Sol–gel synthesized nanoscale mixed Zn-Mg ferrite as nanoseeds for in vitro magnetic fluid hyperthermia for cancer treatment

The development of advanced nanomaterials for cancer therapy has gained substantial attention for their potential in targeted treatments such as magnetic fluid hyperthermia (MFH). In this study, we synthesized mixed Zn-Mg ferrite nanoparticles (Zn 0.5 Mg 0.5 Fe 2 O 4 ) using the sol-gel self-combust...

Full description

Saved in:
Bibliographic Details
Published inJournal of sol-gel science and technology Vol. 115; no. 2; pp. 561 - 572
Main Authors Somvanshi, Sandeep B., Dawi, Elmuez A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of advanced nanomaterials for cancer therapy has gained substantial attention for their potential in targeted treatments such as magnetic fluid hyperthermia (MFH). In this study, we synthesized mixed Zn-Mg ferrite nanoparticles (Zn 0.5 Mg 0.5 Fe 2 O 4 ) using the sol-gel self-combustion method, with citric acid as the fuel and a metal nitrate-to-fuel ratio of 1:3. The nanoparticles were characterized for their structural, morphological, magnetic, and thermal properties using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), and dynamic light scattering (DLS). XRD analysis confirmed a single-phase spinel structure with an average crystallite size of ~21 nm. FE-SEM revealed spherical nanoparticles with uniform distribution, while EDAX confirmed the stoichiometric composition. Magnetic measurements showed superparamagnetic behavior, with a saturation magnetization of ~29.9 emu/g, indicating potential for MFH. In vitro studies on L929 and MCF-7 cell lines demonstrated good biocompatibility and significant cytotoxicity towards cancer cells under hyperthermia conditions. These results suggest that Zn 0.5 Mg 0.5 Fe 2 O 4 nanoparticles are promising nanoseeds for non-invasive MFH cancer therapy with minimal side effects. Graphical Abstract Highlights Synthesized Zn-Mg ferrite nanoparticles with spinel structure (~21 nm). Superparamagnetic behavior with saturation magnetization of ~29.9 emu/g. Stable colloidal dispersion with zeta potential ~30.4 mV. High SAR (~140 W/g) with minimal MNPs dosage enabling rapid therapeutic heating. Selective cancer cell killing with high normal cell biocompatibility.
AbstractList The development of advanced nanomaterials for cancer therapy has gained substantial attention for their potential in targeted treatments such as magnetic fluid hyperthermia (MFH). In this study, we synthesized mixed Zn-Mg ferrite nanoparticles (Zn0.5Mg0.5Fe2O4) using the sol-gel self-combustion method, with citric acid as the fuel and a metal nitrate-to-fuel ratio of 1:3. The nanoparticles were characterized for their structural, morphological, magnetic, and thermal properties using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), and dynamic light scattering (DLS). XRD analysis confirmed a single-phase spinel structure with an average crystallite size of ~21 nm. FE-SEM revealed spherical nanoparticles with uniform distribution, while EDAX confirmed the stoichiometric composition. Magnetic measurements showed superparamagnetic behavior, with a saturation magnetization of ~29.9 emu/g, indicating potential for MFH. In vitro studies on L929 and MCF-7 cell lines demonstrated good biocompatibility and significant cytotoxicity towards cancer cells under hyperthermia conditions. These results suggest that Zn0.5Mg0.5Fe2O4 nanoparticles are promising nanoseeds for non-invasive MFH cancer therapy with minimal side effects.HighlightsSynthesized Zn-Mg ferrite nanoparticles with spinel structure (~21 nm).Superparamagnetic behavior with saturation magnetization of ~29.9 emu/g.Stable colloidal dispersion with zeta potential ~30.4 mV.High SAR (~140 W/g) with minimal MNPs dosage enabling rapid therapeutic heating.Selective cancer cell killing with high normal cell biocompatibility.
