The Impact of Dissolved Organic Matter in Natural Receiving Systems on the Formation Potential and Toxicity of Disinfection By-products: Insights from Origins, Chemical Properties, and Transformations
Purpose of Review This study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic environments. Key objectives include elucidating how DOM sources, chemical properties, and environmental transformations influence DBP speciation a...
Saved in:
Published in | Current pollution reports Vol. 11; no. 1; p. 29 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
02.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose of Review
This study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic environments. Key objectives include elucidating how DOM sources, chemical properties, and environmental transformations influence DBP speciation and toxicity. The study also evaluates strategies for mitigating DBP risks in drinking water treatment and identifies critical knowledge gaps in linking DOM dynamics to DBP toxicity profiles.
Recent Findings
Recent studies highlight that the sources of DOM and its chemical characteristics, including SUVA
254
and humification index (HIX), strongly influence disinfection by-product formation potential (DBPFP). Photochemical and microbial transformations significantly alter the reactivity of DOM, with photodegradation typically reducing DBPFP while biodegradation increasing it. Despite these findings, the relationship between DOM transformations and DBP toxicity remains underexplored. Advanced mass spectrometry and fluorescence-based techniques have improved the ability to characterize DOM, offering new insights into the molecular-level dynamics of DBP formation. While traditional water treatment methods remain essential, enhanced coagulation, adsorption, and advanced oxidation processes are increasingly necessary to efficiently remove DOM and mitigate DBP formation.
Summary
This review provides a comprehensive examination of the DOM-DBP relationship, offering insights into the speciation and toxicity of DBP. It is highlighted that the sources, chemical properties, and natural transformations of DOM complicate the DBP precursor pool, affecting DOM reactivity and DBP production during disinfection. Advances in analytical techniques could improve our understanding of molecular-level interactions between DOM and DBP. Future research should prioritize comprehensive DOM characterization and predictive models to link DOM subfractions with toxicity explicitly. Furthermore, enhanced removal strategies must be developed to balance disinfection efficacy with minimized health and ecological risks, thereby ensuring water quality safety. |
---|---|
AbstractList | Purpose of ReviewThis study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic environments. Key objectives include elucidating how DOM sources, chemical properties, and environmental transformations influence DBP speciation and toxicity. The study also evaluates strategies for mitigating DBP risks in drinking water treatment and identifies critical knowledge gaps in linking DOM dynamics to DBP toxicity profiles.Recent FindingsRecent studies highlight that the sources of DOM and its chemical characteristics, including SUVA254 and humification index (HIX), strongly influence disinfection by-product formation potential (DBPFP). Photochemical and microbial transformations significantly alter the reactivity of DOM, with photodegradation typically reducing DBPFP while biodegradation increasing it. Despite these findings, the relationship between DOM transformations and DBP toxicity remains underexplored. Advanced mass spectrometry and fluorescence-based techniques have improved the ability to characterize DOM, offering new insights into the molecular-level dynamics of DBP formation. While traditional water treatment methods remain essential, enhanced coagulation, adsorption, and advanced oxidation processes are increasingly necessary to efficiently remove DOM and mitigate DBP formation.SummaryThis review provides a comprehensive examination of the DOM-DBP relationship, offering insights into the speciation and toxicity of DBP. It is highlighted that the sources, chemical properties, and natural transformations of DOM complicate the DBP precursor pool, affecting DOM reactivity and DBP production during disinfection. Advances in analytical techniques could improve our understanding of molecular-level interactions between DOM and DBP. Future research should prioritize comprehensive DOM characterization and predictive models to link DOM subfractions with toxicity explicitly. Furthermore, enhanced removal strategies must be developed to balance disinfection efficacy with minimized health and ecological risks, thereby ensuring water quality safety. Purpose of Review This study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic environments. Key objectives include elucidating how DOM sources, chemical properties, and environmental transformations influence DBP speciation and toxicity. The study also evaluates strategies for mitigating DBP risks in drinking water treatment and identifies critical knowledge gaps in linking DOM dynamics to DBP toxicity profiles. Recent Findings Recent studies highlight that the sources of DOM