The Impact of Dissolved Organic Matter in Natural Receiving Systems on the Formation Potential and Toxicity of Disinfection By-products: Insights from Origins, Chemical Properties, and Transformations

Purpose of Review This study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic environments. Key objectives include elucidating how DOM sources, chemical properties, and environmental transformations influence DBP speciation a...

Full description

Saved in:
Bibliographic Details
Published inCurrent pollution reports Vol. 11; no. 1; p. 29
Main Authors Li, Wei-Yu, Chen, Yun, Wang, Wen-Long, Chen, Yan-Lin, Wu, Qian-Yuan
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 02.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose of Review This study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic environments. Key objectives include elucidating how DOM sources, chemical properties, and environmental transformations influence DBP speciation and toxicity. The study also evaluates strategies for mitigating DBP risks in drinking water treatment and identifies critical knowledge gaps in linking DOM dynamics to DBP toxicity profiles. Recent Findings Recent studies highlight that the sources of DOM and its chemical characteristics, including SUVA 254 and humification index (HIX), strongly influence disinfection by-product formation potential (DBPFP). Photochemical and microbial transformations significantly alter the reactivity of DOM, with photodegradation typically reducing DBPFP while biodegradation increasing it. Despite these findings, the relationship between DOM transformations and DBP toxicity remains underexplored. Advanced mass spectrometry and fluorescence-based techniques have improved the ability to characterize DOM, offering new insights into the molecular-level dynamics of DBP formation. While traditional water treatment methods remain essential, enhanced coagulation, adsorption, and advanced oxidation processes are increasingly necessary to efficiently remove DOM and mitigate DBP formation. Summary This review provides a comprehensive examination of the DOM-DBP relationship, offering insights into the speciation and toxicity of DBP. It is highlighted that the sources, chemical properties, and natural transformations of DOM complicate the DBP precursor pool, affecting DOM reactivity and DBP production during disinfection. Advances in analytical techniques could improve our understanding of molecular-level interactions between DOM and DBP. Future research should prioritize comprehensive DOM characterization and predictive models to link DOM subfractions with toxicity explicitly. Furthermore, enhanced removal strategies must be developed to balance disinfection efficacy with minimized health and ecological risks, thereby ensuring water quality safety.
AbstractList Purpose of ReviewThis study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic environments. Key objectives include elucidating how DOM sources, chemical properties, and environmental transformations influence DBP speciation and toxicity. The study also evaluates strategies for mitigating DBP risks in drinking water treatment and identifies critical knowledge gaps in linking DOM dynamics to DBP toxicity profiles.Recent FindingsRecent studies highlight that the sources of DOM and its chemical characteristics, including SUVA254 and humification index (HIX), strongly influence disinfection by-product formation potential (DBPFP). Photochemical and microbial transformations significantly alter the reactivity of DOM, with photodegradation typically reducing DBPFP while biodegradation increasing it. Despite these findings, the relationship between DOM transformations and DBP toxicity remains underexplored. Advanced mass spectrometry and fluorescence-based techniques have improved the ability to characterize DOM, offering new insights into the molecular-level dynamics of DBP formation. While traditional water treatment methods remain essential, enhanced coagulation, adsorption, and advanced oxidation processes are increasingly necessary to efficiently remove DOM and mitigate DBP formation.SummaryThis review provides a comprehensive examination of the DOM-DBP relationship, offering insights into the speciation and toxicity of DBP. It is highlighted that the sources, chemical properties, and natural transformations of DOM complicate the DBP precursor pool, affecting DOM reactivity and DBP production during disinfection. Advances in analytical techniques could improve our understanding of molecular-level interactions between DOM and DBP. Future research should prioritize comprehensive DOM characterization and predictive models to link DOM subfractions with toxicity explicitly. Furthermore, enhanced removal strategies must be developed to balance disinfection efficacy with minimized health and ecological risks, thereby ensuring water quality safety.
Purpose of Review This study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic environments. Key objectives include elucidating how DOM sources, chemical properties, and environmental transformations influence DBP speciation and toxicity. The study also evaluates strategies for mitigating DBP risks in drinking water treatment and identifies critical knowledge gaps in linking DOM dynamics to DBP toxicity profiles. Recent Findings Recent studies highlight that the sources of DOM and its chemical characteristics, including SUVA 254 and humification index (HIX), strongly influence disinfection by-product formation potential (DBPFP). Photochemical and microbial transformations significantly alter the reactivity of DOM, with photodegradation typically reducing DBPFP while biodegradation increasing it. Despite these findings, the relationship between DOM transformations and DBP toxicity remains underexplored. Advanced mass spectrometry and fluorescence-based techniques have improved the ability to characterize DOM, offering new insights into the molecular-level dynamics of DBP formation. While traditional water treatment methods remain essential, enhanced coagulation, adsorption, and advanced oxidation processes are increasingly necessary to efficiently remove DOM and mitigate DBP formation. Summary This review provides a comprehensive examination of the DOM-DBP relationship, offering insights into the speciation and toxicity of DBP. It is highlighted that the sources, chemical properties, and natural transformations of DOM complicate the DBP precursor pool, affecting DOM reactivity and DBP production during disinfection. Advances in analytical techniques could improve our understanding of molecular-level interactions between DOM and DBP. Future research should prioritize comprehensive DOM characterization and predictive models to link DOM subfractions with toxicity explicitly. Furthermore, enhanced removal strategies must be developed to balance disinfection efficacy with minimized health and ecological risks, thereby ensuring water quality safety.