The development of advanced nanomaterials for cancer therapy has gained substantial attention for their potential in targeted treatments such as magnetic fluid hyperthermia (MFH). In this study, we synthesized mixed Zn-Mg ferrite nanoparticles (Zn 0.5 Mg 0.5 Fe 2 O 4 ) using the sol-gel self-combustion method, with citric acid as the fuel and a metal nitrate-to-fuel ratio of 1:3. The nanoparticles were characterized for their structural, morphological, magnetic, and thermal properties using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), and dynamic light scattering (DLS). XRD analysis confirmed a single-phase spinel structure with an average crystallite size of ~21 nm. FE-SEM revealed spherical nanoparticles with uniform distribution, while EDAX confirmed the stoichiometric composition. Magnetic measurements showed superparamagnetic behavior, with a saturation magnetization of ~29.9 emu/g, indicating potential for MFH. In vitro studies on L929 and MCF-7 cell lines demonstrated good biocompatibility and significant cytotoxicity towards cancer cells under hyperthermia conditions. These results suggest that Zn 0.5 Mg 0.5 Fe 2 O 4 nanoparticles are promising nanoseeds for non-invasive MFH cancer therapy with minimal side effects. Graphical Abstract Highlights Synthesized Zn-Mg ferrite nanoparticles with spinel structure (~21 nm). Superparamagnetic behavior with saturation magnetization of ~29.9 emu/g. Stable colloidal dispersion with zeta potential ~30.4 mV. High SAR (~140 W/g) with minimal MNPs dosage enabling rapid therapeutic heating. Selective cancer cell killing with high normal cell biocompatibility.
Author Somvanshi, Sandeep B.
Dawi, Elmuez A.
Author_xml – sequence: 1
  givenname: Sandeep B.
  surname: Somvanshi
  fullname: Somvanshi, Sandeep B.
  organization: Department of Physics, Purdue University, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University
– sequence: 2
  givenname: Elmuez A.
  surname: Dawi
  fullname: Dawi, Elmuez A.
  email: e.dawi@ajman.ac.ae
  organization: College of Humanities and Sciences, Ajman University
BookMark eNp9kMtKJDEUhoMo2F5ewFVg1tGTVKVTLkW8geJiZjZuQjo5aSNVqZ4kLfYshnmHeUOfxGgNuHOVE_j-73D-PbIdx4iEHHE45gDqJHM4VZyBkAzmnQTGt8iMS9Wwtmvn22QGp6JjoEDtkr2cnwBAtlzNyJ_vY__6998Se5o3sTxiDr_R0WjimK3pkQ7hpf4fIrtbUo8phYLU5AlAdJn6MdEQ6XMoaaSDWUYswVLfr4Ojj5sVpipNQzAfoDXRYqIloSkDxnJAdrzpMx7-f_fJz8uLH-fX7Pb-6ub87JZZoURhDhdNixZaZX29jivpjPcou7lUThgH0s8tlwK9FN3CLkBaXLi2zq13YEWzT75N3lUaf60xF_00rlOsK3UjGil5Vb5TYqJsGnNO6PUqhcGkjeag33vWU8-69qw_eta8hpoplCscl5g-1V-k3gCU74ZC
Cites_doi 10.3109/02656736.2013.837200
10.7150/thno.40805
10.1007/978-981-16-1807-9_2
10.1016/B978-0-12-823717-5.00041-3
10.2217/nnm-2017-0320
10.1016/j.ceramint.2018.08.319
10.1002/9783527631070.ch1
10.1016/j.tranon.2021.101264
10.1016/j.ccr.2022.214809
10.1007/s10971-025-06730-8
10.1016/j.pnsc.2015.02.001
10.1515/ntrev-2022-0027
10.1039/D1CS00427A
10.1016/j.mtcomm.2020.101734
10.1016/j.colsurfb.2018.10.051
10.1016/j.heliyon.2024.e25511
10.1063/5.0245200
10.1016/j.cjph.2021.12.033
10.1016/j.jmmm.2009.09.006
10.2147/IJN.S466042
10.1021/acsomega.0c03332
10.1016/j.matlet.2005.08.053
10.1039/D5NJ00538H
10.1016/j.jallcom.2020.155422
10.1002/cben.202200063
10.1007/s11033-023-08809-3
10.1016/j.biomaterials.2008.12.038
10.1016/j.physb.2013.05.003
10.3390/nano15040285
10.3390/magnetochemistry6030030
10.1016/j.ceramint.2023.03.089