and its chemical characteristics, including SUVA 254 and humification index (HIX), strongly influence disinfection by-product formation potential (DBPFP). Photochemical and microbial transformations significantly alter the reactivity of DOM, with photodegradation typically reducing DBPFP while biodegradation increasing it. Despite these findings, the relationship between DOM transformations and DBP toxicity remains underexplored. Advanced mass spectrometry and fluorescence-based techniques have improved the ability to characterize DOM, offering new insights into the molecular-level dynamics of DBP formation. While traditional water treatment methods remain essential, enhanced coagulation, adsorption, and advanced oxidation processes are increasingly necessary to efficiently remove DOM and mitigate DBP formation. Summary This review provides a comprehensive examination of the DOM-DBP relationship, offering insights into the speciation and toxicity of DBP. It is highlighted that the sources, chemical properties, and natural transformations of DOM complicate the DBP precursor pool, affecting DOM reactivity and DBP production during disinfection. Advances in analytical techniques could improve our understanding of molecular-level interactions between DOM and DBP. Future research should prioritize comprehensive DOM characterization and predictive models to link DOM subfractions with toxicity explicitly. Furthermore, enhanced removal strategies must be developed to balance disinfection efficacy with minimized health and ecological risks, thereby ensuring water quality safety. |
ArticleNumber | 29 |
Author | Li, Wei-Yu Chen, Yun Wu, Qian-Yuan Wang, Wen-Long Chen, Yan-Lin |
Author_xml | – sequence: 1 givenname: Wei-Yu surname: Li fullname: Li, Wei-Yu organization: Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University – sequence: 2 givenname: Yun surname: Chen fullname: Chen, Yun organization: Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University – sequence: 3 givenname: Wen-Long surname: Wang fullname: Wang, Wen-Long organization: Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University – sequence: 4 givenname: Yan-Lin surname: Chen fullname: Chen, Yan-Lin organization: Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University – sequence: 5 givenname: Qian-Yuan surname: Wu fullname: Wu, Qian-Yuan email: wu.qianyuan@sz.tsinghua.edu.cn organization: Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University |
BookMark | eNp9kc1uEzEUhS1UJErpC7CyxJahHv_MxOwgpSVSoRWEteV4rieuMnbwdSryhjwWJimCFat7r_Wdcyyd5-QkpgiEvGzZm5ax_gIl63nXMK4axoRiDXtCTnmrZ02nND_5Z39GzhHvGWOcyXr3p-Tncg10MW2tKzR5ehkQ0-YBBnqbRxuDo59sKZBpiPSzLbtsN_QLOAgPIY706x4LTEhTpKXaXKU82RLqdZcKxBIqbONAl-lHcKHsHwNC9OAO2Pt9s81p2LmCb-kiYhjXBanPaarxYQwRX9P5GqbgqtNdTlvIJUB9PLhmG9H_icQX5Km3G4Tzx3lGvl19WM4_Nje314v5u5vG8Z6XZlitHPeqF25QIHm7EkOnrfQz5aUXWlhQspsx0LrTYtBCSKsU77p-cFZz6cQZeXX0rT__vgMs5j7tcqyRRvBWzhSXPa8UP1IuJ8QM3mxzmGzem5aZ36WZY2mmlmYOpRlWReIowgrHEfJf6_-ofgEkY595 |
Cites_doi | 10.1016/j.watres.2022.119008 10.1021/ac034415p 10.4319/lo.1997.42.6.1307 10.1016/j.watres.2019.04.002 10.1016/j.ecoenv.2015.05.048 10.1080/19443994.2014.953211 10.1016/j.jes.2018.06.021 10.1007/s10201-005-0149-6 10.1016/j.scitotenv.2018.11.461 10.1016/j.chemosphere.2020.128690 10.1016/j.watres.2019.02.030 10.1021/acs.est.0c06856 10.1007/s10533-021-00753-3 10.1080/09593330.2010.495138 10.1016/j.gca.2013.07.039 10.1021/es030477l 10.1016/S0043-1354(03)00230-6 10.2166/aqua.2005.0044 10.1016/j.cej.2022.136921 10.1016/j.scitotenv.2020.138402 10.1016/j.watres.2006.04.023 10.1021/acs.est.3c02175 10.1016/j.seppur.2019.116405 10.1016/j.envpol.2018.07.099 10.1021/acsestengg.1c00409 10.4319/lo.2000.45.6.1254 10.1016/j.scitotenv.2018.08.354 10.1016/j.envint.2005.08.022 10.1016/j.orggeochem.2009.03.002 10.1016/j.jes.2017.06.021 10.1016/j.watres.2018.08.023 10.1016/j.chemosphere.2019.07.008 10.1016/j.jhazmat.2021.127113 10.1016/j.watres.2013.05.043 10.1038/35345 10.1016/j.hal.2009.02.004 10.1016/j.watres.2014.07.024 10.1016/j.chemosphere.2018.02.185 10.3390/w11122639 10.1016/j.mrrev.2007.09.001 10.1038/s41396-019-0427-7 10.1016/j.chemosphere.2017.02.140 10.1016/s0043-1354(02)00425-6 10.4319/lo.2011.56.2.0734 10.1016/j.watres.2024.123074 10.1016/j.watres.2015.03.011 10.1007/978-1-4020-6364-0_20 10.1002/clen.201200685 10.1016/j.watres.2017.08.006 10.1021/ac026106p 10.1016/j.jhazmat.2020.124390 10.1021/acsestwater.1c00391 10.1021/es503621e 10.1007/s11356-012-1384-0 10.1016/j.scitotenv.2022.156547 10.1021/acs.est.5b05354 10.1016/j.watres.2020.115743 10.1016/j.scitotenv.2012.08.087 10.1016/j.watres.2014.08.046 10.1021/acs.est.7b02194 10.1016/j.watres.2008.12.041 10.1016/j.tree.2020.10.006 10.1016/s0165-1218(96)90021-x 10.1016/j.watres.2016.06.024 10.1016/j.biortech.2019.122281 10.3390/w14091418 10.1021/acs.est.0c07853 10.1002/lno.10270 10.1021/es103992s 10.1021/acs.est.2c07175 10.1016/j.scitotenv.2021.145297 10.1016/j.envpol.2019.07.112 10.1038/s41558-018-0391-7 10.1080/09593330.2011.553843 10.4319/lo.2001.46.1.0038 10.1016/j.watres.2004.11.031 10.1016/j.scitotenv.2022.156972 10.1021/es300345c 10.1016/j.aquatox.2007.04.014 10.1016/j.chemosphere.2019.124790 10.1016/j.scitotenv.2019.134936 10.1016/j.scitotenv.2019.133901 10.1021/es502342r 10.1016/j.jhazmat.2023.131027 