ArticleNumber 29
Author Li, Wei-Yu
Chen, Yun
Wu, Qian-Yuan
Wang, Wen-Long
Chen, Yan-Lin
Author_xml – sequence: 1
  givenname: Wei-Yu
  surname: Li
  fullname: Li, Wei-Yu
  organization: Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 2
  givenname: Yun
  surname: Chen
  fullname: Chen, Yun
  organization: Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 3
  givenname: Wen-Long
  surname: Wang
  fullname: Wang, Wen-Long
  organization: Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 4
  givenname: Yan-Lin
  surname: Chen
  fullname: Chen, Yan-Lin
  organization: Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 5
  givenname: Qian-Yuan
  surname: Wu
  fullname: Wu, Qian-Yuan
  email: wu.qianyuan@sz.tsinghua.edu.cn
  organization: Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University
BookMark eNp9kc1uEzEUhS1UJErpC7CyxJahHv_MxOwgpSVSoRWEteV4rieuMnbwdSryhjwWJimCFat7r_Wdcyyd5-QkpgiEvGzZm5ax_gIl63nXMK4axoRiDXtCTnmrZ02nND_5Z39GzhHvGWOcyXr3p-Tncg10MW2tKzR5ehkQ0-YBBnqbRxuDo59sKZBpiPSzLbtsN_QLOAgPIY706x4LTEhTpKXaXKU82RLqdZcKxBIqbONAl-lHcKHsHwNC9OAO2Pt9s81p2LmCb-kiYhjXBanPaarxYQwRX9P5GqbgqtNdTlvIJUB9PLhmG9H_icQX5Km3G4Tzx3lGvl19WM4_Nje314v5u5vG8Z6XZlitHPeqF25QIHm7EkOnrfQz5aUXWlhQspsx0LrTYtBCSKsU77p-cFZz6cQZeXX0rT__vgMs5j7tcqyRRvBWzhSXPa8UP1IuJ8QM3mxzmGzem5aZ36WZY2mmlmYOpRlWReIowgrHEfJf6_-ofgEkY595
Cites_doi 10.1016/j.watres.2022.119008
10.1021/ac034415p
10.4319/lo.1997.42.6.1307
10.1016/j.watres.2019.04.002
10.1016/j.ecoenv.2015.05.048
10.1080/19443994.2014.953211
10.1016/j.jes.2018.06.021
10.1007/s10201-005-0149-6
10.1016/j.scitotenv.2018.11.461
10.1016/j.chemosphere.2020.128690
10.1016/j.watres.2019.02.030
10.1021/acs.est.0c06856
10.1007/s10533-021-00753-3
10.1080/09593330.2010.495138
10.1016/j.gca.2013.07.039
10.1021/es030477l
10.1016/S0043-1354(03)00230-6
10.2166/aqua.2005.0044
10.1016/j.cej.2022.136921
10.1016/j.scitotenv.2020.138402
10.1016/j.watres.2006.04.023
10.1021/acs.est.3c02175
10.1016/j.seppur.2019.116405
10.1016/j.envpol.2018.07.099
10.1021/acsestengg.1c00409
10.4319/lo.2000.45.6.1254
10.1016/j.scitotenv.2018.08.354
10.1016/j.envint.2005.08.022
10.1016/j.orggeochem.2009.03.002
10.1016/j.jes.2017.06.021
10.1016/j.watres.2018.08.023
10.1016/j.chemosphere.2019.07.008
10.1016/j.jhazmat.2021.127113
10.1016/j.watres.2013.05.043
10.1038/35345
10.1016/j.hal.2009.02.004
10.1016/j.watres.2014.07.024
10.1016/j.chemosphere.2018.02.185
10.3390/w11122639
10.1016/j.mrrev.2007.09.001
10.1038/s41396-019-0427-7
10.1016/j.chemosphere.2017.02.140
10.1016/s0043-1354(02)00425-6
10.4319/lo.2011.56.2.0734
10.1016/j.watres.2024.123074
10.1016/j.watres.2015.03.011
10.1007/978-1-4020-6364-0_20
10.1002/clen.201200685
10.1016/j.watres.2017.08.006
10.1021/ac026106p
10.1016/j.jhazmat.2020.124390
10.1021/acsestwater.1c00391
10.1021/es503621e
10.1007/s11356-012-1384-0
10.1016/j.scitotenv.2022.156547
10.1021/acs.est.5b05354
10.1016/j.watres.2020.115743
10.1016/j.scitotenv.2012.08.087
10.1016/j.watres.2014.08.046
10.1021/acs.est.7b02194
10.1016/j.watres.2008.12.041
10.1016/j.tree.2020.10.006
10.1016/s0165-1218(96)90021-x
10.1016/j.watres.2016.06.024
10.1016/j.biortech.2019.122281
10.3390/w14091418
10.1021/acs.est.0c07853
10.1002/lno.10270
10.1021/es103992s
10.1021/acs.est.2c07175
10.1016/j.scitotenv.2021.145297
10.1016/j.envpol.2019.07.112
10.1038/s41558-018-0391-7
10.1080/09593330.2011.553843
10.4319/lo.2001.46.1.0038
10.1016/j.watres.2004.11.031
10.1016/j.scitotenv.2022.156972
10.1021/es300345c
10.1016/j.aquatox.2007.04.014
10.1016/j.chemosphere.2019.124790
10.1016/j.scitotenv.2019.134936
10.1016/j.scitotenv.2019.133901
10.1021/es502342r
10.1016/j.jhazmat.2023.131027
10.1021/ac061949s
10.1016/j.chemosphere.2020.126017
10.1038/nature01469
10.1016/j.watres.2007.11.039
10.1021/acs.est.6b04817
10.1016/j.scitotenv.2023.163210
10.1016/s0045-6535(98)00166-0
10.1016/j.envres.2019.109062
10.1016/j.watres.2018.06.060
10.1016/j.envpol.2021.117232
10.1021/acs.est.3c01500
10.1021/es032333c
10.1016/j.chemosphere.2021.129930
10.1021/es4034765
10.1016/j.watres.2020.116549
10.1016/s0165-9936(03)01003-3
10.1016/0304-4203(93)90124-7
10.1016/j.watres.2017.04.067
10.1021/acs.est.1c02704
10.1016/j.watres.2018.09.054
10.1016/j.watres.2021.117395
10.1039/c9ew00034h
10.1021/es400137x
10.1021/acs.est.9b06526
10.1021/acs.est.0c04394
10.1016/j.coesh.2018.06.006
10.1016/j.jwpe.2024.105730
10.1016/j.chemosphere.2022.134769
10.1021/acs.est.0c03220
10.1016/j.scitotenv.2016.02.031
10.3390/w14162459
10.1007/s10533-004-3361-2
10.1016/j.jhazmat.2023.131135
10.1016/j.watres.2021.117634
10.4319/lo.2004.49.1.0117
10.1016/j.scitotenv.2023.163589
10.4319/lo.1995.40.8.1369
10.1016/j.watres.2019.05.089
10.1080/10643389.2019.1586057
10.3390/agriculture14050684
10.1126/science.1253119
10.2134/jeq2009.0487
10.1016/j.chemosphere.2010.09.041
10.2166/aqua.2002.0038
10.1016/j.jenvman.2021.111951
10.1016/j.watres.2017.07.080
10.1016/j.envint.2020.105570
10.1088/1755-1315/245/1/012018
10.1016/j.chemosphere.2020.127774
10.1007/s11783-019-1204-6
10.1038/ngeo2440
10.1016/s1001-0742(12)60286-1
10.4319/lo.2008.53.3.0955
10.1002/ecy.3763
10.1039/d1ra03498g
10.1016/j.cej.2018.06.002
10.1016/j.chemosphere.2022.136870
10.1016/j.teac.2016.03.002
10.1016/j.limno.2019.125683
10.1016/j.cej.2019.122676
10.1016/j.watres.2021.117327
10.1021/acs.est.3c08155
10.1007/978-3-642-32223-5_5
10.1039/c9ew00931k
10.1021/acs.est.0c08565
10.1016/j.watres.2017.01.048
10.1021/es300039h
