Li (1187_CR39) 2025; 13
K Choe (1187_CR44) 2018; 194
S Jahangiri (1187_CR1) 2024; 45
H Pant (1187_CR2) 2023; 127
K Xie (1187_CR15) 2020; 155
E Sobhani (1187_CR19) 2022; 144
P Jiao (1187_CR31) 2023
YH Fan (1187_CR42) 2025; 35
YP Li (1187_CR40) 2024; 24
JP Song (1187_CR38) 2024; 204
JP Song (1187_CR37) 2024; 24
YW Zhang (1187_CR43) 2024; 314
Y Dong (1187_CR24) 2020; 99
A Lai (1187_CR12) 2022; 193
K Ki (1187_CR33) 2024; 185
GL She (1187_CR41) 2025; 210
J Zhang (1187_CR34) 2023; 173
F Tornabene (1187_CR45) 2011; 93
Z Khoddami Maraghi (1187_CR7) 2025
Q Jin (1187_CR29) 2020; 173
H Zhang (1187_CR32) 2022; 22
GL She (1187_CR5) 2025; 40
A Baghlani (1187_CR16) 2021; 228
Y Zhang (1187_CR26) 2024
Z Xiao (1187_CR10) 2024; 18
Q Wang (1187_CR20) 2017; 134
H Liu (1187_CR28) 2023; 238
H Zhou (1187_CR4) 2022; 15
Z Su (1187_CR46) 2014; 111
H Liu (1187_CR8) 2024; 340
R Ren (1187_CR9) 2024; 201
M Li (1187_CR6) 2021; 22
FY Addou (1187_CR11) 2024; 24
DP Madonna (1187_CR22) 2024; 222
Q Chai (1187_CR27) 2021; 168
References_xml – volume: 193
  start-page: 44
  year: 2022
  ident: 1187_CR12
  publication-title: Acta Astronaut
  doi: 10.1016/j.actaastro.2022.01.005
– volume: 185
  year: 2024
  ident: 1187_CR33
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2024.105554
– volume: 35
  start-page: 59
  issue: 1
  year: 2025
  ident: 1187_CR42
  publication-title: Comput Concrete
  doi: 10.12989/cac.2025.35.1.059
– volume: 228
  year: 2021
  ident: 1187_CR16
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111356
– volume: 173
  year: 2023
  ident: 1187_CR34
  publication-title: Chaos Solit Fract
  doi: 10.1016/j.chaos.2023.113709
– volume: 146
  year: 2024
  ident: 1187_CR21
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2024.108910
– volume: 134
  start-page: 199
  year: 2022
  ident: 1187_CR14
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2021.10.009
– volume: 111
  start-page: 271
  year: 2014
  ident: 1187_CR46
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2014.01.006
– volume: 45
  start-page: 963
  year: 2024
  ident: 1187_CR1
  publication-title: Appl Math Mech Engl Ed
  doi: 10.1007/s10483-024-3124-7
– volume: 15
  start-page: 6469
  year: 2022
  ident: 1187_CR4
  publication-title: Materials
  doi: 10.3390/ma15186469
– volume: 194
  start-page: 413
  year: 2018
  ident: 1187_CR44
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2018.04.035
– volume: 535
  year: 2022
  ident: 1187_CR25
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2022.117095
– volume: 24
  start-page: 102
  year: 2024
  ident: 1187_CR11
  publication-title: Arch Civ Mech Eng
  doi: 10.1007/s43452-024-00894-w
– volume: 168
  year: 2021
  ident: 1187_CR27
  publication-title: Thin-Wall Struct
  doi: 10.1016/j.tws.2021.108243
– volume: 93
  start-page: 1854
  year: 2011
  ident: 1187_CR45
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2011.02.006
– year: 2025
  ident: 1187_CR7
  publication-title: J Strain Anal Eng Des
  doi: 10.1177/03093247241311390
– volume: 314
  year: 2024
  ident: 1187_CR43
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2024.118291
– volume: 155
  year: 2020
  ident: 1187_CR15
  publication-title: Thin-Wall Struct
  doi: 10.1016/j.tws.2020.106943
– volume: 23
  start-page: 207
  year: 2023
  ident: 1187_CR30
  publication-title: Arch Civ Mech Eng
  doi: 10.1007/s43452-023-00743-2
– volume: 29
  start-page: 2198
  year: 2023
  ident: 1187_CR13
  publication-title: J Vib Control
  doi: 10.1177/10775463221075440
– volume: 13
  start-page: 17
  issue: 1
  year: 2025
  ident: 1187_CR39
  publication-title: J Vib Eng Technol
  doi: 10.1007/s42417-024-01651-2
– volume: 233
  year: 2020
  ident: 1187_CR17
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.111630
– volume: 134
  start-page: 479
  year: 2017
  ident: 1187_CR20
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2017.10.036
– volume: 133
  start-page: 202
  year: 2015
  ident: 1187_CR35
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.07.051
– volume: 40
  start-page: 183
  issue: 3
  year: 2025
  ident: 1187_CR5
  publication-title: Geomech Eng
  doi: 10.12989/gae.2025.40.3.183
– volume: 146
  year: 2020
  ident: 1187_CR18
  publication-title: Thin-Wall Struct
  doi: 10.1016/j.tws.2019.106472
– volume: 24
  start-page: 45
  year: 2024
  ident: 1187_CR37
  publication-title: Arch Civ Mech Eng
  doi: 10.1007/s43452-023-00846-w
– volume: 210
  year: 2025
  ident: 1187_CR41
  publication-title: Thin Wall Struct
  doi: 10.1016/j.tws.2025.113018
– volume: 340
  year: 2024