10.1016/j.jallcom.2023.169574
10.1021/ja01145a126
10.1063/1.3500337
10.3390/magnetochemistry5040067
10.1021/ar700121f
10.1016/0025-5408(88)90255-3
10.1016/j.ceramint.2019.12.097
10.1016/j.jmmm.2022.169236
10.1016/j.cis.2019.01.003
10.1016/j.msec.2019.110314
10.1016/j.ceramint.2019.11.265
10.1016/j.jmmm.2011.10.017
10.1039/D3NR02816J
10.1002/adtp.202000061
10.1021/cr068445e
10.1016/j.matchemphys.2022.126791
10.1007/s41779-018-0173-8
10.1016/j.vibspec.2017.08.008
10.1002/adem.201800047
10.1155/2021/5102014
10.1002/adhm.201700845
10.1088/2043-6254/ab52f7
10.7150/thno.40858
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10971-025-06850-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-4846
EndPage 572
ExternalDocumentID 10_1007_s10971_025_06850_1
GrantInformation_xml – fundername: Ajman University
  grantid: DRG ref. 2024-IRG-HBS-01.
  funderid: https://doi.org/10.13039/501100019286
GroupedDBID -Y2
-~C
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF-
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z8Z
ZMTXR
~A9
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c272t-deb34ec047cf850175daffe58657d2ad05f6c152ef528bcb05cebd428b4fd0c23
IEDL.DBID U2A
ISSN 0928-0707
IngestDate Wed Aug 13 02:43:12 EDT 2025
Thu Aug 07 06:41:53 EDT 2025
Sat Aug 02 01:11:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Zn-Mg ferrite
Biocompatibility
Cytotoxicity
Magnetic fluid hyperthermia
SAR
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-deb34ec047cf850175daffe58657d2ad05f6c152ef528bcb05cebd428b4fd0c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3235511752
PQPubID 2043844
PageCount 12
ParticipantIDs proquest_journals_3235511752
crossref_primary_10_1007_s10971_025_06850_1
springer_journals_10_1007_s10971_025_06850_1
PublicationCentury 2000
PublicationDate 20250800
2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of sol-gel science and technology
PublicationTitleAbbrev J Sol-Gel Sci Technol
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References PB Kharat (6850_CR12) 2020; 5
H Gavilán (6850_CR52) 2021; 50
6850_CR26
Y-W Jun (6850_CR35) 2008; 41
6850_CR24
SS Phalake (6850_CR19) 2023; 15
TI Shabatina (6850_CR11) 2020; 6
SB Somvanshi (6850_CR15) 2020; 835
X Liu (6850_CR60) 2020; 10
IM Obaidat (6850_CR4) 2019; 5
Suriyanto (6850_CR59) 2017; 16
P Thakur (6850_CR20) 2023; 10
G Zhang (6850_CR49) 2009; 30
I Sharifi (6850_CR18) 2012; 324
VF Cardoso (6850_CR10) 2018; 7
MIA Abdel Maksoud (6850_CR17) 2022; 11
H Du (6850_CR27) 2022; 15
A Shokri (6850_CR38) 2018; 44
P Das (6850_CR61) 2019; 174
G Nandhini (6850_CR16) 2022; 552
H Etemadi (6850_CR6) 2020; 3
R Kaur (6850_CR1) 2023; 50
B Mishra (6850_CR31) 2022; 292
6850_CR33
CR Kalaiselvan (6850_CR8) 2022; 473
B Kozissnik (6850_CR57) 2013; 29
A Manohar (6850_CR47) 2023; 49
Z Zhang (6850_CR21) 2021; 26
SB Somvanshi (6850_CR22) 2023; 947
A Pradeep (6850_CR36) 2006; 60
S Mustapha (6850_CR29) 2019; 10
6850_CR45
6850_CR46
SB Somvanshi (6850_CR34) 2020; 46
P Graves (6850_CR39) 1988; 23
M Movahedi (6850_CR28) 2015; 3
P Chandrasekharan (6850_CR54) 2020; 10
6850_CR40
6850_CR9
S Laurent (6850_CR50) 2008; 108
V Rathod (6850_CR37) 2017; 92
R Diab (6850_CR41) 2024; 35
W Graham (6850_CR42) 2025; 15
6850_CR7
6850_CR2
SK Pendyala (6850_CR32) 2018; 54
K El-Boubbou (6850_CR43) 2018; 13
S Chen (6850_CR58) 2010; 322
M Amiri (6850_CR13) 2019; 265
D Bokov (6850_CR23) 2021; 2021
6850_CR56