10.1016/j.cej.2021.132010
10.1016/s0016-7037(01)00830-4
10.1016/j.jenvman.2021.113041
10.1016/j.watres.2023.119646
10.1021/acs.est.1c02378
10.1038/ngeo391
10.1016/j.chemosphere.2020.127476
10.1016/j.watres.2023.120626
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Dec 2025
DBID AAYXX
CITATION
DOI 10.1007/s40726-025-00350-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2198-6592
ExternalDocumentID 10_1007_s40726_025_00350_0
GroupedDBID 0R~
203
406
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AUKKA
AVXWI
AXYYD
AYFIA
BENPR
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
FEDTE
FERAY
FIGPU
FNLPD
GGCAI
GGRSB
GJIRD
HG6
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
CITATION
ID FETCH-LOGICAL-c272t-dbbc2f573cd5e421b3d69a4f85f4f393ae54680e99693d9334a552667dca924c3
ISSN 2198-6592
IngestDate Fri Jul 25 09:36:18 EDT 2025
Tue Aug 12 03:10:01 EDT 2025
Mon Jul 21 06:07:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Disinfection by-products (DBPs)
Drinking water treatment
Biodegradation
Phototransformation
Dissolved organic matter (DOM)
Toxicity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c272t-dbbc2f573cd5e421b3d69a4f85f4f393ae54680e99693d9334a552667dca924c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3214852472
PQPubID 2044259
ParticipantIDs proquest_journals_3214852472
crossref_primary_10_1007_s40726_025_00350_0
springer_journals_10_1007_s40726_025_00350_0
PublicationCentury 2000
PublicationDate 2025-06-02
PublicationDateYYYYMMDD 2025-06-02
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-02
  day: 02
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Current pollution reports
PublicationTitleAbbrev Curr Pollution Rep
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References YY Xiang (350_CR145) 2020; 54
GR Aiken (350_CR73) 2011; 45
HC Xu (350_CR68) 2020; 725
MQ Zhu (350_CR161) 2015; 120
HY Zhai (350_CR162) 2014; 48
N Cortés-Francisco (350_CR157) 2014; 67
ZQ Chen (350_CR39) 2017; 124
C Fang (350_CR149) 2021; 55
CZ Chen (350_CR13) 2025; 274
QV Ly (350_CR79) 2021; 269
ME Muscarella (350_CR102) 2019; 13
MS Siddique (350_CR116) 2022; 427
HM Franklin (350_CR15) 2021; 283
MR Wu (350_CR117) 2019; 649
H He (350_CR5) 2022; 838
AM Kellerman (350_CR99) 2015; 8
PJ Hernes (350_CR53) 2013; 121
A Zsolnay (350_CR42) 1999; 38
XT Xu (350_CR118) 2021; 774
AC Stenson (350_CR144) 2003; 75
GJC Underwood (350_CR100) 2019; 9
JZ Pan (350_CR77) 2020; 261
SD Richardson (350_CR4) 2007; 636
BP Koch (350_CR143) 2007; 79
XY Liu (350_CR20) 2021; 201
J Wang (350_CR18) 2023; 878
MS Sankar (350_CR87) 2019; 77
M Aeschbacher (350_CR58) 2012; 46
E Avşar (350_CR3) 2018; 6
HP Chen (350_CR50) 2023; 451
HX Zhou (350_CR49) 2017; 112
BA Pellerin (350_CR90) 2010; 39
SM Louie (350_CR75) 2013; 47
HF Zhang (350_CR103) 2021; 294
DM White (350_CR119) 2003; 37
H Lin (350_CR44) 2022; 2
JR Han (350_CR109) 2021; 55
S Kim (350_CR2) 2003; 75
WC Chin (350_CR69) 1998; 391
HR Mian (350_CR107) 2018; 147
YC Luo (350_CR114) 2020; 238
SJ Yu (350_CR78) 2018; 63
J Wu (350_CR122) 2018; 201
MJ Liu (350_CR156) 2022; 2
YR Wang (350_CR113) 2023; 231
350_CR139
G Korshin (350_CR36) 2009; 43
W Chu (350_CR130) 2020; 46
XYY Ma (350_CR136) 2022; 843
LW Zhang (350_CR155) 2021; 407
R Henderson (350_CR23) 2008; 42
JL Hu (350_CR124) 2024; 73
J Sanchís (350_CR125) 2020; 176
SD Richardson (350_CR1) 2003; 22
SR Sarathy (350_CR158) 2011; 32
L Önnby (350_CR59) 2018; 144
ZH Fan (350_CR17) 2020; 239
SS Liu (350_CR63) 2019; 77
XF Yang (350_CR51) 2018; 242
R Stepanauskas (350_CR86) 2005; 74
AT Chow (350_CR9) 2005; 54
AF Gilca (350_CR108) 2020; 259
YL An (350_CR48) 2023; 451
XX Zhang (350_CR19) 2021; 272
YJ Zhou (350_CR66) 2019; 235
D Zhang (350_CR8) 2021; 55
MJ Plewa (350_CR129) 2004; 38
H He (350_CR164) 2023; 245
TW Davis (350_CR28) 2009; 8
A Philippe (350_CR76) 2014; 48
RG Wetzel (350_CR84) 1995; 40
JL Liu (350_CR32) 2010; 81
KMG Mostofa (350_CR94) 2013
A Andersson (350_CR147) 2020; 6
DN Kothawala (350_CR96) 2021; 36
350_CR34
WH Chu (350_CR131) 2021; 55
350_CR38
XY Wang (350_CR27) 2023; 882
JQ Liu (350_CR110) 2014; 65
A Huguet (350_CR41) 2009; 40
MH Lee (350_CR47) 2014; 42
XY Shi (350_CR22) 2019; 656
FL Dong (350_CR105) 2022; 423
T Bond (350_CR141) 2011; 32
MR Wu (350_CR121) 2019; 253
C Grasset (350_CR101) 2023; 57
JA Leenheer (350_CR62) 2003; 37
P Westerhoff (350_CR7) 2002; 51
CP Ward (350_CR81) 2016; 50
AR Winter (350_CR93) 2007; 84
AD Neilen (350_CR134) 2019; 695
BL Zhang (350_CR148) 2019; 157
DJ Repeta (350_CR85) 2002; 66
M Kerner (350_CR71) 2003; 422
ZW Yuan (350_CR154) 2017; 51
M Berggren (350_CR97) 2022; 103
YM Zhao (350_CR151) 2013; 25
L Li (350_CR72) 2020; 381
G Reifferscheid (350_CR128) 1996; 369
XZ Niu (350_CR45) 2019; 161
C Wang (350_CR115) 2019; 11
S Parvez (350_CR127) 2006; 32
CH Xue (350_CR140) 2022; 14
CY Hu (350_CR142) 2015; 56
LC Hua (350_CR35) 2019; 49
I Michael-Kordatou (350_CR31) 2015; 77
J Hur (350_CR46) 2013; 20
XL Wang (350_CR123) 2021; 11
P Herzsprung (350_CR37) 2012; 46
D Palma (350_CR57) 2021; 202
ZG Li (350_CR132) 2021; 55
MA Moran (350_CR88) 2000; 45
Y Yang (350_CR163) 2014; 48
DM McKnight (350_CR40) 2001; 46
YW Wu (350_CR16) 2022; 446
JL Lin (350_CR21) 2020; 703
J Li (350_CR159) 2023; 311
X Wang (350_CR10) 2017; 51
RM Cory (350_CR80) 2014; 345
Y Du (350_CR135) 2018; 145
JJ Wang (350_CR133) 2022; 56
Z Li (350_CR152) 2017; 178
HZ Xu (350_CR24) 2024; 64
MA Xenopoulos (350_CR29) 2021; 154
K Mopper (350_CR82) 1993; 41
