Nonlinear transient response analysis of revolution doubly curved shells
At present, the rapid advancements in the high-end manufacturing industry have driven an increasingly urgent demand for corresponding theoretical research. Particularly in the domains of aviation, aerospace, and marine engineering, there is a substantial demand for the application of axisymmetric re...
Saved in:
Published in | Archives of Civil and Mechanical Engineering Vol. 25; no. 3; p. 145 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
23.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2083-3318 1644-9665 2083-3318 |
DOI | 10.1007/s43452-025-01187-6 |
Cover
Loading…
Abstract | At present, the rapid advancements in the high-end manufacturing industry have driven an increasingly urgent demand for corresponding theoretical research. Particularly in the domains of aviation, aerospace, and marine engineering, there is a substantial demand for the application of axisymmetric revolution doubly curved shells. Consequently, further research on these shells needs to be intensified. However, there is almost no research on the nonlinear transient response of revolution doubly curved shells undergoing spinning motion. This paper, for the first time, discusses the transient response characteristics with initial geometric imperfection. First, when establishing the model, the uniform distribution of graphene platelets and porosity distribution are considered. The displacement field is formulated in accordance with the first-order shear deformation shell theory, and the mechanical model is derived by incorporating von Kármán geometric nonlinearity to account for moderate rotational deformations in the shell structure. Then the Euler–Lagrange equation is used to obtain the equations of motion, and the modal function under traditional boundary conditions is introduced. Subsequently, we apply the Galerkin method to reduce the dimensionality. Finally, the corresponding vibration information is obtained using the Runge–Kutta method. In the present study, we first validate the natural frequencies of the model to ensure the rationality and accuracy of the analysis results. In addition, the influence of various parameters on nonlinear vibration behavior is studied in detail. |
---|---|
AbstractList | At present, the rapid advancements in the high-end manufacturing industry have driven an increasingly urgent demand for corresponding theoretical research. Particularly in the domains of aviation, aerospace, and marine engineering, there is a substantial demand for the application of axisymmetric revolution doubly curved shells. Consequently, further research on these shells needs to be intensified. However, there is almost no research on the nonlinear transient response of revolution doubly curved shells undergoing spinning motion. This paper, for the first time, discusses the transient response characteristics with initial geometric imperfection. First, when establishing the model, the uniform distribution of graphene platelets and porosity distribution are considered. The displacement field is formulated in accordance with the first-order shear deformation shell theory, and the mechanical model is derived by incorporating von Kármán geometric nonlinearity to account for moderate rotational deformations in the shell structure. Then the Euler–Lagrange equation is used to obtain the equations of motion, and the modal function under traditional boundary conditions is introduced. Subsequently, we apply the Galerkin method to reduce the dimensionality. Finally, the corresponding vibration information is obtained using the Runge–Kutta method. In the present study, we first validate the natural frequencies of the model to ensure the rationality and accuracy of the analysis results. In addition, the influence of various parameters on nonlinear vibration behavior is studied in detail. |