M Abdellahi (6850_CR44) 2022; 76
6850_CR53
CN Obeada (6850_CR55) 2013; 424
6850_CR51
O Thoda (6850_CR25) 2018; 20
KK Kefeni (6850_CR14) 2020; 107
M Ghasemi (6850_CR3) 2016; 6
EP Barrett (6850_CR48) 1951; 73
SB Somvanshi (6850_CR5) 2020; 46
K Nadeem (6850_CR30) 2015; 25
References_xml – ident: 6850_CR46
– volume: 29
  start-page: 706
  issue: 8
  year: 2013
  ident: 6850_CR57
  publication-title: Int J Hyperth
  doi: 10.3109/02656736.2013.837200
– volume: 10
  start-page: 3793
  issue: 8
  year: 2020
  ident: 6850_CR60
  publication-title: Theranostics
  doi: 10.7150/thno.40805
– ident: 6850_CR26
  doi: 10.1007/978-981-16-1807-9_2
– ident: 6850_CR40
  doi: 10.1016/B978-0-12-823717-5.00041-3
– volume: 13
  start-page: 929
  issue: 8
  year: 2018
  ident: 6850_CR43
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2017-0320
– volume: 44
  start-page: 22092
  issue: 18
  year: 2018
  ident: 6850_CR38
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2018.08.319
– ident: 6850_CR51
  doi: 10.1002/9783527631070.ch1
– volume: 15
  start-page: 101264
  issue: 1
  year: 2022
  ident: 6850_CR27
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2021.101264
– volume: 473
  start-page: 214809
  year: 2022
  ident: 6850_CR8
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2022.214809
– ident: 6850_CR24
  doi: 10.1007/s10971-025-06730-8
– volume: 25
  start-page: 111
  issue: 2
  year: 2015
  ident: 6850_CR30
  publication-title: Prog Nat Sci Mater Int
  doi: 10.1016/j.pnsc.2015.02.001
– volume: 16
  start-page: 1
  year: 2017
  ident: 6850_CR59
  publication-title: Biomed Eng
– volume: 11
  start-page: 372
  issue: 1
  year: 2022
  ident: 6850_CR17
  publication-title: Nanotechnol Rev
  doi: 10.1515/ntrev-2022-0027
– volume: 50
  start-page: 11614
  issue: 20
  year: 2021
  ident: 6850_CR52
  publication-title: Chem Soc Rev
  doi: 10.1039/D1CS00427A
– volume: 26
  start-page: 101734
  year: 2021
  ident: 6850_CR21
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2020.101734
– volume: 174
  start-page: 42
  year: 2019
  ident: 6850_CR61
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2018.10.051
– ident: 6850_CR33
  doi: 10.1016/j.heliyon.2024.e25511
– ident: 6850_CR56
  doi: 10.1063/5.0245200
– volume: 76
  start-page: 187
  year: 2022
  ident: 6850_CR44
  publication-title: Chin J Phys
  doi: 10.1016/j.cjph.2021.12.033
– ident: 6850_CR45
– volume: 322
  start-page: 247
  issue: 2
  year: 2010
  ident: 6850_CR58
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2009.09.006
– ident: 6850_CR2
  doi: 10.2147/IJN.S466042
– volume: 5
  start-page: 23378
  issue: 36
  year: 2020
  ident: 6850_CR12
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c03332
– volume: 60
  start-page: 371
  issue: 3
  year: 2006
  ident: 6850_CR36
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2005.08.053
– ident: 6850_CR9
  doi: 10.1039/D5NJ00538H
– volume: 35
  start-page: 290
  issue: 4
  year: 2024
  ident: 6850_CR41
  publication-title: J Mater Sci: Mater Electron
– volume: 835
  start-page: 155422
  year: 2020
  ident: 6850_CR15
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2020.155422
– volume: 10
  start-page: 711
  issue: 5
  year: 2023
  ident: 6850_CR20
  publication-title: ChemBioEng Rev
  doi: 10.1002/cben.202200063
– volume: 50
  start-page: 9663
  issue: 11
  year: 2023
  ident: 6850_CR1
  publication-title: Mol Biol Rep.