10.1021/ac061949s 10.1016/j.chemosphere.2020.126017 10.1038/nature01469 10.1016/j.watres.2007.11.039 10.1021/acs.est.6b04817 10.1016/j.scitotenv.2023.163210 10.1016/s0045-6535(98)00166-0 10.1016/j.envres.2019.109062 10.1016/j.watres.2018.06.060 10.1016/j.envpol.2021.117232 10.1021/acs.est.3c01500 10.1021/es032333c 10.1016/j.chemosphere.2021.129930 10.1021/es4034765 10.1016/j.watres.2020.116549 10.1016/s0165-9936(03)01003-3 10.1016/0304-4203(93)90124-7 10.1016/j.watres.2017.04.067 10.1021/acs.est.1c02704 10.1016/j.watres.2018.09.054 10.1016/j.watres.2021.117395 10.1039/c9ew00034h 10.1021/es400137x 10.1021/acs.est.9b06526 10.1021/acs.est.0c04394 10.1016/j.coesh.2018.06.006 10.1016/j.jwpe.2024.105730 10.1016/j.chemosphere.2022.134769 10.1021/acs.est.0c03220 10.1016/j.scitotenv.2016.02.031 10.3390/w14162459 10.1007/s10533-004-3361-2 10.1016/j.jhazmat.2023.131135 10.1016/j.watres.2021.117634 10.4319/lo.2004.49.1.0117 10.1016/j.scitotenv.2023.163589 10.4319/lo.1995.40.8.1369 10.1016/j.watres.2019.05.089 10.1080/10643389.2019.1586057 10.3390/agriculture14050684 10.1126/science.1253119 10.2134/jeq2009.0487 10.1016/j.chemosphere.2010.09.041 10.2166/aqua.2002.0038 10.1016/j.jenvman.2021.111951 10.1016/j.watres.2017.07.080 10.1016/j.envint.2020.105570 10.1088/1755-1315/245/1/012018 10.1016/j.chemosphere.2020.127774 10.1007/s11783-019-1204-6 10.1038/ngeo2440 10.1016/s1001-0742(12)60286-1 10.4319/lo.2008.53.3.0955 10.1002/ecy.3763 10.1039/d1ra03498g 10.1016/j.cej.2018.06.002 10.1016/j.chemosphere.2022.136870 10.1016/j.teac.2016.03.002 10.1016/j.limno.2019.125683 10.1016/j.cej.2019.122676 10.1016/j.watres.2021.117327 10.1021/acs.est.3c08155 10.1007/978-3-642-32223-5_5 10.1039/c9ew00931k 10.1021/acs.est.0c08565 10.1016/j.watres.2017.01.048 10.1021/es300039h 10.1016/j.cej.2021.132010 10.1016/s0016-7037(01)00830-4 10.1016/j.jenvman.2021.113041 10.1016/j.watres.2023.119646 10.1021/acs.est.1c02378 10.1038/ngeo391 10.1016/j.chemosphere.2020.127476 10.1016/j.watres.2023.120626 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Dec 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Dec 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s40726-025-00350-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2198-6592 |
ExternalDocumentID | 10_1007_s40726_025_00350_0 |
GroupedDBID | 0R~ 203 406 AACDK AAHBH AAHNG AAIAL AAJBT AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AUKKA AVXWI AXYYD AYFIA BENPR CSCUP DNIVK DPUIP EBLON EBS EIOEI FEDTE FERAY FIGPU FNLPD GGCAI GGRSB GJIRD HG6 HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM NPVJJ NQJWS O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX CITATION |
ID | FETCH-LOGICAL-c272t-dbbc2f573cd5e421b3d69a4f85f4f393ae54680e99693d9334a552667dca924c3 |
ISSN | 2198-6592 |
IngestDate | Fri Jul 25 09:36:18 EDT 2025 Tue Aug 12 03:10:01 EDT 2025 Mon Jul 21 06:07:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Disinfection by-products (DBPs) Drinking water treatment Biodegradation Phototransformation Dissolved organic matter (DOM) Toxicity |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c272t-dbbc2f573cd5e421b3d69a4f85f4f393ae54680e99693d9334a552667dca924c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3214852472 |
PQPubID | 2044259 |
ParticipantIDs | proquest_journals_3214852472 crossref_primary_10_1007_s40726_025_00350_0 springer_journals_10_1007_s40726_025_00350_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-02 |
PublicationDateYYYYMMDD | 2025-06-02 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Current pollution reports |
PublicationTitleAbbrev | Curr Pollution Rep |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | YY Xiang (350_CR145) 2020; 54 GR Aiken (350_CR73) 2011; 45 HC Xu (350_CR68) 2020; 725 MQ Zhu (350_CR161) 2015; 120 HY Zhai (350_CR162) 2014; 48 N Cortés-Francisco (350_CR157) 2014; 67 ZQ Chen (350_CR39) 2017; 124 C Fang (350_CR149) 2021; 55 CZ Chen (350_CR13) 2025; 274 QV Ly (350_CR79) 2021; 269 ME Muscarella (350_CR102) 2019; 13 MS Siddique (350_CR116) 2022; 427 HM Franklin (350_CR15) 2021; 283 MR Wu (350_CR117) 2019; 649 H He (350_CR5) 2022; 838 AM Kellerman (350_CR99) 2015; 8 PJ Hernes (350_CR53) 2013; 121 A Zsolnay (350_CR42) 1999; 38 XT Xu (350_CR118) 2021; 774 AC Stenson (350_CR144) 2003; 75 GJC Underwood (350_CR100) 2019; 9 JZ Pan (350_CR77) 2020; 261 SD Richardson (350_CR4) 2007; 636 BP Koch (350_CR143) 2007; 79 XY Liu (350_CR20) 2021; 201 J Wang (350_CR18) 2023; 878 MS Sankar (350_CR87) 2019; 77 M Aeschbacher (350_CR58) 2012; 46 E Avşar (350_CR3) 2018; 6 HP Chen (350_CR50) 2023; 451 HX Zhou (350_CR49) 2017; 112 BA Pellerin (350_CR90) 2010; 39 SM Louie (350_CR75) 2013; 47 HF Zhang (350_CR103) 2021; 294 DM White (350_CR119) 2003; 37 H Lin (350_CR44) 2022; 2 JR Han (350_CR109) 2021; 55 S Kim (350_CR2) 2003; 75 WC Chin (350_CR69) 1998; 391 HR Mian (350_CR107) 2018; 147 YC Luo (350_CR114) 2020; 238 SJ Yu (350_CR78) 2018; 63 J Wu (350_CR122) 2018; 201 MJ Liu (350_CR156) 2022; 2 YR Wang (350_CR113) 2023; 231 350_CR139 G Korshin (350_CR36) 2009; 43 W Chu (350_CR130) 2020; 46 XYY Ma (350_CR136) 2022; 843 LW Zhang (350_CR155) 2021; 407 R Henderson (350_CR23) 2008; 42 JL Hu (350_CR124) 2024; 73 J Sanchís (350_CR125) 2020; 176 SD Richardson (350_CR1) 2003; 22 SR Sarathy (350_CR158) 2011; 32 L Önnby (350_CR59) 