Sol–gel synthesized nanoscale mixed Zn-Mg ferrite as nanoseeds for in vitro magnetic fluid hyperthermia for cancer treatment
The development of advanced nanomaterials for cancer therapy has gained substantial attention for their potential in targeted treatments such as magnetic fluid hyperthermia (MFH). In this study, we synthesized mixed Zn-Mg ferrite nanoparticles (Zn 0.5 Mg 0.5 Fe 2 O 4 ) using the sol-gel self-combust...
Saved in:
Published in | Journal of sol-gel science and technology Vol. 115; no. 2; pp. 561 - 572 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of advanced nanomaterials for cancer therapy has gained substantial attention for their potential in targeted treatments such as magnetic fluid hyperthermia (MFH). In this study, we synthesized mixed Zn-Mg ferrite nanoparticles (Zn
0.5
Mg
0.5
Fe
2
O
4
) using the sol-gel self-combustion method, with citric acid as the fuel and a metal nitrate-to-fuel ratio of 1:3. The nanoparticles were characterized for their structural, morphological, magnetic, and thermal properties using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), and dynamic light scattering (DLS). XRD analysis confirmed a single-phase spinel structure with an average crystallite size of ~21 nm. FE-SEM revealed spherical nanoparticles with uniform distribution, while EDAX confirmed the stoichiometric composition. Magnetic measurements showed superparamagnetic behavior, with a saturation magnetization of ~29.9 emu/g, indicating potential for MFH. In vitro studies on L929 and MCF-7 cell lines demonstrated good biocompatibility and significant cytotoxicity towards cancer cells under hyperthermia conditions. These results suggest that Zn
0.5
Mg
0.5
Fe
2
O
4
nanoparticles are promising nanoseeds for non-invasive MFH cancer therapy with minimal side effects.
Graphical Abstract
Highlights
Synthesized Zn-Mg ferrite nanoparticles with spinel structure (~21 nm).
Superparamagnetic behavior with saturation magnetization of ~29.9 emu/g.
Stable colloidal dispersion with zeta potential ~30.4 mV.
High SAR (~140 W/g) with minimal MNPs dosage enabling rapid therapeutic heating.
Selective cancer cell killing with high normal cell biocompatibility. |
---|---|
AbstractList | The development of advanced nanomaterials for cancer therapy has gained substantial attention for their potential in targeted treatments such as magnetic fluid hyperthermia (MFH). In this study, we synthesized mixed Zn-Mg ferrite nanoparticles (Zn0.5Mg0.5Fe2O4) using the sol-gel self-combustion method, with citric acid as the fuel and a metal nitrate-to-fuel ratio of 1:3. The nanoparticles were characterized for their structural, morphological, magnetic, and thermal properties using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), and dynamic light scattering (DLS). XRD analysis confirmed a single-phase spinel structure with an average crystallite size of ~21 nm. FE-SEM revealed spherical nanoparticles with uniform distribution, while EDAX confirmed the stoichiometric composition. Magnetic measurements showed superparamagnetic