KMG Mostofa (350_CR95) 2005; 6
YW Wu (350_CR150) 2022; 223
JL Xu (350_CR120) 2020; 54
H He (350_CR12) 2024; 58
M Gonsior (350_CR14) 2019; 155
D Wan (350_CR67) 2021; 55
RD Majumdar (350_CR65) 2017; 120
P Jeon (350_CR54) 2022; 14
A Tomlinson (350_CR25) 2016; 102
RP Milstead (350_CR64) 2023; 57
XX Wang (350_CR111) 2021; 282
C Liu (350_CR160) 2017; 124
HF Wilson (350_CR43) 2009; 2
YR Yao (350_CR55) 2024; 14
AM Hansen (350_CR91) 2016; 61
YJ Shi (350_CR74) 2020; 297
F Guillemette (350_CR98) 2011; 56
MA Moran (350_CR83) 1997; 42
W He (350_CR70) 2016; 551
PA Neale (350_CR126) 2019; 7
SK Ding (350_CR153) 2018; 350
S Dobaradaran (350_CR104) 2020; 182
I Michael-Kordatou (350_CR33) 2015; 77
D Graeber (350_CR52) 2012; 438
RL Bunch (350_CR6) 1961; 33
JR Helms (350_CR92) 2008; 53
T Sirivedhin (350_CR112) 2005; 39
ZC Hua (350_CR138) 2021; 188
JE Drewes (350_CR30) 2003; 37
N Lee (350_CR61) 2006; 40
A Andersson (350_CR146) 2019; 5
XT Xu (350_CR11) 2022; 301
L Liu (350_CR26) 2020; 248
I Obernosterer (350_CR89) 2004; 49
QY Wu (350_CR60) 2020; 137
YR Wang (350_CR137) 2021; 204
FG Meng (350_CR56) 2013; 47
MT Yang (350_CR106) 2016; 10
References_xml – volume: 223
  start-page: 9
  year: 2022
  ident: 350_CR150
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.119008
– volume: 75
  start-page: 5336
  issue: 20
  year: 2003
  ident: 350_CR2
  publication-title: Anal Chem
  doi: 10.1021/ac034415p
– volume: 42
  start-page: 1307
  issue: 6
  year: 1997
  ident: 350_CR83
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.1997.42.6.1307
– volume: 157
  start-page: 472
  year: 2019
  ident: 350_CR148
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.04.002
– volume: 120
  start-page: 256
  year: 2015
  ident: 350_CR161
  publication-title: Ecotox Environ Safe
  doi: 10.1016/j.ecoenv.2015.05.048
– volume: 56
  start-page: 1689
  issue: 6
  year: 2015
  ident: 350_CR142
  publication-title: China Desalin Water Treat
  doi: 10.1080/19443994.2014.953211
– volume: 77
  start-page: 130
  year: 2019
  ident: 350_CR87
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2018.06.021
– volume: 6
  start-page: 101
  issue: 2
  year: 2005
  ident: 350_CR95
  publication-title: Limnology
  doi: 10.1007/s10201-005-0149-6
– volume: 656
  start-page: 1063
  year: 2019
  ident: 350_CR22
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.11.461
– volume: 269
  start-page: 18
  year: 2021
  ident: 350_CR79
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128690
– volume: 155
  start-page: 300
  year: 2019
  ident: 350_CR14
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.02.030
– volume: 55
  start-page: 4103
  issue: 7
  year: 2021
  ident: 350_CR132
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c06856
– volume: 154
  start-page: 323
  issue: 2
  year: 2021
  ident: 350_CR29
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-021-00753-3
– volume: 32
  start-page: 1
  issue: 1
  year: 2011
  ident: 350_CR141
  publication-title: Environ Technol
  doi: 10.1080/09593330.2010.495138
– volume: 121
  start-page: 599
  year: 2013
  ident: 350_CR53
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2013.07.039
– volume: 38
  start-page: 62
  issue: 1
  year: 2004
  ident: 350_CR129
  publication-title: Environ Sci Technol
  doi: 10.1021/es030477l
– volume: 37
  start-page: 3612
  issue: 15
  year: 2003
  ident: 350_CR30
  publication-title: Water Res
  doi: 10.1016/S0043-1354(03)00230-6
– volume: 54
  start-page: 475
  issue: 8
  year: 2005
  ident: 350_CR9
  publication-title: J Water Supply Res Technol-Aqua
  doi: 10.2166/aqua.2005.0044
– volume: 446
  start-page: 6
  year: 2022
  ident: 350_CR16
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.136921
– volume: 725
  start-page: 8
  year: 2020
  ident: 350_CR68
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.138402
– volume: 40
  start-page: 2357
  issue: 12
  year: 2006
  ident: 350_CR61
  publication-title: Water Res
  doi: 10.1016/j.watres.2006.04.023
– volume: 57
  start-page: 13463
  issue: 36
  year: 2023
  ident: 350_CR101
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.3c02175
– volume: 238
  start-page: 10
  year: 2020
  ident: 350_CR114
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.116405
– volume: 242
  start-page: 1185
  year: 2018
  ident: 350_CR51
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2018.07.099
– volume: 2
  start-page: 886
  issue: 5
  year: 2022
  ident: 350_CR156
  publication-title: ACS ES&T Eng
  doi: 10.1021/acsestengg.1c00409
– volume: 46
  start-page: 1
  issue: 6
  year: 2020
  ident: 350_CR130
  publication-title: Water & Wastewater Engineering
– volume: 45
  start-page: 1254
  issue: 6
  year: 2000
  ident: 350_CR88
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2000.45.6.1254
– volume: 649
  start-page: 960
  year: 2019
  ident: 350_CR117
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.08.354
– volume: 32
  start-page: 265
  issue: 2
  year: 2006
  ident: 350_CR127
  publication-title: Environ Int
  doi: 10.1016/j.envint.2005.08.022
– volume: 40
  start-page: 706
  issue: 6
  year: 2009
  ident: 350_CR41
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2009.03.002
– volume: 63
  start-page: 198
  year: 2018
  ident: 350_CR78
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2017.06.021
– volume: 145
  start-page: 94
  year: 2018
  ident: 350_CR135