2018; 144 ZH Fan (350_CR17) 2020; 239 SS Liu (350_CR63) 2019; 77 XF Yang (350_CR51) 2018; 242 R Stepanauskas (350_CR86) 2005; 74 AT Chow (350_CR9) 2005; 54 AF Gilca (350_CR108) 2020; 259 YL An (350_CR48) 2023; 451 XX Zhang (350_CR19) 2021; 272 YJ Zhou (350_CR66) 2019; 235 D Zhang (350_CR8) 2021; 55 MJ Plewa (350_CR129) 2004; 38 H He (350_CR164) 2023; 245 TW Davis (350_CR28) 2009; 8 A Philippe (350_CR76) 2014; 48 RG Wetzel (350_CR84) 1995; 40 JL Liu (350_CR32) 2010; 81 KMG Mostofa (350_CR94) 2013 A Andersson (350_CR147) 2020; 6 DN Kothawala (350_CR96) 2021; 36 350_CR34 WH Chu (350_CR131) 2021; 55 350_CR38 XY Wang (350_CR27) 2023; 882 JQ Liu (350_CR110) 2014; 65 A Huguet (350_CR41) 2009; 40 MH Lee (350_CR47) 2014; 42 XY Shi (350_CR22) 2019; 656 FL Dong (350_CR105) 2022; 423 T Bond (350_CR141) 2011; 32 MR Wu (350_CR121) 2019; 253 C Grasset (350_CR101) 2023; 57 JA Leenheer (350_CR62) 2003; 37 P Westerhoff (350_CR7) 2002; 51 CP Ward (350_CR81) 2016; 50 AR Winter (350_CR93) 2007; 84 AD Neilen (350_CR134) 2019; 695 BL Zhang (350_CR148) 2019; 157 DJ Repeta (350_CR85) 2002; 66 M Kerner (350_CR71) 2003; 422 ZW Yuan (350_CR154) 2017; 51 M Berggren (350_CR97) 2022; 103 YM Zhao (350_CR151) 2013; 25 L Li (350_CR72) 2020; 381 G Reifferscheid (350_CR128) 1996; 369 XZ Niu (350_CR45) 2019; 161 C Wang (350_CR115) 2019; 11 S Parvez (350_CR127) 2006; 32 CH Xue (350_CR140) 2022; 14 CY Hu (350_CR142) 2015; 56 LC Hua (350_CR35) 2019; 49 I Michael-Kordatou (350_CR31) 2015; 77 J Hur (350_CR46) 2013; 20 XL Wang (350_CR123) 2021; 11 P Herzsprung (350_CR37) 2012; 46 D Palma (350_CR57) 2021; 202 ZG Li (350_CR132) 2021; 55 MA Moran (350_CR88) 2000; 45 Y Yang (350_CR163) 2014; 48 DM McKnight (350_CR40) 2001; 46 YW Wu (350_CR16) 2022; 446 JL Lin (350_CR21) 2020; 703 J Li (350_CR159) 2023; 311 X Wang (350_CR10) 2017; 51 RM Cory (350_CR80) 2014; 345 Y Du (350_CR135) 2018; 145 JJ Wang (350_CR133) 2022; 56 Z Li (350_CR152) 2017; 178 HZ Xu (350_CR24) 2024; 64 MA Xenopoulos (350_CR29) 2021; 154 K Mopper (350_CR82) 1993; 41 KMG Mostofa (350_CR95) 2005; 6 YW Wu (350_CR150) 2022; 223 JL Xu (350_CR120) 2020; 54 H He (350_CR12) 2024; 58 M Gonsior (350_CR14) 2019; 155 D Wan (350_CR67) 2021; 55 RD Majumdar (350_CR65) 2017; 120 P Jeon (350_CR54) 2022; 14 A Tomlinson (350_CR25) 2016; 102 RP Milstead (350_CR64) 2023; 57 XX Wang (350_CR111) 2021; 282 C Liu (350_CR160) 2017; 124 HF Wilson (350_CR43) 2009; 2 YR Yao (350_CR55) 2024; 14 AM Hansen (350_CR91) 2016; 61 YJ Shi (350_CR74) 2020; 297 F Guillemette (350_CR98) 2011; 56 MA Moran (350_CR83) 1997; 42 W He (350_CR70) 2016; 551 PA Neale (350_CR126) 2019; 7 SK Ding (350_CR153) 2018; 350 S Dobaradaran (350_CR104) 2020; 182 I Michael-Kordatou (350_CR33) 2015; 77 D Graeber (350_CR52) 2012; 438 RL Bunch (350_CR6) 1961; 33 JR Helms (350_CR92) 2008; 53 T Sirivedhin (350_CR112) 2005; 39 ZC Hua (350_CR138) 2021; 188 JE Drewes (350_CR30) 2003; 37 N Lee (350_CR61) 2006; 40 A Andersson (350_CR146) 2019; 5 XT Xu (350_CR11) 2022; 301 L Liu (350_CR26) 2020; 248 I Obernosterer (350_CR89) 2004; 49 QY Wu (350_CR60) 2020; 137 YR Wang (350_CR137) 2021; 204 FG Meng (350_CR56) 2013; 47 MT Yang (350_CR106) 2016; 10 |
References_xml | – volume: 223 start-page: 9 year: 2022 ident: 350_CR150 publication-title: Water Res doi: 10.1016/j.watres.2022.119008 – volume: 75 start-page: 5336 issue: 20 year: 2003 ident: 350_CR2 publication-title: Anal Chem doi: 10.1021/ac034415p – volume: 42 start-page: 1307 issue: 6 year: 1997 ident: 350_CR83 publication-title: Limnol Oceanogr doi: 10.4319/lo.1997.42.6.1307 – volume: 157 start-page: 472 year: 2019 ident: 350_CR148 publication-title: Water Res doi: 10.1016/j.watres.2019.04.002 – volume: 120 start-page: 256 year: 2015 ident: 350_CR161 publication-title: Ecotox Environ Safe doi: 10.1016/j.ecoenv.2015.05.048 – volume: 56 start-page: 1689 issue: 6 year: 2015 ident: 350_CR142 publication-title: China Desalin Water Treat doi: 10.1080/19443994.2014.953211 – volume: 77 start-page: 130 year: 2019 ident: 350_CR87 publication-title: J Environ Sci doi: 10.1016/j.jes.2018.06.021 – volume: 6 start-page: 101 issue: 2 year: 2005 ident: 350_CR95 publication-title: Limnology doi: 10.1007/s10201-005-0149-6 – volume: 656 start-page: 1063 year: 2019 ident: 350_CR22 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.11.461 – volume: 269 start-page: 18 year: 2021 ident: 350_CR79 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128690 – volume: 155 start-page: 300 year: 2019 ident: 350_CR14 publication-title: Water Res doi: 10.1016/j.watres.2019.02.030 – volume: 55 start-page: 4103 issue: 7 year: 2021 ident: 350_CR132 publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c06856 – volume: 154 start-page: 323 issue: 2 year: 2021 ident: 350_CR29 publication-title: Biogeochemistry doi: 10.1007/s10533-021-00753-3 – volume: 32 start-page: 1 issue: 1 year: 2011 ident: 350_CR141 publication-title: Environ Technol doi: 10.1080/09593330.2010.495138 – volume: 121 start-page: 599 year: 2013 ident: 350_CR53 publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2013.07.039 – volume: 38 start-page: 62 issue: 1 year: 2004 ident: 350_CR129 publication-title: Environ Sci Technol doi: 10.1021/es030477l – volume: 37 start-page: 3612 issue: 15 year: 2003 ident: 350_CR30 publication-title: Water Res doi: 