behavior, with a saturation magnetization of ~29.9 emu/g, indicating potential for MFH. In vitro studies on L929 and MCF-7 cell lines demonstrated good biocompatibility and significant cytotoxicity towards cancer cells under hyperthermia conditions. These results suggest that Zn0.5Mg0.5Fe2O4 nanoparticles are promising nanoseeds for non-invasive MFH cancer therapy with minimal side effects.HighlightsSynthesized Zn-Mg ferrite nanoparticles with spinel structure (~21 nm).Superparamagnetic behavior with saturation magnetization of ~29.9 emu/g.Stable colloidal dispersion with zeta potential ~30.4 mV.High SAR (~140 W/g) with minimal MNPs dosage enabling rapid therapeutic heating.Selective cancer cell killing with high normal cell biocompatibility. The development of advanced nanomaterials for cancer therapy has gained substantial attention for their potential in targeted treatments such as magnetic fluid hyperthermia (MFH). In this study, we synthesized mixed Zn-Mg ferrite nanoparticles (Zn 0.5 Mg 0.5 Fe 2 O 4 ) using the sol-gel self-combustion method, with citric acid as the fuel and a metal nitrate-to-fuel ratio of 1:3. The nanoparticles were characterized for their structural, morphological, magnetic, and thermal properties using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), and dynamic light scattering (DLS). XRD analysis confirmed a single-phase spinel structure with an average crystallite size of ~21 nm. FE-SEM revealed spherical nanoparticles with uniform distribution, while EDAX confirmed the stoichiometric composition. Magnetic measurements showed superparamagnetic behavior, with a saturation magnetization of ~29.9 emu/g, indicating potential for MFH. In vitro studies on L929 and MCF-7 cell lines demonstrated good biocompatibility and significant cytotoxicity towards cancer cells under hyperthermia conditions. These results suggest that Zn 0.5 Mg 0.5 Fe 2 O 4 nanoparticles are promising nanoseeds for non-invasive MFH cancer therapy with minimal side effects. Graphical Abstract Highlights Synthesized Zn-Mg ferrite nanoparticles with spinel structure (~21 nm). Superparamagnetic behavior with saturation magnetization of ~29.9 emu/g. Stable colloidal dispersion with zeta potential ~30.4 mV. High SAR (~140 W/g) with minimal MNPs dosage enabling rapid therapeutic heating. Selective cancer cell killing with high normal cell biocompatibility. |
Author | Somvanshi, Sandeep B. Dawi, Elmuez A. |
Author_xml | – sequence: 1 givenname: Sandeep B. surname: Somvanshi fullname: Somvanshi, Sandeep B. organization: Department of Physics, Purdue University, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University – sequence: 2 givenname: Elmuez A. surname: Dawi fullname: Dawi, Elmuez A. email: e.dawi@ajman.ac.ae organization: College of Humanities and Sciences, Ajman University |
BookMark | eNp9kMtKJDEUhoMo2F5ewFVg1tGTVKVTLkW8geJiZjZuQjo5aSNVqZ4kLfYshnmHeUOfxGgNuHOVE_j-73D-PbIdx4iEHHE45gDqJHM4VZyBkAzmnQTGt8iMS9Wwtmvn22QGp6JjoEDtkr2cnwBAtlzNyJ_vY__6998Se5o3sTxiDr_R0WjimK3pkQ7hpf4fIrtbUo8phYLU5AlAdJn6MdEQ6XMoaaSDWUYswVLfr4Ojj5sVpipNQzAfoDXRYqIloSkDxnJAdrzpMx7-f_fJz8uLH-fX7Pb-6ub87JZZoURhDhdNixZaZX29jivpjPcou7lUThgH0s8tlwK9FN3CLkBaXLi2zq13YEWzT75N3lUaf60xF_00rlOsK3UjGil5Vb5TYqJsGnNO6PUqhcGkjeag33vWU8-69qw_eta8hpoplCscl5g-1V-k3gCU74ZC |