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.08.023
– volume: 235
  start-page: 900
  year: 2019
  ident: 350_CR66
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.07.008
– volume: 423
  start-page: 11
  year: 2022
  ident: 350_CR105
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.127113
– volume: 47
  start-page: 5027
  issue: 14
  year: 2013
  ident: 350_CR56
  publication-title: Water Res
  doi: 10.1016/j.watres.2013.05.043
– volume: 391
  start-page: 568
  issue: 6667
  year: 1998
  ident: 350_CR69
  publication-title: Nature
  doi: 10.1038/35345
– volume: 8
  start-page: 715
  issue: 5
  year: 2009
  ident: 350_CR28
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2009.02.004
– volume: 65
  start-page: 64
  year: 2014
  ident: 350_CR110
  publication-title: Water Res
  doi: 10.1016/j.watres.2014.07.024
– volume: 201
  start-page: 66
  year: 2018
  ident: 350_CR122
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.02.185
– volume: 11
  start-page: 11
  issue: 12
  year: 2019
  ident: 350_CR115
  publication-title: Water
  doi: 10.3390/w11122639
– volume: 636
  start-page: 178
  issue: 1–3
  year: 2007
  ident: 350_CR4
  publication-title: Mutat Res-Rev Mutat Res
  doi: 10.1016/j.mrrev.2007.09.001
– volume: 13
  start-page: 2183
  issue: 9
  year: 2019
  ident: 350_CR102
  publication-title: Isme J
  doi: 10.1038/s41396-019-0427-7
– volume: 6
  start-page: 22
  issue: 1
  year: 2018
  ident: 350_CR3
  publication-title: Anadolu Univ J Sci Technol B-Theor Sci
– volume: 178
  start-page: 26
  year: 2017
  ident: 350_CR152
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.02.140
– volume: 37
  start-page: 939
  issue: 4
  year: 2003
  ident: 350_CR119
  publication-title: Water Res
  doi: 10.1016/s0043-1354(02)00425-6
– volume: 56
  start-page: 734
  issue: 2
  year: 2011
  ident: 350_CR98
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2011.56.2.0734
– volume: 274
  start-page: 9
  year: 2025
  ident: 350_CR13
  publication-title: Water Res
  doi: 10.1016/j.watres.2024.123074
– volume: 77
  start-page: 213
  year: 2015
  ident: 350_CR33
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.03.011
– ident: 350_CR34
  doi: 10.1007/978-1-4020-6364-0_20
– volume: 42
  start-page: 552
  issue: 5
  year: 2014
  ident: 350_CR47
  publication-title: Clean-Soil Air Water
  doi: 10.1002/clen.201200685
– volume: 124
  start-page: 566
  year: 2017
  ident: 350_CR39
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.08.006
– volume: 75
  start-page: 1275
  issue: 6
  year: 2003
  ident: 350_CR144
  publication-title: Anal Chem
  doi: 10.1021/ac026106p
– volume: 407
  start-page: 8
  year: 2021
  ident: 350_CR155
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124390
– volume: 2
  start-page: 216
  issue: 1
  year: 2022
  ident: 350_CR44
  publication-title: ACS ES&T Wat
  doi: 10.1021/acsestwater.1c00391
– volume: 48
  start-page: 12362
  issue: 20
  year: 2014
  ident: 350_CR163
  publication-title: Environ Sci Technol
  doi: 10.1021/es503621e
– volume: 20
  start-page: 4176
  issue: 6
  year: 2013
  ident: 350_CR46
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-012-1384-0
– volume: 838
  start-page: 11
  year: 2022
  ident: 350_CR5
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.156547
– volume: 50
  start-page: 3545
  issue: 7
  year: 2016
  ident: 350_CR81
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b05354
– volume: 176
  start-page: 10
  year: 2020
  ident: 350_CR125
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115743
– volume: 438
  start-page: 435
  year: 2012
  ident: 350_CR52
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2012.08.087
– volume: 67
  start-page: 154
  year: 2014
  ident: 350_CR157
  publication-title: Water Res
  doi: 10.1016/j.watres.2014.08.046
– volume: 51
  start-page: 8110
  issue: 14
  year: 2017
  ident: 350_CR154
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b02194
– volume: 43
  start-page: 1541
  issue: 6
  year: 2009
  ident: 350_CR36
  publication-title: Water Res
  doi: 10.1016/j.watres.2008.12.041
– volume: 36
  start-page: 113
  issue: 2
  year: 2021
  ident: 350_CR96
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2020.10.006
– volume: 369
  start-page: 129
  issue: 3–4
  year: 1996
  ident: 350_CR128
  publication-title: Mutat Res-Genet Toxicol
  doi: 10.1016/s0165-1218(96)90021-x
– volume: 102
  start-page: 229
  year: 2016
  ident: 350_CR25
  publication-title: Water Res
  doi: 10.1016/j.watres.2016.06.024
– volume: 297
  start-page: 9
  year: 2020
  ident: 350_CR74
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2019.122281
– volume: 14
  start-page: 11
  issue: 9
  year: 2022
  ident: 350_CR140
  publication-title: Water
  doi: 10.3390/w14091418
– volume: 55
  start-page: 3747
  issue: 6
  year: 2021
  ident: 350_CR8
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c07853
– volume: 61
  start-page: 1015
  issue: 3
  year: 2016
  ident: 350_CR91
  publication-title: Limnol Oceanogr
  doi: 10.1002/lno.10270
– volume: 45
  start-page: 3196
  issue: 8
  year: 2011
  ident: 350_CR73
  publication-title: Environ Sci Technol
  doi: 10.1021/es103992s
– volume: 56
  start-page: 17763
  issue: 24
  year: 2022
  ident: 350_CR133
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.2c07175
– volume: 774
  start-page: 9
  year: 2021
  ident: 350_CR118
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145297