ArticleNumber | 145 |
Author | Fan, Yu-Hao She, Gui-Lin Li, Cheng |
Author_xml | – sequence: 1 givenname: Yu-Hao surname: Fan fullname: Fan, Yu-Hao organization: College of Mechanical and Vehicle Engineering, Chongqing University – sequence: 2 givenname: Gui-Lin orcidid: 0000-0001-7722-5441 surname: She fullname: She, Gui-Lin email: sheguilin@cqu.edu.cn organization: College of Mechanical and Vehicle Engineering, Chongqing University – sequence: 3 givenname: Cheng surname: Li fullname: Li, Cheng organization: School of Automotive Engineering, Changzhou Institute of Technology |
BookMark | eNp9kE9Lw0AQxRepYK39Ap4CnqM7O8lucpTiPyh60fOySSaaEnfrTlLotzdaQU-e5jG893j8TsXMB09CnIO8BCnNFWeY5SqVKk8lQGFSfSTmShaYIkIx-6NPxJJ5I6UEaRTofC7uH4PvO08uJkN0njvyQxKJt8EzJc67fs8dJ6GdnrvQj0MXfNKEser3ST3GHTUJv1Hf85k4bl3PtPy5C_Fye_O8uk_XT3cPq-t1WiujhpQANRhdNpXRKnNF2ZIz1BaT1tJhVlNdZs5gAeCquiLErEGdV6B0XUpEXIiLQ-82ho-ReLCbMMZpJ1tUgKUsZQaTSx1cdQzMkVq7jd27i3sL0n5BswdodoJmv6FZPYXwEOLJ7F8p_lb_k_oEhEFxGw |
Cites_doi | 10.1016/j.actaastro.2022.01.005 10.1016/j.jmps.2024.105554 10.12989/cac.2025.35.1.059 10.1016/j.engstruct.2020.111356 10.1016/j.chaos.2023.113709 10.1016/j.ast.2024.108910 10.1016/j.enganabound.2021.10.009 10.1016/j.compstruct.2014.01.006 10.1007/s10483-024-3124-7 10.3390/ma15186469 10.1016/j.compstruct.2018.04.035 10.1016/j.jsv.2022.117095 10.1007/s43452-024-00894-w 10.1016/j.tws.2021.108243 10.1016/j.compstruct.2011.02.006 10.1177/03093247241311390 10.1016/j.engstruct.2024.118291 10.1016/j.tws.2020.106943 10.1007/s43452-023-00743-2 10.1177/10775463221075440 10.1007/s42417-024-01651-2 10.1016/j.compstruct.2019.111630 10.1016/j.ijmecsci.2017.10.036 10.1016/j.compstruct.2015.07.051 10.12989/gae.2025.40.3.183 10.1016/j.tws.2019.106472 10.1007/s43452-023-00846-w 10.1016/j.tws.2025.113018 10.1016/j.compstruct.2024.118178 10.1007/s11071-019-05297-8 10.1016/j.jsv.2018.08.036 10.1142/S0219455423501973 10.1016/j.tws.2024.112283 10.1016/j.actaastro.2020.04.024 10.1007/s43452-021-00330-3 10.1007/s40962-023-00990-2 10.1007/s00170-023-11623-7 10.1016/j.tws.2024.111995 10.1007/s00419-024-02654-x 10.1016/j.ijmecsci.2022.107844 10.1016/j.enganabound.2022.08.018 10.1016/j.actaastro.2024.05.037 10.1016/j.engstruct.2024.119241 10.1002/aisy.202300699 10.1142/S0219455422501383 10.1007/s43452-024-00973-y |
ContentType | Journal Article |
Copyright | Wroclaw University of Science and Technology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. May 2025 |
Copyright_xml | – notice: Wroclaw University of Science and Technology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. May 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s43452-025-01187-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2083-3318 |
ExternalDocumentID | 10_1007_s43452_025_01187_6 |
GrantInformation_xml | – fundername: Graduate research and innovation foundation-of Chongqing grantid: CYB240010 |