  ident: 1187_CR8
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2024.118178
– volume: 99
  start-page: 981
  year: 2020
  ident: 1187_CR24
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-019-05297-8
– volume: 437
  start-page: 79
  year: 2018
  ident: 1187_CR23
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.08.036
– year: 2023
  ident: 1187_CR31
  publication-title: Int J Struct Stab Dyn
  doi: 10.1142/S0219455423501973
– volume: 204
  year: 2024
  ident: 1187_CR38
  publication-title: Thin Wall Struct
  doi: 10.1016/j.tws.2024.112283
– volume: 173
  start-page: 240
  year: 2020
  ident: 1187_CR29
  publication-title: Acta Astronaut
  doi: 10.1016/j.actaastro.2020.04.024
– volume: 22
  start-page: 14
  year: 2021
  ident: 1187_CR6
  publication-title: Arch Civ Mech Eng
  doi: 10.1007/s43452-021-00330-3
– volume: 18
  start-page: 159
  year: 2024
  ident: 1187_CR10
  publication-title: Int Metalcast
  doi: 10.1007/s40962-023-00990-2
– volume: 127
  start-page: 4995
  year: 2023
  ident: 1187_CR2
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-023-11623-7
– volume: 201
  year: 2024
  ident: 1187_CR9
  publication-title: Thin-Wall Struct
  doi: 10.1016/j.tws.2024.111995
– year: 2024
  ident: 1187_CR26
  publication-title: Arch Appl Mech
  doi: 10.1007/s00419-024-02654-x
– volume: 238
  year: 2023
  ident: 1187_CR28
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2022.107844
– volume: 144
  start-page: 145
  year: 2022
  ident: 1187_CR19
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2022.08.018
– volume: 222
  start-page: 705
  year: 2024
  ident: 1187_CR22
  publication-title: Acta Astronaut
  doi: 10.1016/j.actaastro.2024.05.037
– volume: 323
  year: 2025
  ident: 1187_CR36
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2024.119241
– volume: 6
  start-page: 2300699
  year: 2024
  ident: 1187_CR3
  publication-title: Adv Intell Syst
  doi: 10.1002/aisy.202300699
– volume: 22
  start-page: 2250138
  year: 2022
  ident: 1187_CR32
  publication-title: Int J Str Stab Dyn
  doi: 10.1142/S0219455422501383
– volume: 24
  start-page: 161
  year: 2024
  ident: 1187_CR40
  publication-title: Arch Civ Mech Eng
  doi: 10.1007/s43452-024-00973-y
SSID ssj0001072165
Score 2.395203
Snippet At present, the rapid advancements in the high-end manufacturing industry have driven an increasingly urgent demand for corresponding theoretical research....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 145
SubjectTerms Aerospace engineering
Boundary conditions
Civil Engineering
Engineering
Equations of motion
Euler-Lagrange equation
Galerkin method
Geometric nonlinearity
Graphene
Initial geometric imperfections
Investigations
Manufacturing
Marine engineering
Mechanical Engineering
Nonlinear response
Original Article
Resonant frequencies
Runge-Kutta method
Shear deformation
Shell theory
Shells (structural forms)
Structural Materials
Submarines
Transient response
Vibration
Vibration analysis
Title Nonlinear transient response analysis of revolution doubly curved shells
URI https://link.springer.com/article/10.1007/s43452-025-01187-6
https://www.proquest.com/docview/3213909041
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaGcoEDYhUDBfnAbXA1sR0nOaIKGCHaC61UTlG8iUhopkomI8Ghv73PSxbKVKJcoshRXix_X-zn57cg9I5WOtGpy3xspSI855JIkXKScC0ynSep9RHeJ6didc6_XKQXs9m3iddSt5VH6vfeuJL_QRXaAFcXJXsHZAeh0AD3gC9cAWG4_hPGpyHPRdW4Sg_r1oU2Lprg9OpOBcZ0I43ZxY4s9KaTP38tVNfsQNdsnR9oO9VQp6loj-tdHVIJnBgXIewBnWQwHMAPVtTvHVlVm8Fm88PbSj93Nflaj44_dTjkN_HtaHCgqTs7CTHBYV6ioLURxuK0afa0xYk1RDRHArG983Vw0Wg54ykl_luu_DnZkxz7xqI1uBIOaZe9jBJklF5GKe6h-xT2Dq6ex9FVMhreXEY4X2J06HQMpvIhlX915U-FZdyF3Dg49_rI2WP0KG4k8IfAiidoZtZP0cMJOM_QauAHHviBe37gnh94Y_HIDxz4gQM_cODHc3T-6ePZ8YrEyhlE0YxuiUkYaKai0BLWOl7lhTVVZmwO92JZMa6MKniVgbaWVFJJwxjXTKQyoUIVS8bYC3Sw3qzNS4SVEFxZC6ug0jzjXFItVJ7b1JhEFIWdo0U_POVlSJBS3o7JHB32I1jGH6ktGYVtyLJY8mSO3vejOj6-XdqrO337NXow0vkQHWybzrwBjXIr33qGXAMHVnEd
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+transient+response+analysis+of+revolution+doubly+curved+shells&rft.jtitle=Archives+of+Civil+and+Mechanical+Engineering&rft.au=Fan%2C+Yu-Hao&rft.au=She%2C+Gui-Lin&rft.au=Li%2C+Cheng&rft.date=2025-04-23&rft.issn=2083-3318&rft.eissn=2083-3318&rft.volume=25&rft.issue=3&rft_id=info:doi/10.1007%2Fs43452-025-01187-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43452_025_01187_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-3318&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-3318&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-3318&client=summon