  doi: 10.1007/s11033-023-08809-3
– volume: 30
  start-page: 1928
  issue: 10
  year: 2009
  ident: 6850_CR49
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.12.038
– volume: 424
  start-page: 69
  year: 2013
  ident: 6850_CR55
  publication-title: Phys B Condens Matter
  doi: 10.1016/j.physb.2013.05.003
– volume: 15
  start-page: 285
  issue: 4
  year: 2025
  ident: 6850_CR42
  publication-title: Nanomaterials
  doi: 10.3390/nano15040285
– volume: 6
  start-page: 30
  issue: 3
  year: 2020
  ident: 6850_CR11
  publication-title: Magnetochemistry
  doi: 10.3390/magnetochemistry6030030
– volume: 49
  start-page: 19717
  issue: 12
  year: 2023
  ident: 6850_CR47
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2023.03.089
– volume: 6
  start-page: 310
  issue: 6
  year: 2016
  ident: 6850_CR3
  publication-title: Am J Nucl Med Mol Imaging
– volume: 947
  start-page: 169574
  year: 2023
  ident: 6850_CR22
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2023.169574
– volume: 73
  start-page: 373
  issue: 1
  year: 1951
  ident: 6850_CR48
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01145a126
– ident: 6850_CR7
  doi: 10.1063/1.3500337
– volume: 5
  start-page: 67
  issue: 4
  year: 2019
  ident: 6850_CR4
  publication-title: Magnetochemistry
  doi: 10.3390/magnetochemistry5040067
– volume: 41
  start-page: 179
  issue: 2
  year: 2008
  ident: 6850_CR35
  publication-title: Acc Chem Res
  doi: 10.1021/ar700121f
– volume: 3
  start-page: 137
  issue: 2, pp. 72-147,
  year: 2015
  ident: 6850_CR28
  publication-title: Iran Chem Commun
– volume: 23
  start-page: 1651
  issue: 11
  year: 1988
  ident: 6850_CR39
  publication-title: Mater Res Bull
  doi: 10.1016/0025-5408(88)90255-3
– volume: 46
  start-page: 8640
  issue: 7
  year: 2020
  ident: 6850_CR34
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2019.12.097
– volume: 552
  start-page: 169236
  year: 2022
  ident: 6850_CR16
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2022.169236
– volume: 265
  start-page: 29
  year: 2019
  ident: 6850_CR13
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2019.01.003
– volume: 107
  start-page: 110314
  year: 2020
  ident: 6850_CR14
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2019.110314
– volume: 46
  start-page: 7642
  issue: 6
  year: 2020
  ident: 6850_CR5
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2019.11.265
– volume: 324
  start-page: 903
  issue: 6
  year: 2012
  ident: 6850_CR18
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2011.10.017
– volume: 15
  start-page: 15686
  issue: 38
  year: 2023
  ident: 6850_CR19