GroupedDBID | --M .~1 1~. 23M 2JY 4.4 406 457 4G. 5GY 7-5 8P~ AACDK AAEDT AAEPC AAHNG AAIKJ AAJBT AALRI AAOAW AASML AATNV AAUYE ABAKF ABBRH ABDBE ABECU ABFSG ABJNI ABMQK ABTEG ABTKH ABTMW ABXRA ACAOD ACDAQ ACDTI ACGFS ACHSB ACPIV ACZOJ ADBBV ADEZE ADTZH AECPX AEFQL AEIIB AEKER AEMSY AENEX AESKC AEZWR AFBBN AFDZB AFOHR AFQWF AFTJW AGHFR AGMZJ AGQEE AGUBO AGYEJ AHPBZ AIGIU AILAN AIXLP AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA BLXMC DPUIP EBLON EBS ESX FDB FEDTE FIGPU FIRID FNPLU GBLVA HVGLF IKXTQ IWAJR JJJVA LLZTM MAGPM MO0 NPVJJ NQJWS O-L O9- OAUVE P-8 P-9 P2P PC. PT4 Q38 ROL RSV SDF SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW SSZ Y2W ~G- AAYXX ACSTC AFHIU AHWEU CITATION JZLTJ ABRTQ |
ID | FETCH-LOGICAL-c272t-e1361769db7624a89fea7ef824a60a34cec94a73811abcbe334d365b126c90333 |
ISSN | 2083-3318 1644-9665 |
IngestDate | Fri Jul 25 09:25:20 EDT 2025 Thu Jul 03 08:21:53 EDT 2025 Wed Jun 11 01:22:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Nonlinear transient response Spinning Blast pulse load Revolution doubly curved shell Initial geometric imperfection |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c272t-e1361769db7624a89fea7ef824a60a34cec94a73811abcbe334d365b126c90333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7722-5441 |
PQID | 3213909041 |
PQPubID | 6587200 |
ParticipantIDs | proquest_journals_3213909041 crossref_primary_10_1007_s43452_025_01187_6 springer_journals_10_1007_s43452_025_01187_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-23 |
PublicationDateYYYYMMDD | 2025-04-23 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Wrocław |
PublicationTitle | Archives of Civil and Mechanical Engineering |
PublicationTitleAbbrev | Arch. Civ. Mech. Eng |
PublicationYear | 2025 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | J Xu (1187_CR21) 2024; 146 T Ye (1187_CR35) 2015; 133 S Kwak (1187_CR14) 2022; 134 YS Lian (1187_CR13) 2023; 29 A Zingoni (1187_CR18) 2020; 146 YH Dong (1187_CR23) 2018; 437 YP Li (1187_CR36) 2025; 323 YH Dong (1187_CR25) 2022; 535 Y Xu (1187_CR3) 2024; 6 PM Vuong (1187_CR30) 2023; 23 S Daghighi (1187_CR17) 2020; 233 YP Li (1187_CR39) 2025; 13 K Choe (1187_CR44) 2018; 194 S Jahangiri (1187_CR1) 2024; 45 H Pant (1187_CR2) 2023; 127 K Xie (1187_CR15) 2020; 155 E Sobhani (1187_CR19) 2022; 144 P Jiao (1187_CR31) 2023 YH Fan (1187_CR42) 2025; 35 YP Li (1187_CR40) 2024; 24 JP Song (1187_CR38) 2024; 204 JP Song (1187_CR37) 2024; 24 YW Zhang (1187_CR43) 2024; 314 Y Dong (1187_CR24) 2020; 99 A Lai (1187_CR12) 2022; 193 K Ki (1187_CR33) 2024; 185 GL She (1187_CR41) 2025; 210 J Zhang (1187_CR34) 2023; 173 F Tornabene (1187_CR45) 2011; 93 Z Khoddami Maraghi (1187_CR7) 2025 Q Jin (1187_CR29) 2020; 173 H Zhang (1187_CR32) 2022; 22 GL She (1187_CR5) 2025; 40 A Baghlani (1187_CR16) 2021; 228 Y Zhang (1187_CR26) 2024 Z Xiao (1187_CR10) 2024; 18 Q Wang (1187_CR20) 2017; 134 H Liu (1187_CR28) 2023; 238 H Zhou (1187_CR4) 2022; 15 Z Su (1187_CR46) 2014; 111 H Liu (1187_CR8) 2024; 340 R Ren (1187_CR9) 2024; 201 M Li (1187_CR6) 2021; 22 FY Addou (1187_CR11) 2024; 24 DP Madonna (1187_CR22) 2024; 222 Q Chai (1187_CR27) 2021; 168 |
References_xml | – volume: 193 start-page: 44 year: 2022 ident: 1187_CR12 publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2022.01.005 – volume: 185 year: 2024 ident: 1187_CR33 publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2024.105554 – volume: 35 start-page: 59 issue: 1 year: 2025 ident: 1187_CR42 publication-title: Comput Concrete doi: 10.12989/cac.2025.35.1.059 – volume: 228 year: 2021 ident: 1187_CR16 publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111356 – volume: 173 year: 2023 ident: 1187_CR34 publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2023.113709 – volume: 146 year: 2024 ident: 1187_CR21 publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2024.108910 – volume: 134 start-page: 199 year: 2022 ident: 1187_CR14 publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2021.10.009 – volume: 111 start-page: 271 year: 2014 ident: 1187_CR46 publication-title: Compos Struct doi: 10.1016/j.compstruct.2014.01.006 – volume: 45 start-page: 963 year: 2024 ident: 1187_CR1 publication-title: Appl Math Mech Engl Ed doi: 10.1007/s10483-024-3124-7 – volume: 15 start-page: 6469 year: 2022 ident: 1187_CR4 publication-title: Materials doi: 10.3390/ma15186469 – volume: 194 start-page: 413 year: 2018 ident: 1187_CR44 publication-title: Compos Struct doi: 10.1016/j.compstruct.2018.04.035 – volume: 535 year: 2022 ident: 1187_CR25 publication-title: J Sound Vib doi: 10.1016/j.jsv.2022.117095 – volume: 24 start-page: 102 year: 2024 ident: 1187_CR11 publication-title: Arch Civ Mech Eng doi: 10.1007/s43452-024-00894-w – volume: 168 year: 2021 ident: 1187_CR27 publication-title: Thin-Wall Struct doi: 10.1016/j.tws.2021.108243 – volume: 93 start-page: 1854 year: 2011 ident: 1187_CR45 publication-title: Compos Struct doi: 10.1016/j.compstruct.2011.02.006 – year: 2025 ident: 1187_CR7 publication-title: J Strain Anal Eng Des doi: 10.1177/03093247241311390 – volume: 314 year: 2024 ident: 1187_CR43 publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118291 – volume: 155 year: 2020 ident: 1187_CR15 publication-title: Thin-Wall Struct doi: 10.1016/j.tws.2020.106943 – volume: 23 start-page: 207 year: 2023 ident: 1187_CR30 publication-title: Arch Civ Mech Eng doi: 10.1007/s43452-023-00743-2 – volume: 29 start-page: 2198 year: 2023 ident: 1187_CR13 publication-title: J Vib Control doi: 10.1177/10775463221075440 – volume: 13 start-page: 17 issue: 1 year: 2025 ident: 1187_CR39 publication-title: J Vib Eng Technol doi: 10.1007/s42417-024-01651-2 – volume: 233 year: 2020 ident: 1187_CR17 publication-title: Compos Struct doi: 10.1016/j.compstruct.2019.111630 – volume: 134 start-page: 479 year: 2017 ident: 1187_CR20 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2017.10.036 – volume: 133 start-page: 202 year: 2015 ident: 1187_CR35 publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.07.051 – volume: 40 start-page: 183 issue: 3 year: 2025 ident: 1187_CR5 publication-title: Geomech Eng doi: 10.12989/gae.2025.40.3.183 – volume: 146 year: 2020 ident: 1187_CR18 publication-title: Thin-Wall Struct doi: 10.1016/j.tws.2019.106472 – volume: 24 start-page: 45 year: 2024 ident: 1187_CR37 publication-title: Arch Civ Mech Eng doi: 10.1007/s43452-023-00846-w – volume: 210 year: 2025 ident: 1187_CR41 publication-title: Thin Wall Struct doi: 10.1016/j.tws.2025.113018 – volume: 340 year: 2024 ident: 1187_CR8 publication-title: Compos Struct doi: 10.1016/j.compstruct.2024.118178 – volume: 99 start-page: 981 year: 2020 ident: 1187_CR24 publication-title: Nonlinear Dyn doi: 10.1007/s11071-019-05297-8 – volume: 437 start-page: 79 year: 2018 ident: 1187_CR23 publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.08.036 – year: 2023 ident: 1187_CR31 publication-title: Int J Struct Stab Dyn doi: 10.1142/S0219455423501973 – volume: 204 year: 2024 ident: 1187_CR38 publication-title: Thin Wall Struct doi: 10.1016/j.tws.2024.112283 – volume: 173 start-page: 240 year: 2020 ident: 1187_CR29 publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2020.04.024 – volume: 22 start-page: 14 year: 2021 ident: 1187_CR6 publication-title: Arch Civ Mech Eng doi: 10.1007/s43452-021-00330-3 – volume: 18 start-page: 159 year: 2024 ident: 1187_CR10 publication-title: Int Metalcast doi: 