– volume: 253
  start-page: 1047
  year: 2019
  ident: 350_CR121
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2019.07.112
– volume: 9
  start-page: 170
  issue: 2
  year: 2019
  ident: 350_CR100
  publication-title: Nat Clim Chang
  doi: 10.1038/s41558-018-0391-7
– volume: 32
  start-page: 1709
  issue: 15
  year: 2011
  ident: 350_CR158
  publication-title: Environ Technol
  doi: 10.1080/09593330.2011.553843
– volume: 33
  start-page: 122
  issue: 2
  year: 1961
  ident: 350_CR6
  publication-title: J Water Pollut Control Fed
– volume: 46
  start-page: 38
  issue: 1
  year: 2001
  ident: 350_CR40
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2001.46.1.0038
– volume: 39
  start-page: 1025
  issue: 6
  year: 2005
  ident: 350_CR112
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.11.031
– volume: 843
  start-page: 10
  year: 2022
  ident: 350_CR136
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.156972
– volume: 46
  start-page: 5511
  issue: 10
  year: 2012
  ident: 350_CR37
  publication-title: Environ Sci Technol
  doi: 10.1021/es300345c
– volume: 84
  start-page: 215
  issue: 2
  year: 2007
  ident: 350_CR93
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2007.04.014
– volume: 239
  start-page: 7
  year: 2020
  ident: 350_CR17
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124790
– volume: 703
  start-page: 11
  year: 2020
  ident: 350_CR21
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.134936
– volume: 695
  start-page: 11
  year: 2019
  ident: 350_CR134
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.133901
– volume: 48
  start-page: 8946
  issue: 16
  year: 2014
  ident: 350_CR76
  publication-title: Environ Sci Technol
  doi: 10.1021/es502342r
– volume: 451
  start-page: 11
  year: 2023
  ident: 350_CR50
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2023.131027
– volume: 79
  start-page: 1758
  issue: 4
  year: 2007
  ident: 350_CR143
  publication-title: Anal Chem
  doi: 10.1021/ac061949s
– volume: 248
  start-page: 126017
  year: 2020
  ident: 350_CR26
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126017
– volume: 422
  start-page: 150
  issue: 6928
  year: 2003
  ident: 350_CR71
  publication-title: Nature
  doi: 10.1038/nature01469
– volume: 42
  start-page: 1827
  issue: 8–9
  year: 2008
  ident: 350_CR23
  publication-title: Water Res
  doi: 10.1016/j.watres.2007.11.039
– volume: 51
  start-page: 2015
  issue: 4
  year: 2017
  ident: 350_CR10
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b04817
– volume: 878
  start-page: 11
  year: 2023
  ident: 350_CR18
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.163210
– volume: 38
  start-page: 45
  issue: 1
  year: 1999
  ident: 350_CR42
  publication-title: Chemosphere
  doi: 10.1016/s0045-6535(98)00166-0
– volume: 182
  start-page: 14
  year: 2020
  ident: 350_CR104
  publication-title: Environ Res
  doi: 10.1016/j.envres.2019.109062
– volume: 144
  start-page: 677
  year: 2018
  ident: 350_CR59
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.06.060
– volume: 73
  start-page: 464
  issue: 3
  year: 2024
  ident: 350_CR124
  publication-title: Aqua
– volume: 283
  start-page: 11
  year: 2021
  ident: 350_CR15
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.117232
– volume: 57
  start-page: 11876
  issue: 32
  year: 2023
  ident: 350_CR64
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.3c01500
– volume: 37
  start-page: 18A
  issue: 1
  year: 2003
  ident: 350_CR62
  publication-title: Environ Sci Technol
  doi: 10.1021/es032333c
– volume: 272
  start-page: 11
  year: 2021
  ident: 350_CR19
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.129930
– volume: 48
  start-page: 2579
  issue: 5
  year: 2014
  ident: 350_CR162
  publication-title: Environ Sci Technol
  doi: 10.1021/es4034765
– volume: 188
  start-page: 10
  year: 2021
  ident: 350_CR138
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.116549
– volume: 22
  start-page: 666
  issue: 10
  year: 2003
  ident: 350_CR1
  publication-title: Trac-Trends Anal Chem
  doi: 10.1016/s0165-9936(03)01003-3
– volume: 41
  start-page: 229
  issue: 1–3
  year: 1993
  ident: 350_CR82
  publication-title: Mar Chem
  doi: 10.1016/0304-4203(93)90124-7
– volume: 120
  start-page: 64
  year: 2017
  ident: 350_CR65
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.04.067
– volume: 55
  start-page: 8937
  issue: 13
  year: 2021
  ident: 350_CR67
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.1c02704
– volume: 147
  start-page: 112
  year: 2018
  ident: 350_CR107
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.09.054
– volume: 202
  start-page: 12
  year: 2021
  ident: 350_CR57
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.117395
– volume: 5
  start-page: 861
  issue: 5
  year: 2019
  ident: 350_CR146
  publication-title: Environ Sci-Wat Res Technol
  doi: 10.1039/c9ew00034h
– volume: 47
  start-page: 4245
  issue: 9
  year: 2013
  ident: 350_CR75
  publication-title: Environ Sci Technol
  doi: 10.1021/es400137x
– volume: 54
  start-page: 3245
  issue: 6
  year: 2020
  ident: 350_CR120
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b06526
– volume: 55
  start-page: 4084
  issue: 7
  year: 2021
  ident: 350_CR131
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c04394
– volume: 7
  start-page: 1
  year: 2019
  ident: 350_CR126
  publication-title: Curr Opin Environ Sci Health.