  publication-title: Nanoscale
  doi: 10.1039/D3NR02816J
– ident: 6850_CR53
– volume: 3
  start-page: 2000061
  issue: 11
  year: 2020
  ident: 6850_CR6
  publication-title: Adv Ther
  doi: 10.1002/adtp.202000061
– volume: 108
  start-page: 2064
  issue: 6
  year: 2008
  ident: 6850_CR50
  publication-title: Chem Rev
  doi: 10.1021/cr068445e
– volume: 292
  start-page: 126791
  year: 2022
  ident: 6850_CR31
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2022.126791
– volume: 54
  start-page: 467
  year: 2018
  ident: 6850_CR32
  publication-title: J Aust Ceram Soc
  doi: 10.1007/s41779-018-0173-8
– volume: 92
  start-page: 267
  year: 2017
  ident: 6850_CR37
  publication-title: Vibr Spectrosc
  doi: 10.1016/j.vibspec.2017.08.008
– volume: 20
  start-page: 1800047
  issue: 8
  year: 2018
  ident: 6850_CR25
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.201800047
– volume: 2021
  start-page: 5102014
  issue: 1
  year: 2021
  ident: 6850_CR23
  publication-title: Adv Mater Sci Eng
  doi: 10.1155/2021/5102014
– volume: 7
  start-page: 1700845
  issue: 5
  year: 2018
  ident: 6850_CR10
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201700845
– volume: 10
  start-page: 045013
  issue: 4
  year: 2019
  ident: 6850_CR29
  publication-title: Adv Nat Sci Nanosci Nanotechnol
  doi: 10.1088/2043-6254/ab52f7
– volume: 10
  start-page: 2965
  issue: 7
  year: 2020
  ident: 6850_CR54
  publication-title: Theranostics
  doi: 10.7150/thno.40858
SSID ssj0005417
Score 2.4286273
Snippet The development of advanced nanomaterials for cancer therapy has gained substantial attention for their potential in targeted treatments such as magnetic fluid...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 561
SubjectTerms Acids
Biocompatibility
Cancer
Cancer therapies
Ceramics
Chemistry and Materials Science
Citric acid
Composites
Crystallites
Ferrites
Fever
Fourier transforms
Fuels
Glass
Hyperthermia
Infrared spectroscopy
Inorganic Chemistry
Magnesium
Magnetic fluids
Magnetic measurement
Magnetic properties
Materials Science
Nanomaterials
Nanoparticles
Nanotechnology
Natural Materials
Nitrates
Optical and Electronic Materials
Original Paper
Particle size
Photon correlation spectroscopy
Raman spectroscopy
Scanning electron microscopy
Side effects
Spectrum analysis
Spinel
Synthesis
Temperature
Thermodynamic properties
Toxicity
X-ray diffraction
Zeta potential
Zinc
Title Sol–gel synthesized nanoscale mixed Zn-Mg ferrite as nanoseeds for in vitro magnetic fluid hyperthermia for cancer treatment
URI https://link.springer.com/article/10.1007/s10971-025-06850-1
https://www.proquest.com/docview/3235511752