Cites_doi | 10.3109/02656736.2013.837200 10.7150/thno.40805 10.1007/978-981-16-1807-9_2 10.1016/B978-0-12-823717-5.00041-3 10.2217/nnm-2017-0320 10.1016/j.ceramint.2018.08.319 10.1002/9783527631070.ch1 10.1016/j.tranon.2021.101264 10.1016/j.ccr.2022.214809 10.1007/s10971-025-06730-8 10.1016/j.pnsc.2015.02.001 10.1515/ntrev-2022-0027 10.1039/D1CS00427A 10.1016/j.mtcomm.2020.101734 10.1016/j.colsurfb.2018.10.051 10.1016/j.heliyon.2024.e25511 10.1063/5.0245200 10.1016/j.cjph.2021.12.033 10.1016/j.jmmm.2009.09.006 10.2147/IJN.S466042 10.1021/acsomega.0c03332 10.1016/j.matlet.2005.08.053 10.1039/D5NJ00538H 10.1016/j.jallcom.2020.155422 10.1002/cben.202200063 10.1007/s11033-023-08809-3 10.1016/j.biomaterials.2008.12.038 10.1016/j.physb.2013.05.003 10.3390/nano15040285 10.3390/magnetochemistry6030030 10.1016/j.ceramint.2023.03.089 10.1016/j.jallcom.2023.169574 10.1021/ja01145a126 10.1063/1.3500337 10.3390/magnetochemistry5040067 10.1021/ar700121f 10.1016/0025-5408(88)90255-3 10.1016/j.ceramint.2019.12.097 10.1016/j.jmmm.2022.169236 10.1016/j.cis.2019.01.003 10.1016/j.msec.2019.110314 10.1016/j.ceramint.2019.11.265 10.1016/j.jmmm.2011.10.017 10.1039/D3NR02816J 10.1002/adtp.202000061 10.1021/cr068445e 10.1016/j.matchemphys.2022.126791 10.1007/s41779-018-0173-8 10.1016/j.vibspec.2017.08.008 10.1002/adem.201800047 10.1155/2021/5102014 10.1002/adhm.201700845 10.1088/2043-6254/ab52f7 10.7150/thno.40858 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10971-025-06850-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1573-4846 |
EndPage | 572 |
ExternalDocumentID | 10_1007_s10971_025_06850_1 |
GrantInformation_xml | – fundername: Ajman University grantid: DRG ref. 2024-IRG-HBS-01. funderid: https://doi.org/10.13039/501100019286 |
GroupedDBID | -Y2 -~C .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF- PHGZM PHGZT PQGLB PT4 PT5 PTHSS QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z8Z ZMTXR ~A9 ~EX AAYXX CITATION |
ID | FETCH-LOGICAL-c272t-deb34ec047cf850175daffe58657d2ad05f6c152ef528bcb05cebd428b4fd0c23 |
IEDL.DBID | U2A |
ISSN | 0928-0707 |
IngestDate | Wed Aug 13 02:43:12 EDT 2025 Thu Aug 07 06:41:53 EDT 2025 Sat Aug 02 01:11:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Zn-Mg ferrite Biocompatibility Cytotoxicity Magnetic fluid hyperthermia SAR |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-deb34ec047cf850175daffe58657d2ad05f6c152ef528bcb05cebd428b4fd0c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3235511752 |
PQPubID | 2043844 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3235511752 crossref_primary_10_1007_s10971_025_06850_1 springer_journals_10_1007_s10971_025_06850_1 |
PublicationCentury | 2000 |
PublicationDate | 20250800 2025-08-00 20250801 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250800 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of sol-gel science and technology |
