Machine learning application with Bayesian regularization for predicting pressure drop in R134a's annular evaporation and condensation

The study of condensation and evaporation in plain pipes is a significant area of engineering and scientific inquiry, as it has relevance for enhancing and developing various industrial procedures. This study utilized a Bayesian artificial intelligence method to determine the pressure drop in a vert...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Brazilian Society of Mechanical Sciences and Engineering Vol. 47; no. 5
Main Authors Çolak, Andaç Batur, Bacak, Aykut, Karakoyun, Yakup, Koca, Aliihsan, Dalkilic, Ahmet Selim
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1678-5878
1806-3691
DOI10.1007/s40430-025-05527-8

Cover

Loading…
Abstract The study of condensation and evaporation in plain pipes is a significant area of engineering and scientific inquiry, as it has relevance for enhancing and developing various industrial procedures. This study utilized a Bayesian artificial intelligence method to determine the pressure drop in a vertically oriented plain copper pipe during R134a's annular condensation and vaporization. The heat exchanger uses R134a and water in the tube and annulus sides, in turn. The tube has an inner diameter of 8 and a length of 500 mm. The training sets for artificial neural networks comprise R134a mass fluxes within the interval of 260–515 kg/m 2 s for in-tube condensation and 200–405 kg/m 2 s for evaporation. The obtained data on pressure drop during condensation and evaporation experiments were utilized in artificial neural network analysis using a differential pressure transducer in the test section. The study randomly divided 368 and 50 data points into training (85%) and testing (15%) sets for condensation and evaporation. The Bayesian method, primarily applied on this subject, effectively forecasts pressure drop during experimental condensation and evaporation. Regarding margin of deviation analyses, the models' condensation and evaporation conditions display variations of approximately  ± 7.5 and  ± 8.9%, respectively. The artificial neural network training technique was optimized to achieve minimal mean squared error values of 1.4211E-06 after 32 iterations for condensation and 1.3511E-06 after 40 iterations for evaporation. The predicted pressure drop data has a deviation of  ± 10% with the experimental one for both condensation and evaporation. The artificial neural network model produced R-values of 0.99903 and 0.98451 for condensation and evaporation, correspondingly.
AbstractList The study of condensation and evaporation in plain pipes is a significant area of engineering and scientific inquiry, as it has relevance for enhancing and developing various industrial procedures. This study utilized a Bayesian artificial intelligence method to determine the pressure drop in a vertically oriented plain copper pipe during R134a's annular condensation and vaporization. The heat exchanger uses R134a and water in the tube and annulus sides, in turn. The tube has an inner diameter of 8 and a length of 500 mm. The training sets for artificial neural networks comprise R134a mass fluxes within the interval of 260–515 kg/m 2 s for in-tube condensation and 200–405 kg/m 2 s for evaporation. The obtained data on pressure drop during condensation and evaporation experiments were utilized in artificial neural network analysis using a differential pressure transducer in the test section. The study randomly divided 368 and 50 data points into training (85%) and testing (15%) sets for condensation and evaporation. The Bayesian method, primarily applied on this subject, effectively forecasts pressure drop during experimental condensation and evaporation. Regarding margin of deviation analyses, the models' condensation and evaporation conditions display variations of approximately  ± 7.5 and  ± 8.9%, respectively. The artificial neural network training technique was optimized to achieve minimal mean squared error values of 1.4211E-06 after 32 iterations for condensation and 1.3511E-06 after 40 iterations for evaporation. The predicted pressure drop data has a deviation of  ± 10% with the experimental one for both condensation and evaporation. The artificial neural network model produced R-values of 0.99903 and 0.98451 for condensation and evaporation, correspondingly.
The study of condensation and evaporation in plain pipes is a significant area of engineering and scientific inquiry, as it has relevance for enhancing and developing various industrial procedures. This study utilized a Bayesian artificial intelligence method to determine the pressure drop in a vertically oriented plain copper pipe during R134a's annular condensation and vaporization. The heat exchanger uses R134a and water in the tube and annulus sides, in turn. The tube has an inner diameter of 8 and a length of 500 mm. The training sets for artificial neural networks comprise R134a mass fluxes within the interval of 260–515 kg/m2s for in-tube condensation and 200–405 kg/m2s for evaporation. The obtained data on pressure drop during condensation and evaporation experiments were utilized in artificial neural network analysis using a differential pressure transducer in the test section. The study randomly divided 368 and 50 data points into training (85%) and testing (15%) sets for condensation and evaporation. The Bayesian method, primarily applied on this subject, effectively forecasts pressure drop during experimental condensation and evaporation. Regarding margin of deviation analyses, the models' condensation and evaporation conditions display variations of approximately  ± 7.5 and  ± 8.9%, respectively. The artificial neural network training technique was optimized to achieve minimal mean squared error values of 1.4211E-06 after 32 iterations for condensation and 1.3511E-06 after 40 iterations for evaporation. The predicted pressure drop data has a deviation of  ± 10% with the experimental one for both condensation and evaporation. The artificial neural network model produced R-values of 0.99903 and 0.98451 for condensation and evaporation, correspondingly.