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA6iCHoQP3E6JQdvGuiyprHHKZui6EUH6qXkcxa2TNYq6kH8D_5Df4lvutap6MFTKQ055HnT93nI-z5BaIdzJq3gMZGQP4g35CIyihkxWjPBKbXj4vGz8-i4G55csauyKSyrqt2rI8niT_2l2S3mIH0p8xelsICA5plhXrtDFHdpa1LYERb37Aax917mAS9bZX6f43s6mnDMH8eiRbbpLKKFkibi1hjXJTRl3DKa_2IeuIxmi-JNla2gl4th__31rWf6OHtywOiy9Nlo7IQbZgCBwYP0Ed5vHDnrYeutGHODRTYeANkrw8BccerwQ5qPhngges63NmLbv081vgWlOvI0cZCKYqDygTLCnyXqq6jbaV8eHpPyXgWiKKc50SCgQ6OCkCsLiwAEQgtrDduPGNdU6IDZSEFeN5bRfalkwJSRGnSKDK0OFG2uoWk3dGYdYUGFjbmIG4LGITNaqKYJmAQNI5WNGraGdqvlTe7G9hnJxCjZg5EAGEkBRtKooXqFQFJupSxpUqBE3lCU1tBehcrk89-zbfxv-Caao0Vg-OK-OprOR_dmCwhHLrfRTKtzcHDun0fXp-3tIt4-AIjT0uM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB1EEXUhPrE-Z-FOB9JpJtMsRZT6qBstiJswzxpop9JEURfiP_iHfol30sSq6MJlyGUWcya55zLnnovQLudMWsFjIiF_EG_IRWQUM2K0ZoJTakfi8fZF1OqEp9fsumwKyyq1e3UlWfypvzS7xRxKX8r8oBQWEKh5poAMNL2Qq0MPxsKOsJizG8Tee5kHvGyV-X2N7-lozDF_XIsW2eZ4Ac2XNBEfjHBdRBPGLaG5L-aBS2i6EG-qbBm9XA56769vXdPD2ZMDRpelz0ZjJ9wgAwgM7qeP8HzjSLuLrbdizA0W2SgAsleGgbni1OGHNB8OcF90nW9txLZ3n2p8C5Xq0NPEfiqKQOUPyhB_StRXUOf46OqwRcq5CkRRTnOioYAOjQpCrixsAhAILaw1rBkxrqnQAbORgrxuLKNNqWTAlJEa6hQZWh0o2lhFk27gzBrCggobcxHXBY1DZrRQDRMwCTWMVDaq2xraq7Y3uRvZZyRjo2QPRgJgJAUYSb2GNisEkvJTypIGBUrkDUVpDe1XqIxf_73a-v_Cd9BM66p9npyfXJxtoFlaHBIv9NtEk_nw3mwB-cjldnHWPgBnD9LG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB1EUXQhPrE-Z-FOB9NpJmOWohbfCFoQN2GeNdBOpYmiLsR_8A_9Eu8kra2iC5chwyzm3OSey5x7LkKbnDNpBY-JhPxBvCEXkVHMiNGaCU6pLcXj5xfRUSM8uWE3Q138hdq9fyVZ9jR4lyaX79xruzPU-BZzKIMp80NTWECg_hmD33HVx3WD7g1EHmExczeIvQ8zD3ivbeb3Pb6npgHf_HFFWmSe-gya7lFGvFdiPItGjJtDU0NGgnNovBByqmwevV51Wh9v703TwtmzA3aXpS9GYydcJwM4DG6nT_B868h5E1tvy5gbLLJyAWSyDAOLxanDj2ne7eC2aDrf5oht6yHV-A6q1q6njO1UFAuVD5ou_pKrL6BG_fB6_4j0ZiwQRTnNiYZiOjQqCLmycAhAJrSw1rDdiHFNhQ6YjRTkeGMZ3ZVKBkwZqaFmkaHVgaK1RTTqOs4sISyosDEXcVXQOGRGC1UzAZNQz0hlo6qtoK3-8Sb3pZVGMjBN9mAkAEZSgJFUK2i1j0DS-6yypEaBHnlzUVpB231UBq__3m35f8s30MTlQT05O744XUGTtIgRr_lbRaN598GsAQ_J5XoRap-NXtcC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sol%E2%80%93gel+synthesized+nanoscale+mixed+Zn-Mg+ferrite+as+nanoseeds+for+in+vitro+magnetic+fluid+hyperthermia+for+cancer+treatment&rft.jtitle=Journal+of+sol-gel+science+and+technology&rft.au=Somvanshi%2C+Sandeep+B&rft.au=Dawi%2C+Elmuez+A&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0928-0707&rft.eissn=1573-4846&rft.volume=115&rft.issue=2&rft.spage=561&rft.epage=572&rft_id=info:doi/10.1007%2Fs10971-025-06850-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0707&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0707&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0707&client=summon