  doi: 10.1016/j.coesh.2018.06.006
– volume: 64
  start-page: 9
  year: 2024
  ident: 350_CR24
  publication-title: J Water Process Eng
  doi: 10.1016/j.jwpe.2024.105730
– volume: 301
  start-page: 10
  year: 2022
  ident: 350_CR11
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.134769
– volume: 54
  start-page: 14964
  issue: 23
  year: 2020
  ident: 350_CR145
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c03220
– volume: 551
  start-page: 415
  year: 2016
  ident: 350_CR70
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.02.031
– volume: 14
  start-page: 17
  issue: 16
  year: 2022
  ident: 350_CR54
  publication-title: Water
  doi: 10.3390/w14162459
– volume: 74
  start-page: 131
  issue: 2
  year: 2005
  ident: 350_CR86
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-004-3361-2
– volume: 451
  start-page: 11
  year: 2023
  ident: 350_CR48
  publication-title: J Hazard Mater.
  doi: 10.1016/j.jhazmat.2023.131135
– volume: 204
  start-page: 11
  year: 2021
  ident: 350_CR137
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.117634
– volume: 49
  start-page: 117
  issue: 1
  year: 2004
  ident: 350_CR89
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2004.49.1.0117
– volume: 882
  start-page: 8
  year: 2023
  ident: 350_CR27
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.163589
– volume: 40
  start-page: 1369
  issue: 8
  year: 1995
  ident: 350_CR84
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.1995.40.8.1369
– volume: 161
  start-page: 11
  year: 2019
  ident: 350_CR45
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.05.089
– volume: 49
  start-page: 1803
  issue: 19
  year: 2019
  ident: 350_CR35
  publication-title: Crit Rev Environ Sci Technol
  doi: 10.1080/10643389.2019.1586057
– volume: 14
  start-page: 20
  issue: 5
  year: 2024
  ident: 350_CR55
  publication-title: Agriculture-Basel
  doi: 10.3390/agriculture14050684
– volume: 345
  start-page: 925
  issue: 6199
  year: 2014
  ident: 350_CR80
  publication-title: Science
  doi: 10.1126/science.1253119
– volume: 39
  start-page: 946
  issue: 3
  year: 2010
  ident: 350_CR90
  publication-title: J Environ Qual
  doi: 10.2134/jeq2009.0487
– volume: 81
  start-page: 1075
  issue: 9
  year: 2010
  ident: 350_CR32
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.09.041
– volume: 51
  start-page: 415
  issue: 8
  year: 2002
  ident: 350_CR7
  publication-title: J Water Supply Res Technol-Aqua
  doi: 10.2166/aqua.2002.0038
– volume: 282
  start-page: 9
  year: 2021
  ident: 350_CR111
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2021.111951
– volume: 124
  start-page: 630
  year: 2017
  ident: 350_CR160
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.07.080
– volume: 137
  start-page: 9
  year: 2020
  ident: 350_CR60
  publication-title: Environ Int
  doi: 10.1016/j.envint.2020.105570
– ident: 350_CR38
  doi: 10.1088/1755-1315/245/1/012018
– volume: 261
  start-page: 8
  year: 2020
  ident: 350_CR77
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127774
– ident: 350_CR139
  doi: 10.1007/s11783-019-1204-6
– volume: 8
  start-page: 454
  issue: 6
  year: 2015
  ident: 350_CR99
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2440
– volume: 25
  start-page: 2207
  issue: 11
  year: 2013
  ident: 350_CR151
  publication-title: J Environ Sci
  doi: 10.1016/s1001-0742(12)60286-1
– volume: 53
  start-page: 955
  issue: 3
  year: 2008
  ident: 350_CR92
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2008.53.3.0955
– volume: 103
  start-page: 13
  issue: 9
  year: 2022
  ident: 350_CR97
  publication-title: Ecology
  doi: 10.1002/ecy.3763
– volume: 11
  start-page: 28476
  issue: 46
  year: 2021
  ident: 350_CR123
  publication-title: China RSC Adv
  doi: 10.1039/d1ra03498g
– volume: 350
  start-page: 356
  year: 2018
  ident: 350_CR153
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.06.002
– volume: 77
  start-page: 213
  year: 2015
  ident: 350_CR31
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.03.011
– volume: 311
  start-page: 13
  year: 2023
  ident: 350_CR159
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.136870
– volume: 10
  start-page: 24
  year: 2016
  ident: 350_CR106
  publication-title: Trends Environ Anal Chem
  doi: 10.1016/j.teac.2016.03.002
– volume: 77
  start-page: 8
  year: 2019
  ident: 350_CR63
  publication-title: Limnologica
  doi: 10.1016/j.limno.2019.125683
– volume: 381
  start-page: 12
  year: 2020
  ident: 350_CR72
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.122676
– volume: 201
  start-page: 10
  year: 2021
  ident: 350_CR20
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.117327
– volume: 58
  start-page: 3399
  issue: 7
  year: 2024
  ident: 350_CR12