10.1007/s40962-023-00990-2 – volume: 127 start-page: 4995 year: 2023 ident: 1187_CR2 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-023-11623-7 – volume: 201 year: 2024 ident: 1187_CR9 publication-title: Thin-Wall Struct doi: 10.1016/j.tws.2024.111995 – year: 2024 ident: 1187_CR26 publication-title: Arch Appl Mech doi: 10.1007/s00419-024-02654-x – volume: 238 year: 2023 ident: 1187_CR28 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2022.107844 – volume: 144 start-page: 145 year: 2022 ident: 1187_CR19 publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2022.08.018 – volume: 222 start-page: 705 year: 2024 ident: 1187_CR22 publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2024.05.037 – volume: 323 year: 2025 ident: 1187_CR36 publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.119241 – volume: 6 start-page: 2300699 year: 2024 ident: 1187_CR3 publication-title: Adv Intell Syst doi: 10.1002/aisy.202300699 – volume: 22 start-page: 2250138 year: 2022 ident: 1187_CR32 publication-title: Int J Str Stab Dyn doi: 10.1142/S0219455422501383 – volume: 24 start-page: 161 year: 2024 ident: 1187_CR40 publication-title: Arch Civ Mech Eng doi: 10.1007/s43452-024-00973-y |
SSID | ssj0001072165 |
Score | 2.395203 |
Snippet | At present, the rapid advancements in the high-end manufacturing industry have driven an increasingly urgent demand for corresponding theoretical research.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 145 |
SubjectTerms | Aerospace engineering Boundary conditions Civil Engineering Engineering Equations of motion Euler-Lagrange equation Galerkin method Geometric nonlinearity Graphene Initial geometric imperfections Investigations Manufacturing Marine engineering Mechanical Engineering Nonlinear response Original Article Resonant frequencies Runge-Kutta method Shear deformation Shell theory Shells (structural forms) Structural Materials Submarines Transient response Vibration Vibration analysis |
Title | Nonlinear transient response analysis of revolution doubly curved shells |
URI | https://link.springer.com/article/10.1007/s43452-025-01187-6 https://www.proquest.com/docview/3213909041 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaGcoEDYhUDBfnAbXA1sR0nOaIKGCHaC61UTlG8iUhopkomI8Ghv73PSxbKVKJcoshRXix_X-zn57cg9I5WOtGpy3xspSI855JIkXKScC0ynSep9RHeJ6didc6_XKQXs9m3iddSt5VH6vfeuJL_QRXaAFcXJXsHZAeh0AD3gC9cAWG4_hPGpyHPRdW4Sg_r1oU2Lprg9OpOBcZ0I43ZxY4s9KaTP38tVNfsQNdsnR9oO9VQp6loj-tdHVIJnBgXIewBnWQwHMAPVtTvHVlVm8Fm88PbSj93Nflaj44_dTjkN_HtaHCgqTs7CTHBYV6ioLURxuK0afa0xYk1RDRHArG983Vw0Wg54ykl_luu_DnZkxz7xqI1uBIOaZe9jBJklF5GKe6h-xT2Dq6ex9FVMhreXEY4X2J06HQMpvIhlX915U-FZdyF3Dg49_rI2WP0KG4k8IfAiidoZtZP0cMJOM_QauAHHviBe37gnh94Y_HIDxz4gQM_cODHc3T-6ePZ8YrEyhlE0YxuiUkYaKai0BLWOl7lhTVVZmwO92JZMa6MKniVgbaWVFJJwxjXTKQyoUIVS8bYC3Sw3qzNS4SVEFxZC6ug0jzjXFItVJ7b1JhEFIWdo0U_POVlSJBS3o7JHB32I1jGH6ktGYVtyLJY8mSO3vejOj6-XdqrO337NXow0vkQHWybzrwBjXIr33qGXAMHVnEd |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+transient+response+analysis+of+revolution+doubly+curved+shells&rft.jtitle=Archives+of+Civil+and+Mechanical+Engineering&rft.au=Fan%2C+Yu-Hao&rft.au=She%2C+Gui-Lin&rft.au=Li%2C+Cheng&rft.date=2025-04-23&rft.issn=2083-3318&rft.eissn=2083-3318&rft.volume=25&rft.issue=3&rft_id=info:doi/10.1007%2Fs43452-025-01187-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43452_025_01187_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-3318&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-3318&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-3318&client=summon |