10.1016/S0043-1354(03)00230-6 – volume: 54 start-page: 475 issue: 8 year: 2005 ident: 350_CR9 publication-title: J Water Supply Res Technol-Aqua doi: 10.2166/aqua.2005.0044 – volume: 446 start-page: 6 year: 2022 ident: 350_CR16 publication-title: Chem Eng J doi: 10.1016/j.cej.2022.136921 – volume: 725 start-page: 8 year: 2020 ident: 350_CR68 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.138402 – volume: 40 start-page: 2357 issue: 12 year: 2006 ident: 350_CR61 publication-title: Water Res doi: 10.1016/j.watres.2006.04.023 – volume: 57 start-page: 13463 issue: 36 year: 2023 ident: 350_CR101 publication-title: Environ Sci Technol doi: 10.1021/acs.est.3c02175 – volume: 238 start-page: 10 year: 2020 ident: 350_CR114 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.116405 – volume: 242 start-page: 1185 year: 2018 ident: 350_CR51 publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.07.099 – volume: 2 start-page: 886 issue: 5 year: 2022 ident: 350_CR156 publication-title: ACS ES&T Eng doi: 10.1021/acsestengg.1c00409 – volume: 46 start-page: 1 issue: 6 year: 2020 ident: 350_CR130 publication-title: Water & Wastewater Engineering – volume: 45 start-page: 1254 issue: 6 year: 2000 ident: 350_CR88 publication-title: Limnol Oceanogr doi: 10.4319/lo.2000.45.6.1254 – volume: 649 start-page: 960 year: 2019 ident: 350_CR117 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.354 – volume: 32 start-page: 265 issue: 2 year: 2006 ident: 350_CR127 publication-title: Environ Int doi: 10.1016/j.envint.2005.08.022 – volume: 40 start-page: 706 issue: 6 year: 2009 ident: 350_CR41 publication-title: Org Geochem doi: 10.1016/j.orggeochem.2009.03.002 – volume: 63 start-page: 198 year: 2018 ident: 350_CR78 publication-title: J Environ Sci doi: 10.1016/j.jes.2017.06.021 – volume: 145 start-page: 94 year: 2018 ident: 350_CR135 publication-title: Water Res doi: 10.1016/j.watres.2018.08.023 – volume: 235 start-page: 900 year: 2019 ident: 350_CR66 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.07.008 – volume: 423 start-page: 11 year: 2022 ident: 350_CR105 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.127113 – volume: 47 start-page: 5027 issue: 14 year: 2013 ident: 350_CR56 publication-title: Water Res doi: 10.1016/j.watres.2013.05.043 – volume: 391 start-page: 568 issue: 6667 year: 1998 ident: 350_CR69 publication-title: Nature doi: 10.1038/35345 – volume: 8 start-page: 715 issue: 5 year: 2009 ident: 350_CR28 publication-title: Harmful Algae doi: 10.1016/j.hal.2009.02.004 – volume: 65 start-page: 64 year: 2014 ident: 350_CR110 publication-title: Water Res doi: 10.1016/j.watres.2014.07.024 – volume: 201 start-page: 66 year: 2018 ident: 350_CR122 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.02.185 – volume: 11 start-page: 11 issue: 12 year: 2019 ident: 350_CR115 publication-title: Water doi: 10.3390/w11122639 – volume: 636 start-page: 178 issue: 1–3 year: 2007 ident: 350_CR4 publication-title: Mutat Res-Rev Mutat Res doi: 10.1016/j.mrrev.2007.09.001 – volume: 13 start-page: 2183 issue: 9 year: 2019 ident: 350_CR102 publication-title: Isme J doi: 10.1038/s41396-019-0427-7 – volume: 6 start-page: 22 issue: 1 year: 2018 ident: 350_CR3 publication-title: Anadolu Univ J Sci Technol B-Theor Sci – volume: 178 start-page: 26 year: 2017 ident: 350_CR152 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.02.140 – volume: 37 start-page: 939 issue: 4 year: 2003 ident: 350_CR119 publication-title: Water Res doi: 10.1016/s0043-1354(02)00425-6 – volume: 56 start-page: 734 issue: 2 year: 2011 ident: 350_CR98 publication-title: Limnol Oceanogr doi: 10.4319/lo.2011.56.2.0734 – volume: 274 start-page: 9 year: 2025 ident: 350_CR13 publication-title: Water Res doi: 10.1016/j.watres.2024.123074 – volume: 77 start-page: 213 year: 2015 ident: 350_CR33 publication-title: Water Res doi: 10.1016/j.watres.2015.03.011 – ident: 350_CR34 doi: 10.1007/978-1-4020-6364-0_20 – volume: 42 start-page: 552 issue: 5 year: 2014 ident: 350_CR47 publication-title: Clean-Soil Air Water doi: 10.1002/clen.201200685 – volume: 124 start-page: 566 year: 2017 ident: 350_CR39 publication-title: Water Res doi: 10.1016/j.watres.2017.08.006 – volume: 75 start-page: 1275 issue: 6 year: 2003 ident: 350_CR144 publication-title: Anal Chem doi: 10.1021/ac026106p – volume: 407 start-page: 8 year: 2021 ident: 350_CR155 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124390 – volume: 2 start-page: 216 issue: 1 year: 2022 ident: 350_CR44 publication-title: ACS ES&T Wat doi: 10.1021/acsestwater.1c00391 – volume: 48 start-page: 12362 issue: 20 year: 2014 ident: 350_CR163 publication-title: Environ Sci Technol doi: 10.1021/es503621e – volume: 20 start-page: 4176 issue: 6 year: 2013 ident: 350_CR46 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-012-1384-0 – volume: 838 start-page: 11 year: 2022 ident: 350_CR5 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.156547 – volume: 50 start-page: 3545 issue: 7 year: 2016 ident: 350_CR81 publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b05354 – volume: 176 start-page: 10 year: 2020 ident: 350_CR125 publication-title: Water Res doi: 10.1016/j.watres.2020.115743 – volume: 438 start-page: 435 year: 2012 ident: 350_CR52 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2012.08.087 – volume: 67 start-page: 154 year: 2014 ident: 350_CR157 publication-title: Water Res doi: 10.1016/j.watres.2014.08.046 – volume: 51 start-page: 8110 issue: 14 year: 2017 ident: 350_CR154 publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b02194 – volume: 43 start-page: 1541 issue: 6 year: 2009 ident: 350_CR36 publication-title: Water Res doi: 10.1016/j.watres.2008.12.041 – volume: 36 start-page: 113 issue: 2 year: 2021 ident: 350_CR96 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2020.10.006 – volume: 369 start-page: 129 issue: 3–4 year: 1996 ident: 350_CR128 publication-title: Mutat Res-Genet Toxicol doi: 10.1016/s0165-1218(96)90021-x – volume: 102 start-page: 229 year: 2016 ident: 350_CR25 publication-title: Water Res doi: 10.1016/j.watres.2016.06.024 – volume: 297 start-page: 9 year: 2020 ident: 350_CR74 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2019.122281 – volume: 14 start-page: 11 issue: 9 year: 2022 ident: 350_CR140 publication-title: Water doi: 10.3390/w14091418 – volume: 55 start-page: 3747 issue: 6 year: 2021 ident: 350_CR8 publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c07853 – volume: 61 start-page: 1015 issue: 3 year: 2016 ident: 350_CR91 publication-title: Limnol Oceanogr doi: 10.1002/lno.10270 – volume: 45 start-page: 3196 issue: 8 year: 2011 ident: 350_CR73 publication-title: Environ Sci Technol doi: 10.1021/es103992s – volume: 56 start-page: 17763 issue: 24 year: 2022 ident: 350_CR133 publication-title: Environ Sci Technol doi: 10.1021/acs.est.2c07175 – volume: 774 start-page: 9 year: 2021 ident: 350_CR118 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.145297 – volume: 253 start-page: 1047 year: 2019 ident: 350_CR121 publication-title: Environ Pollut doi: 10.1016/j.envpol.2019.07.112 – volume: 9 start-page: 170 issue: 2 year: 2019 ident: 350_CR100 publication-title: Nat Clim Chang doi: 10.1038/s41558-018-0391-7 – volume: 32 start-page: 1709 issue: 15 year: 2011 ident: 350_CR158 publication-title: Environ Technol doi: 10.1080/09593330.2011.553843 – volume: 33 start-page: 122 issue: 2 year: 1961 ident: 350_CR6 publication-title: J Water Pollut Control Fed – volume: 46 start-page: 38 issue: 1 year: 2001 ident: 350_CR40 publication-title: Limnol Oceanogr doi: 10.4319/lo.2001.46.1.0038 – volume: 39 start-page: 1025 issue: 6 year: 2005 ident: 350_CR112 publication-title: Water Res. doi: 10.1016/j.watres.2004.11.031 – volume: 843 start-page: 10 year: 2022 ident: 350_CR136 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.156972 – volume: 46 start-page: 5511 issue: 10 year: 2012 ident: 350_CR37 publication-title: Environ Sci Technol doi: 10.1021/es300345c – volume: 84 start-page: 215 issue: 2 year: 2007 ident: 350_CR93 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2007.04.014 – volume: 239 start-page: 7 year: 2020 ident: 350_CR17 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124790 – volume: 703 start-page: 11 year: 2020 ident: 350_CR21 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.134936 – volume: 695 start-page: 11 year: 2019 ident: 350_CR134 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.133901 – volume: 48 start-page: 8946 issue: 16 year: 2014 ident: 350_CR76 publication-title: Environ Sci Technol doi: 10.1021/es502342r – volume: 451 start-page: 11 year: 2023 ident: 350_CR50 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2023.131027 – volume: 79 start-page: 1758 issue: 4 year: 2007 ident: 350_CR143 publication-title: Anal Chem doi: 10.1021/ac061949s – volume: 248 start-page: 126017 year: 2020 ident: 350_CR26 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126017 – volume: 422 start-page: 150 issue: 6928 year: 2003 ident: 350_CR71 publication-title: Nature doi: 10.1038/nature01469 – volume: 42 start-page: 1827 issue: 8–9 year: 2008 ident: 350_CR23 publication-title: Water Res doi: 10.1016/j.watres.2007.11.039 – volume: 51 start-page: 2015 issue: 4 year: 2017 ident: 350_CR10 publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b04817 – volume: 878 start-page: 11 year: 2023 ident: 350_CR18 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.163210 – volume: 38 start-page: 45 issue: 1 year: 1999 ident: 350_CR42 publication-title: Chemosphere doi: 10.1016/s0045-6535(98)00166-0 – volume: 182 start-page: 14 year: 2020 ident: 350_CR104 publication-title: Environ Res doi: 10.1016/j.envres.2019.109062 – volume: 144 start-page: 677 year: 2018 ident: 350_CR59 publication-title: Water Res doi: 10.1016/j.watres.2018.06.060 – volume: 73 start-page: 464 issue: 3 year: 2024 ident: 350_CR124 publication-title: Aqua – volume: 283 start-page: 11 year: 2021 ident: 350_CR15 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.117232 – volume: 57 start-page: 11876 issue: 32 year: 2023 ident: 350_CR64 publication-title: Environ Sci Technol doi: 10.1021/acs.est.3c01500 – volume: 37 start-page: 18A issue: 1 year: 2003 ident: 350_CR62 publication-title: Environ Sci Technol doi: 10.1021/es032333c – volume: 272 start-page: 11 year: 2021 ident: 350_CR19 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129930 – volume: 48 start-page: 2579 issue: 5 year: 2014 ident: 350_CR162 publication-title: Environ Sci Technol doi: 10.1021/es4034765 – volume: 188 start-page: 10 year: 2021 ident: 350_CR138 publication-title: Water