PublicationTitleAbbrev | J Sol-Gel Sci Technol |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | PB Kharat (6850_CR12) 2020; 5 H Gavilán (6850_CR52) 2021; 50 6850_CR26 Y-W Jun (6850_CR35) 2008; 41 6850_CR24 SS Phalake (6850_CR19) 2023; 15 TI Shabatina (6850_CR11) 2020; 6 SB Somvanshi (6850_CR15) 2020; 835 X Liu (6850_CR60) 2020; 10 IM Obaidat (6850_CR4) 2019; 5 Suriyanto (6850_CR59) 2017; 16 P Thakur (6850_CR20) 2023; 10 G Zhang (6850_CR49) 2009; 30 I Sharifi (6850_CR18) 2012; 324 VF Cardoso (6850_CR10) 2018; 7 MIA Abdel Maksoud (6850_CR17) 2022; 11 H Du (6850_CR27) 2022; 15 A Shokri (6850_CR38) 2018; 44 P Das (6850_CR61) 2019; 174 G Nandhini (6850_CR16) 2022; 552 H Etemadi (6850_CR6) 2020; 3 R Kaur (6850_CR1) 2023; 50 B Mishra (6850_CR31) 2022; 292 6850_CR33 CR Kalaiselvan (6850_CR8) 2022; 473 B Kozissnik (6850_CR57) 2013; 29 A Manohar (6850_CR47) 2023; 49 Z Zhang (6850_CR21) 2021; 26 SB Somvanshi (6850_CR22) 2023; 947 A Pradeep (6850_CR36) 2006; 60 S Mustapha (6850_CR29) 2019; 10 6850_CR45 6850_CR46 SB Somvanshi (6850_CR34) 2020; 46 P Graves (6850_CR39) 1988; 23 M Movahedi (6850_CR28) 2015; 3 P Chandrasekharan (6850_CR54) 2020; 10 6850_CR40 6850_CR9 S Laurent (6850_CR50) 2008; 108 V Rathod (6850_CR37) 2017; 92 R Diab (6850_CR41) 2024; 35 W Graham (6850_CR42) 2025; 15 6850_CR7 6850_CR2 SK Pendyala (6850_CR32) 2018; 54 K El-Boubbou (6850_CR43) 2018; 13 S Chen (6850_CR58) 2010; 322 M Amiri (6850_CR13) 2019; 265 D Bokov (6850_CR23) 2021; 2021 6850_CR56 M Abdellahi (6850_CR44) 2022; 76 6850_CR53 CN Obeada (6850_CR55) 2013; 424 6850_CR51 O Thoda (6850_CR25) 2018; 20 KK Kefeni (6850_CR14) 2020; 107 M Ghasemi (6850_CR3) 2016; 6 EP Barrett (6850_CR48) 1951; 73 SB Somvanshi (6850_CR5) 2020; 46 K Nadeem (6850_CR30) 2015; 25 |
References_xml | – ident: 6850_CR46 – volume: 29 start-page: 706 issue: 8 year: 2013 ident: 6850_CR57 publication-title: Int J Hyperth doi: 10.3109/02656736.2013.837200 – volume: 10 start-page: 3793 issue: 8 year: 2020 ident: 6850_CR60 publication-title: Theranostics doi: 10.7150/thno.40805 – ident: 6850_CR26 doi: 10.1007/978-981-16-1807-9_2 – ident: 6850_CR40 doi: 10.1016/B978-0-12-823717-5.00041-3 – volume: 13 start-page: 929 issue: 8 year: 2018 ident: 6850_CR43 publication-title: Nanomedicine doi: 10.2217/nnm-2017-0320 – volume: 44 start-page: 22092 issue: 18 year: 2018 ident: 6850_CR38 publication-title: Ceram Int doi: 10.1016/j.ceramint.2018.08.319 – ident: 6850_CR51 doi: 10.1002/9783527631070.ch1 – volume: 15 start-page: 101264 issue: 1 year: 2022 ident: 6850_CR27 publication-title: Transl Oncol doi: 10.1016/j.tranon.2021.101264 – volume: 473 start-page: 214809 year: 2022 ident: 6850_CR8 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2022.214809 – ident: 6850_CR24 doi: 10.1007/s10971-025-06730-8 – volume: 25 start-page: 111 issue: 2 year: 2015 ident: 6850_CR30 publication-title: Prog Nat Sci Mater Int doi: 10.1016/j.pnsc.2015.02.001 – volume: 16 start-page: 1 year: 2017 ident: 6850_CR59 publication-title: Biomed Eng – volume: 11 start-page: 372 issue: 1 year: 2022 ident: 6850_CR17 