ArticleNumber 221
Author Bacak, Aykut
Karakoyun, Yakup
Çolak, Andaç Batur
Koca, Aliihsan
Dalkilic, Ahmet Selim
Author_xml – sequence: 1
  givenname: Andaç Batur
  orcidid: 0000-0001-9297-8134
  surname: Çolak
  fullname: Çolak, Andaç Batur
  email: bcolak@ohu.edu.tr
  organization: Department of Information Systems and Technologies, Niğde Ömer Halisdemir University
– sequence: 2
  givenname: Aykut
  surname: Bacak
  fullname: Bacak, Aykut
  organization: Department of Mechanical Engineering, Faculty of Mechanical Engineering, Yildiz Technical University
– sequence: 3
  givenname: Yakup
  surname: Karakoyun
  fullname: Karakoyun, Yakup
  organization: Department of Mechanical Engineering, Engineering Faculty, Van Yüzüncü Yıl University
– sequence: 4
  givenname: Aliihsan
  surname: Koca
  fullname: Koca, Aliihsan
  organization: Department of Mechanical Engineering, Faculty of Mechanical Engineering, Istanbul Technical University (ITU)
– sequence: 5
  givenname: Ahmet Selim
  surname: Dalkilic
  fullname: Dalkilic, Ahmet Selim
  organization: Department of Mechanical Engineering, Faculty of Mechanical Engineering, Yildiz Technical University
BookMark eNp9kM1KxDAUhYOM4MzoC7gKuHBVvUmbJl3q4B-MCKLrkDbpTIaa1KRVxgfwue1MBXeu7t_5zoUzQxPnnUHolMAFAeCXMYMshQQoS4AxyhNxgKZEQJ6keUEmQ59zkTDBxRGaxbgBSCnL2RR9P6pqbZ3BjVHBWbfCqm0bW6nOeoc_bbfG12prolUOB7PqGxXs13isfcBtMNpW3Y4b2hj7YLAOvsXW4WeSZuo8YuXcDsPmQ7U-jKxyGlfeaePifnGMDmvVRHPyW-fo9fbmZXGfLJ_uHhZXy6SinHaJLilLM17XZVmCYqIoSElNSbXIeckoG-aaaagJ0wrKGjJBeaG04VmWc84hnaOz0bcN_r03sZMb3wc3vJQpEQIY5IwPKjqqquBjDKaWbbBvKmwlAbnLW455yyFvuc9bigFKRygOYrcy4c_6H-oHtGKHTw
Cites_doi 10.1016/j.icheatmasstransfer.2010.02.010
10.1016/j.icheatmasstransfer.2016.11.010
10.1016/j.ijheatmasstransfer.2022.123109
10.1016/j.ijheatfluidflow.2007.01.004
10.1016/j.ijthermalsci.2021.107202
10.1007/s00231-011-0854-0
10.1063/5.0203144
10.1038/s41598-024-60898-7
10.1016/j.ijmultiphaseflow.2016.08.004
10.1007/s13369-013-0659-1
10.1007/s12206-011-0618-2
10.1002/er.5680
10.1016/j.expthermflusci.2009.12.011
10.1016/j.ijheatmasstransfer.2022.123017
10.1080/08916152.2011.631080
10.1016/j.ijthermalsci.2022.107624
10.1007/s10973-024-13082-y
10.1016/j.expthermflusci.2010.08.002
10.1016/j.ijrefrig.2017.10.007
10.1016/j.energy.2010.12.029
10.1016/j.net.2021.12.023
10.1016/j.icheatmasstransfer.2017.05.030
10.3390/e21070689
10.1007/s00231-013-1252-6
10.1016/0017-9310(73)90063-X
10.3390/fluids9080181
10.1016/j.icheatmasstransfer.2010.10.009
10.1007/s00231-002-0397-5
10.1007/s44189-023-00025-9
10.19113/sdufenbed.503829
10.1016/j.ijrefrig.2024.07.027
10.1007/s00231-020-02956-0
10.1016/j.ijmultiphaseflow.2015.12.010
10.1016/j.cherd.2021.01.002
10.1115/IHTC14-22057
10.1016/j.applthermaleng.2018.01.084
10.1016/j.icheatmasstransfer.2011.08.014
10.1016/j.applthermaleng.2016.05.189
10.1016/j.enconman.2010.05.019
10.1115/HT2024-131476
10.1016/j.ijheatmasstransfer.2019.118688
10.1007/s13369-013-0595-0
10.1016/j.ijrefrig.2023.04.031
10.1115/HT2024-121705
10.1016/j.nucengdes.2022.111863