Res doi: 10.1016/j.watres.2020.116549 – volume: 22 start-page: 666 issue: 10 year: 2003 ident: 350_CR1 publication-title: Trac-Trends Anal Chem doi: 10.1016/s0165-9936(03)01003-3 – volume: 41 start-page: 229 issue: 1–3 year: 1993 ident: 350_CR82 publication-title: Mar Chem doi: 10.1016/0304-4203(93)90124-7 – volume: 120 start-page: 64 year: 2017 ident: 350_CR65 publication-title: Water Res doi: 10.1016/j.watres.2017.04.067 – volume: 55 start-page: 8937 issue: 13 year: 2021 ident: 350_CR67 publication-title: Environ Sci Technol doi: 10.1021/acs.est.1c02704 – volume: 147 start-page: 112 year: 2018 ident: 350_CR107 publication-title: Water Res doi: 10.1016/j.watres.2018.09.054 – volume: 202 start-page: 12 year: 2021 ident: 350_CR57 publication-title: Water Res doi: 10.1016/j.watres.2021.117395 – volume: 5 start-page: 861 issue: 5 year: 2019 ident: 350_CR146 publication-title: Environ Sci-Wat Res Technol doi: 10.1039/c9ew00034h – volume: 47 start-page: 4245 issue: 9 year: 2013 ident: 350_CR75 publication-title: Environ Sci Technol doi: 10.1021/es400137x – volume: 54 start-page: 3245 issue: 6 year: 2020 ident: 350_CR120 publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b06526 – volume: 55 start-page: 4084 issue: 7 year: 2021 ident: 350_CR131 publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c04394 – volume: 7 start-page: 1 year: 2019 ident: 350_CR126 publication-title: Curr Opin Environ Sci Health. doi: 10.1016/j.coesh.2018.06.006 – volume: 64 start-page: 9 year: 2024 ident: 350_CR24 publication-title: J Water Process Eng doi: 10.1016/j.jwpe.2024.105730 – volume: 301 start-page: 10 year: 2022 ident: 350_CR11 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134769 – volume: 54 start-page: 14964 issue: 23 year: 2020 ident: 350_CR145 publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c03220 – volume: 551 start-page: 415 year: 2016 ident: 350_CR70 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.02.031 – volume: 14 start-page: 17 issue: 16 year: 2022 ident: 350_CR54 publication-title: Water doi: 10.3390/w14162459 – volume: 74 start-page: 131 issue: 2 year: 2005 ident: 350_CR86 publication-title: Biogeochemistry doi: 10.1007/s10533-004-3361-2 – volume: 451 start-page: 11 year: 2023 ident: 350_CR48 publication-title: J Hazard Mater. doi: 10.1016/j.jhazmat.2023.131135 – volume: 204 start-page: 11 year: 2021 ident: 350_CR137 publication-title: Water Res doi: 10.1016/j.watres.2021.117634 – volume: 49 start-page: 117 issue: 1 year: 2004 ident: 350_CR89 publication-title: Limnol Oceanogr doi: 10.4319/lo.2004.49.1.0117 – volume: 882 start-page: 8 year: 2023 ident: 350_CR27 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.163589 – volume: 40 start-page: 1369 issue: 8 year: 1995 ident: 350_CR84 publication-title: Limnol Oceanogr doi: 10.4319/lo.1995.40.8.1369 – volume: 161 start-page: 11 year: 2019 ident: 350_CR45 publication-title: Water Res doi: 10.1016/j.watres.2019.05.089 – volume: 49 start-page: 1803 issue: 19 year: 2019 ident: 350_CR35 publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2019.1586057 – volume: 14 start-page: 20 issue: 5 year: 2024 ident: 350_CR55 publication-title: Agriculture-Basel doi: 10.3390/agriculture14050684 – volume: 345 start-page: 925 issue: 6199 year: 2014 ident: 350_CR80 publication-title: Science doi: 10.1126/science.1253119 – volume: 39 start-page: 946 issue: 3 year: 2010 ident: 350_CR90 publication-title: J Environ Qual doi: 10.2134/jeq2009.0487 – volume: 81 start-page: 1075 issue: 9 year: 2010 ident: 350_CR32 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.09.041 – volume: 51 start-page: 415 issue: 8 year: 2002 ident: 350_CR7 publication-title: J Water Supply Res Technol-Aqua doi: 10.2166/aqua.2002.0038 – volume: 282 start-page: 9 year: 2021 ident: 350_CR111 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2021.111951 – volume: 124 start-page: 630 year: 2017 ident: 350_CR160 publication-title: Water Res doi: 10.1016/j.watres.2017.07.080 – volume: 137 start-page: 9 year: 2020 ident: 350_CR60 publication-title: Environ Int doi: 10.1016/j.envint.2020.105570 – ident: 350_CR38 doi: 10.1088/1755-1315/245/1/012018 – volume: 261 start-page: 8 year: 2020 ident: 350_CR77 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127774 – ident: 350_CR139 doi: 10.1007/s11783-019-1204-6 – volume: 8 start-page: 454 issue: 6 year: 2015 ident: 350_CR99 publication-title: Nat Geosci doi: 10.1038/ngeo2440 – volume: 25 start-page: 2207 issue: 11 year: 2013 ident: 350_CR151 publication-title: J Environ Sci doi: 10.1016/s1001-0742(12)60286-1 – volume: 53 start-page: 955 issue: 3 year: 2008 ident: 350_CR92 publication-title: Limnol Oceanogr doi: 10.4319/lo.2008.53.3.0955 – volume: 103 start-page: 13 issue: 9 year: 2022 ident: 350_CR97 publication-title: Ecology doi: 10.1002/ecy.3763 – volume: 11 start-page: 28476 issue: 46 year: 2021 ident: 350_CR123 publication-title: China RSC Adv doi: 10.1039/d1ra03498g – volume: 350 start-page: 356 year: 2018 ident: 350_CR153 publication-title: Chem Eng J doi: 10.1016/j.cej.2018.06.002 – volume: 77 start-page: 213 year: 2015 ident: 350_CR31 publication-title: Water Res doi: 10.1016/j.watres.2015.03.011 – volume: 311 start-page: 13 year: 2023 ident: 350_CR159 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136870 – volume: 10 start-page: 24 year: 2016 ident: 350_CR106 publication-title: Trends Environ Anal Chem doi: 10.1016/j.teac.2016.03.002 – volume: 77 start-page: 8 year: 2019 ident: 350_CR63 publication-title: Limnologica doi: 10.1016/j.limno.2019.125683 – volume: 381 start-page: 12 year: 2020 ident: 350_CR72 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.122676 – volume: 201 start-page: 10 year: 2021 ident: 350_CR20 publication-title: Water Res doi: 10.1016/j.watres.2021.117327 – volume: 58 start-page: 3399 issue: 7 year: 2024 ident: 350_CR12 publication-title: Environ Sci Technol doi: 10.1021/acs.est.3c08155 – start-page: 365 volume-title: Photobiogeochemistry of organic matter principles and practices in water environments year: 2013 ident: 350_CR94 doi: 10.1007/978-3-642-32223-5_5 – volume: 6 start-page: 779 issue: 3 year: 2020 ident: 350_CR147 publication-title: Environ Sci-Wat Res Technol doi: 10.1039/c9ew00931k – volume: 55 start-page: 5906 issue: 9 year: 2021 ident: 350_CR109 publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c08565 – volume: 112 start-page: 120 year: 2017 ident: 350_CR49 publication-title: Water Res doi: 10.1016/j.watres.2017.01.048 – volume: 46 start-page: 4916 issue: 9 year: 2012 ident: 350_CR58 publication-title: Environ Sci Technol doi: 10.1021/es300039h – volume: 427 start-page: 15 year: 2022 ident: 350_CR116 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.132010 – volume: 66 start-page: 955 issue: 6 year: 2002 ident: 350_CR85 publication-title: Geochim Cosmochim Acta doi: 10.1016/s0016-7037(01)00830-4 – volume: 294 start-page: 17 year: 2021 ident: 350_CR103 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2021.113041 – volume: 231 start-page: 11 year: 2023 ident: 350_CR113 publication-title: Water Res doi: 10.1016/j.watres.2023.119646 – volume: 55 start-page: 12326 issue: 18 year: 2021 ident: 350_CR149 publication-title: Environ Sci Technol doi: 10.1021/acs.est.1c02378 – volume: 2 start-page: 37 issue: 1 year: 2009 ident: 350_CR43 publication-title: Nat Geosci doi: 10.1038/ngeo391 – volume: 259 start-page: 17 year: 2020 ident: 350_CR108 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127476 – volume: 245 start-page: 11 year: 2023 ident: 350_CR164 publication-title: Water Res doi: 10.1016/j.watres.2023.120626 |
SSID | ssj0002046597 |
Score | 2.2933602 |
SecondaryResourceType | review_article |
Snippet | Purpose of Review
This study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic... Purpose of ReviewThis study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 29 |
SubjectTerms | Algae Aquatic ecosystems Aquatic environment Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Biodegradation By products Byproducts Carbohydrates Chemical properties Coagulation Comparative analysis Disinfection Disinfection & disinfectants Dissolved organic matter Drinking water Earth and Environmental Science Environment Environmental Law/Policy/Ecojustice Flowers & plants Humification Industrial Pollution Prevention Mass spectrometry Mass spectroscopy Microorganisms Monitoring/Environmental Analysis Oxidation Photochemicals Photodegradation Plankton Pollutants Pollution Precursors Prediction models Review Speciation Surface water Topical Collection on Biology and Pollution Toxicity Waste Water Technology Wastewater treatment Water Management Water Pollution Control Water quality Water treatment |
Title | The Impact of Dissolved Organic Matter in Natural Receiving Systems on the Formation Potential and Toxicity of Disinfection By-products: Insights from Origins, Chemical Properties, and Transformations |
URI | https://link.springer.com/article/10.1007/s40726-025-00350-0 https://www.proquest.com/docview/3214852472 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXK7gUOiE9RWNAcuLVBrRM3CbctUO0iKHvoqrunyHESqRySatsi4BfyK_gtjO2x03ZZieUStY4VR5oXezx-84ax15UciEoppauX8SAqhAzSBP9KXRBFppVO9tRsi-no5Dz6eCEuOp3fW6ylzTp_o37-Na_kf6yKbWhXnSV7C8v6h2ID_kb74hUtjNd_tvGpT3N8v9DDfUMP0iZYqt5nI56pQxpTafU10EssFyaGQFLldFjQm7gkxt5Zs9YMItIQmDXfF4poGziA427VvfGPYGnVYg2p7rRe6W3-yuarfDHltki9gBQJznTY_0rrtzrG6GzLaXZRw6-7YqhLXYnZjEeHG55AZFgI83IRXG5aioKdQy83HvFzCofPyzr41NAqvd1VYjuJj1PsgwvD0Wp3yi72uRc9bQN4dpEzsynOzEmgz5B3pv7hPsSvrSiWRLLSOnJ6bHwFfRYbDNr107MavQK06Zxh58x0zgZ32CHHbQw_YIfHk_F46qOA-EHgO8WUzWVyOq-NtOsxtdugvZN74xDNHrD7tJOBYwvLh6xT1o_YvS19y8fsFwIULEChqcADFAigYAEKixoIoOABCgRQaGpAgIIHKHiAAoIIHEBpAA9Q2ALoW3DwBA1PIHj2wYETWnD27VN3ofmEnU8-zN6dBFQ6JFA85uugyHPFKxGHqhBlxId5WIxSGVWJqKIqTENZimiUDErc7adhkYZhJIVAXzUulEx5pMKn7KBu6vIZA66E1kAcJUOJvVSeiHygimGS5jHXxRi6rOfMky2tQkx2MxK67MhZMKOZZJXpYmGJ4FHMu6zvrNrevvlpz2_X_QW7235FR-xgfbUpX6JPvc5fETD_ACJa0v4 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Dissolved+Organic+Matter+in+Natural+Receiving+Systems+on+the+Formation+Potential+and+Toxicity+of+Disinfection+By-products%3A+Insights+from+Origins%2C+Chemical+Properties%2C+and+Transformations&rft.jtitle=Current+pollution+reports&rft.au=Li%2C+Wei-Yu&rft.au=Chen%2C+Yun&rft.au=Wang%2C+Wen-Long&rft.au=Chen%2C+Yan-Lin&rft.date=2025-06-02&rft.pub=Springer+International+Publishing&rft.eissn=2198-6592&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1007%2Fs40726-025-00350-0&rft.externalDocID=10_1007_s40726_025_00350_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6592&client=summon |