publication-title: Nanotechnol Rev doi: 10.1515/ntrev-2022-0027 – volume: 50 start-page: 11614 issue: 20 year: 2021 ident: 6850_CR52 publication-title: Chem Soc Rev doi: 10.1039/D1CS00427A – volume: 26 start-page: 101734 year: 2021 ident: 6850_CR21 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2020.101734 – volume: 174 start-page: 42 year: 2019 ident: 6850_CR61 publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2018.10.051 – ident: 6850_CR33 doi: 10.1016/j.heliyon.2024.e25511 – ident: 6850_CR56 doi: 10.1063/5.0245200 – volume: 76 start-page: 187 year: 2022 ident: 6850_CR44 publication-title: Chin J Phys doi: 10.1016/j.cjph.2021.12.033 – ident: 6850_CR45 – volume: 322 start-page: 247 issue: 2 year: 2010 ident: 6850_CR58 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2009.09.006 – ident: 6850_CR2 doi: 10.2147/IJN.S466042 – volume: 5 start-page: 23378 issue: 36 year: 2020 ident: 6850_CR12 publication-title: ACS Omega doi: 10.1021/acsomega.0c03332 – volume: 60 start-page: 371 issue: 3 year: 2006 ident: 6850_CR36 publication-title: Mater Lett doi: 10.1016/j.matlet.2005.08.053 – ident: 6850_CR9 doi: 10.1039/D5NJ00538H – volume: 35 start-page: 290 issue: 4 year: 2024 ident: 6850_CR41 publication-title: J Mater Sci: Mater Electron – volume: 835 start-page: 155422 year: 2020 ident: 6850_CR15 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2020.155422 – volume: 10 start-page: 711 issue: 5 year: 2023 ident: 6850_CR20 publication-title: ChemBioEng Rev doi: 10.1002/cben.202200063 – volume: 50 start-page: 9663 issue: 11 year: 2023 ident: 6850_CR1 publication-title: Mol Biol Rep. doi: 10.1007/s11033-023-08809-3 – volume: 30 start-page: 1928 issue: 10 year: 2009 ident: 6850_CR49 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.12.038 – volume: 424 start-page: 69 year: 2013 ident: 6850_CR55 publication-title: Phys B Condens Matter doi: 10.1016/j.physb.2013.05.003 – volume: 15 start-page: 285 issue: 4 year: 2025 ident: 6850_CR42 publication-title: Nanomaterials doi: 10.3390/nano15040285 – volume: 6 start-page: 30 issue: 3 year: 2020 ident: 6850_CR11 publication-title: Magnetochemistry doi: 10.3390/magnetochemistry6030030 – volume: 49 start-page: 19717 issue: 12 year: 2023 ident: 6850_CR47 publication-title: Ceram Int doi: 10.1016/j.ceramint.2023.03.089 – volume: 6 start-page: 310 issue: 6 year: 2016 ident: 6850_CR3 publication-title: Am J Nucl Med Mol Imaging – volume: 947 start-page: 169574 year: 2023 ident: 6850_CR22 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2023.169574 – volume: 73 start-page: 373 issue: 1 year: 1951 ident: 6850_CR48 publication-title: J Am Chem Soc doi: 10.1021/ja01145a126 – ident: 6850_CR7 doi: 10.1063/1.3500337 – volume: 5 start-page: 67 issue: 4 year: 2019 ident: 6850_CR4 publication-title: Magnetochemistry doi: 10.3390/magnetochemistry5040067 – volume: 41 start-page: 179 issue: 2 year: 2008 ident: 6850_CR35 publication-title: Acc Chem Res doi: 10.1021/ar700121f – volume: 3 start-page: 137 issue: 2, pp. 72-147, year: 2015 ident: 6850_CR28 publication-title: Iran Chem Commun – volume: 23 start-page: 1651 issue: 11 year: 1988 ident: 6850_CR39 publication-title: Mater Res Bull doi: 10.1016/0025-5408(88)90255-3 – volume: 46 start-page: 8640 issue: 7 year: 2020 ident: 6850_CR34 publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.12.097 – volume: 552 start-page: 169236 year: 2022 ident: 6850_CR16 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2022.169236 – volume: 265 start-page: 29 year: 2019 ident: 6850_CR13 publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2019.01.003 – volume: 107 start-page: 110314 year: 2020 ident: 6850_CR14 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2019.110314 – volume: 46 start-page: 7642 issue: 6 year: 2020 ident: 6850_CR5 publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.11.265 – volume: 324 start-page: 903 issue: 6 year: 2012 ident: 6850_CR18 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2011.10.017 – volume: 15 start-page: 15686 issue: 38 year: 2023 ident: 6850_CR19 publication-title: Nanoscale doi: 10.1039/D3NR02816J – ident: 6850_CR53 – volume: 3 start-page: 2000061 issue: 11 year: 2020 ident: 6850_CR6 publication-title: Adv Ther doi: 10.1002/adtp.202000061 – volume: 108 start-page: 2064 issue: 6 year: 2008 ident: 6850_CR50 publication-title: Chem Rev doi: 10.1021/cr068445e – volume: 292 start-page: 126791 year: 2022 ident: 6850_CR31 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2022.126791 – volume: 54 start-page: 467 year: 2018 ident: 6850_CR32 publication-title: J Aust Ceram Soc doi: 10.1007/s41779-018-0173-8 – volume: 92 start-page: 267 year: 2017 ident: 6850_CR37 publication-title: Vibr Spectrosc doi: 10.1016/j.vibspec.2017.08.008 – volume: 20 start-page: 1800047 issue: 8 year: 2018 ident: 6850_CR25 publication-title: Adv Eng Mater doi: 10.1002/adem.201800047 – volume: 2021 start-page: 5102014 issue: 1 year: 2021 ident: 6850_CR23 publication-title: Adv Mater Sci Eng doi: 10.1155/2021/5102014 – volume: 7 start-page: 1700845 issue: 5 year: 2018 ident: 6850_CR10 publication-title: Adv Healthc Mater doi: 10.1002/adhm.201700845 – volume: 10 start-page: 045013 issue: 4 year: 2019 ident: 6850_CR29 publication-title: Adv Nat Sci Nanosci Nanotechnol doi: 10.1088/2043-6254/ab52f7 – volume: 10 start-page: 2965 issue: 7 year: 2020 ident: 6850_CR54 publication-title: Theranostics doi: 10.7150/thno.40858 |
SSID | ssj0005417 |
Score | 2.4286273 |
Snippet | The development of advanced nanomaterials for cancer therapy has gained substantial attention for their potential in targeted treatments such as magnetic fluid... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 561 |
SubjectTerms | Acids Biocompatibility Cancer Cancer therapies Ceramics Chemistry and Materials Science Citric acid Composites Crystallites Ferrites Fever Fourier transforms Fuels Glass Hyperthermia Infrared spectroscopy Inorganic Chemistry Magnesium Magnetic fluids Magnetic measurement Magnetic properties Materials Science Nanomaterials Nanoparticles Nanotechnology Natural Materials Nitrates Optical and Electronic Materials Original Paper Particle size Photon correlation spectroscopy Raman spectroscopy Scanning electron microscopy Side effects Spectrum analysis Spinel Synthesis Temperature Thermodynamic properties Toxicity X-ray diffraction Zeta potential Zinc |