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.3c08155
– start-page: 365
  volume-title: Photobiogeochemistry of organic matter principles and practices in water environments
  year: 2013
  ident: 350_CR94
  doi: 10.1007/978-3-642-32223-5_5
– volume: 6
  start-page: 779
  issue: 3
  year: 2020
  ident: 350_CR147
  publication-title: Environ Sci-Wat Res Technol
  doi: 10.1039/c9ew00931k
– volume: 55
  start-page: 5906
  issue: 9
  year: 2021
  ident: 350_CR109
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c08565
– volume: 112
  start-page: 120
  year: 2017
  ident: 350_CR49
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.01.048
– volume: 46
  start-page: 4916
  issue: 9
  year: 2012
  ident: 350_CR58
  publication-title: Environ Sci Technol
  doi: 10.1021/es300039h
– volume: 427
  start-page: 15
  year: 2022
  ident: 350_CR116
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.132010
– volume: 66
  start-page: 955
  issue: 6
  year: 2002
  ident: 350_CR85
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/s0016-7037(01)00830-4
– volume: 294
  start-page: 17
  year: 2021
  ident: 350_CR103
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2021.113041
– volume: 231
  start-page: 11
  year: 2023
  ident: 350_CR113
  publication-title: Water Res
  doi: 10.1016/j.watres.2023.119646
– volume: 55
  start-page: 12326
  issue: 18
  year: 2021
  ident: 350_CR149
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.1c02378
– volume: 2
  start-page: 37
  issue: 1
  year: 2009
  ident: 350_CR43
  publication-title: Nat Geosci
  doi: 10.1038/ngeo391
– volume: 259
  start-page: 17
  year: 2020
  ident: 350_CR108
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127476
– volume: 245
  start-page: 11
  year: 2023
  ident: 350_CR164
  publication-title: Water Res
  doi: 10.1016/j.watres.2023.120626
SSID ssj0002046597
Score 2.2933602
SecondaryResourceType review_article
Snippet Purpose of Review This study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic...
Purpose of ReviewThis study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 29
SubjectTerms Algae
Aquatic ecosystems
Aquatic environment
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Biodegradation
By products
Byproducts
Carbohydrates
Chemical properties
Coagulation
Comparative analysis
Disinfection
Disinfection & disinfectants
Dissolved organic matter
Drinking water
Earth and Environmental Science
Environment
Environmental Law/Policy/Ecojustice
Flowers & plants
Humification
Industrial Pollution Prevention
Mass spectrometry
Mass spectroscopy
Microorganisms
Monitoring/Environmental Analysis
Oxidation
Photochemicals
Photodegradation
Plankton
Pollutants
Pollution
Precursors
Prediction models
Review
Speciation
Surface water
Topical Collection on Biology and Pollution
Toxicity
Waste Water Technology
Wastewater treatment
Water Management
Water Pollution Control
Water quality
Water treatment
Title The Impact of Dissolved Organic Matter in Natural Receiving Systems on the Formation Potential and Toxicity of Disinfection By-products: Insights from Origins, Chemical Properties, and Transformations
URI https://link.springer.com/article/10.1007/s40726-025-00350-0
https://www.proquest.com/docview/3214852472
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXK7gUOiE9RWNAcuLVBrRM3CbctUO0iKHvoqrunyHESqRySatsi4BfyK_gtjO2x03ZZieUStY4VR5oXezx-84ax15UciEoppauX8SAqhAzSBP9KXRBFppVO9tRsi-no5Dz6eCEuOp3fW6ylzTp_o37-Na_kf6yKbWhXnSV7C8v6h2ID_kb74hUtjNd_tvGpT3N8v9DDfUMP0iZYqt5nI56pQxpTafU10EssFyaGQFLldFjQm7gkxt5Zs9YMItIQmDXfF4poGziA427VvfGPYGnVYg2p7rRe6W3-yuarfDHltki9gBQJznTY_0rrtzrG6GzLaXZRw6-7YqhLXYnZjEeHG55AZFgI83IRXG5aioKdQy83HvFzCofPyzr41NAqvd1VYjuJj1PsgwvD0Wp3yi72uRc9bQN4dpEzsynOzEmgz5B3pv7hPsSvrSiWRLLSOnJ6bHwFfRYbDNr107MavQK06Zxh58x0zgZ32CHHbQw_YIfHk_F46qOA-EHgO8WUzWVyOq-NtOsxtdugvZN74xDNHrD7tJOBYwvLh6xT1o_YvS19y8fsFwIULEChqcADFAigYAEKixoIoOABCgRQaGpAgIIHKHiAAoIIHEBpAA9Q2ALoW3DwBA1PIHj2wYETWnD27VN3ofmEnU8-zN6dBFQ6JFA85uugyHPFKxGHqhBlxId5WIxSGVWJqKIqTENZimiUDErc7adhkYZhJIVAXzUulEx5pMKn7KBu6vIZA66E1kAcJUOJvVSeiHygimGS5jHXxRi6rOfMky2tQkx2MxK67MhZMKOZZJXpYmGJ4FHMu6zvrNrevvlpz2_X_QW7235FR-xgfbUpX6JPvc5fETD_ACJa0v4
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Dissolved+Organic+Matter+in+Natural+Receiving+Systems+on+the+Formation+Potential+and+Toxicity+of+Disinfection+By-products%3A+Insights+from+Origins%2C+Chemical+Properties%2C+and+Transformations&rft.jtitle=Current+pollution+reports&rft.au=Li%2C+Wei-Yu&rft.au=Chen%2C+Yun&rft.au=Wang%2C+Wen-Long&rft.au=Chen%2C+Yan-Lin&rft.date=2025-06-02&rft.pub=Springer+International+Publishing&rft.eissn=2198-6592&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1007%2Fs40726-025-00350-0&rft.externalDocID=10_1007_s40726_025_00350_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6592&client=summon