Title | Sol–gel synthesized nanoscale mixed Zn-Mg ferrite as nanoseeds for in vitro magnetic fluid hyperthermia for cancer treatment |
URI | https://link.springer.com/article/10.1007/s10971-025-06850-1 https://www.proquest.com/docview/3235511752 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA6iCHoQP3E6JQdvGuiyprHHKZui6EUH6qXkcxa2TNYq6kH8D_5Df4lvutap6MFTKQ055HnT93nI-z5BaIdzJq3gMZGQP4g35CIyihkxWjPBKbXj4vGz8-i4G55csauyKSyrqt2rI8niT_2l2S3mIH0p8xelsICA5plhXrtDFHdpa1LYERb37Aax917mAS9bZX6f43s6mnDMH8eiRbbpLKKFkibi1hjXJTRl3DKa_2IeuIxmi-JNla2gl4th__31rWf6OHtywOiy9Nlo7IQbZgCBwYP0Ed5vHDnrYeutGHODRTYeANkrw8BccerwQ5qPhngges63NmLbv081vgWlOvI0cZCKYqDygTLCnyXqq6jbaV8eHpPyXgWiKKc50SCgQ6OCkCsLiwAEQgtrDduPGNdU6IDZSEFeN5bRfalkwJSRGnSKDK0OFG2uoWk3dGYdYUGFjbmIG4LGITNaqKYJmAQNI5WNGraGdqvlTe7G9hnJxCjZg5EAGEkBRtKooXqFQFJupSxpUqBE3lCU1tBehcrk89-zbfxv-Caao0Vg-OK-OprOR_dmCwhHLrfRTKtzcHDun0fXp-3tIt4-AIjT0uM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB1EEXUhPrE-Z-FOB9JpJtMsRZT6qBstiJswzxpop9JEURfiP_iHfol30sSq6MJlyGUWcya55zLnnovQLudMWsFjIiF_EG_IRWQUM2K0ZoJTakfi8fZF1OqEp9fsumwKyyq1e3UlWfypvzS7xRxKX8r8oBQWEKh5poAMNL2Qq0MPxsKOsJizG8Tee5kHvGyV-X2N7-lozDF_XIsW2eZ4Ac2XNBEfjHBdRBPGLaG5L-aBS2i6EG-qbBm9XA56769vXdPD2ZMDRpelz0ZjJ9wgAwgM7qeP8HzjSLuLrbdizA0W2SgAsleGgbni1OGHNB8OcF90nW9txLZ3n2p8C5Xq0NPEfiqKQOUPyhB_StRXUOf46OqwRcq5CkRRTnOioYAOjQpCrixsAhAILaw1rBkxrqnQAbORgrxuLKNNqWTAlJEa6hQZWh0o2lhFk27gzBrCggobcxHXBY1DZrRQDRMwCTWMVDaq2xraq7Y3uRvZZyRjo2QPRgJgJAUYSb2GNisEkvJTypIGBUrkDUVpDe1XqIxf_73a-v_Cd9BM66p9npyfXJxtoFlaHBIv9NtEk_nw3mwB-cjldnHWPgBnD9LG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB1EUXQhPrE-Z-FOB9NpJmOWohbfCFoQN2GeNdBOpYmiLsR_8A_9Eu8kra2iC5chwyzm3OSey5x7LkKbnDNpBY-JhPxBvCEXkVHMiNGaCU6pLcXj5xfRUSM8uWE3Q138hdq9fyVZ9jR4lyaX79xruzPU-BZzKIMp80NTWECg_hmD33HVx3WD7g1EHmExczeIvQ8zD3ivbeb3Pb6npgHf_HFFWmSe-gya7lFGvFdiPItGjJtDU0NGgnNovBByqmwevV51Wh9v703TwtmzA3aXpS9GYydcJwM4DG6nT_B868h5E1tvy5gbLLJyAWSyDAOLxanDj2ne7eC2aDrf5oht6yHV-A6q1q6njO1UFAuVD5ou_pKrL6BG_fB6_4j0ZiwQRTnNiYZiOjQqCLmycAhAJrSw1rDdiHFNhQ6YjRTkeGMZ3ZVKBkwZqaFmkaHVgaK1RTTqOs4sISyosDEXcVXQOGRGC1UzAZNQz0hlo6qtoK3-8Sb3pZVGMjBN9mAkAEZSgJFUK2i1j0DS-6yypEaBHnlzUVpB231UBq__3m35f8s30MTlQT05O744XUGTtIgRr_lbRaN598GsAQ_J5XoRap-NXtcC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sol%E2%80%93gel+synthesized+nanoscale+mixed+Zn-Mg+ferrite+as+nanoseeds+for+in+vitro+magnetic+fluid+hyperthermia+for+cancer+treatment&rft.jtitle=Journal+of+sol-gel+science+and+technology&rft.au=Somvanshi%2C+Sandeep+B&rft.au=Dawi%2C+Elmuez+A&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0928-0707&rft.eissn=1573-4846&rft.volume=115&rft.issue=2&rft.spage=561&rft.epage=572&rft_id=info:doi/10.1007%2Fs10971-025-06850-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0707&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0707&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0707&client=summon |