10.1016/j.icheatmasstransfer.2008.06.002
10.1016/j.ijheatmasstransfer.2009.12.051
10.1080/714044410
10.3390/en16041686
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s40430-025-05527-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1806-3691
ExternalDocumentID 10_1007_s40430_025_05527_8
GroupedDBID 06D
0R~
203
29L
29~
2WC
30V
4.4
406
5GY
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMFV
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFDZB
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
APOWU
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BGNMA
C1A
CS3
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
PT4
RIG
RLLFE
RNS
ROL
RSC
RSV
SCD
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
ZMTXR
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
OVT
ID FETCH-LOGICAL-c272t-db25347ffbbb0a58991b2eb2d867b525991f5d0f15da0bf048279ade744677703
IEDL.DBID AGYKE
ISSN 1678-5878
IngestDate Fri Jul 25 09:48:32 EDT 2025
Tue Aug 05 11:59:03 EDT 2025
Sat May 10 01:10:24 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Evaporation
Bayesian regularization
Pressure drop
Condensation
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-db25347ffbbb0a58991b2eb2d867b525991f5d0f15da0bf048279ade744677703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9297-8134
PQID 3188050657
PQPubID 2043642
ParticipantIDs proquest_journals_3188050657
crossref_primary_10_1007_s40430_025_05527_8
springer_journals_10_1007_s40430_025_05527_8
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of the Brazilian Society of Mechanical Sciences and Engineering
PublicationTitleAbbrev J Braz. Soc. Mech. Sci. Eng
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References 5527_CR8
GGL de Souza (5527_CR15) 2024; 168
K Aroonrat (5527_CR47) 2021; 57
S Azizi (5527_CR4) 2016; 106
D Chisholm (5527_CR55) 1973; 16
AS Dalkilic (5527_CR41) 2013; 38
5527_CR3
SA Shourehdeli (5527_CR26) 2023; 31
B Najafi (5527_CR23) 2021; 167
5527_CR1
5527_CR2
M Balcilar (5527_CR38) 2011; 38
AS Dalkilic (5527_CR36) 2008; 35
5527_CR52
S Azizi (5527_CR18) 2016; 87
AS Dalkılıç (5527_CR45) 2017; 81
K Aroonrat (5527_CR46) 2019; 144
A Zendehboudi (5527_CR7) 2017; 86
AS Dalkilic (5527_CR53) 2010; 37
S Laohalertdecha (5527_CR44) 2014; 50
MT Hughes (5527_CR9) 2022; 194
5527_CR10
A Parrales (5527_CR11) 2019; 21
Z Lin (5527_CR17) 2020; 210
5527_CR56
F Nie (5527_CR6) 2023; 184
S Azizi (5527_CR19) 2016; 80
AS Dalkilic (5527_CR37) 2010; 51
WR Lockhart (5527_CR54) 1949; 45
F Faraji (5527_CR21) 2022; 395
A Khosravi (5527_CR13) 2018; 133
O Acikgoz (5527_CR34) 2022; 178
5527_CR48
JM Quibén (5527_CR57) 2007; 28
K Aroonrat (5527_CR49) 2011; 35
5527_CR31
AS Dalkilic (5527_CR51) 2010; 34
5527_CR30
SJ Kline (5527_CR32) 1963; 75
M Balcılar (5527_CR39) 2011; 25
Y Qiu (5527_CR12) 2021; 178
M Balcilar (5527_CR16) 2014; 39
K Aroonrat (5527_CR43) 2013; 26
AS Dalkilic (5527_CR40) 2012; 48
MA Moradkhani (5527_CR27) 2024; 14
MK Sevindir (5527_CR25) 2019; 23
AS Dalkilic (5527_CR35) 2010; 53
D Colorado (5527_CR24) 2011; 36
5527_CR29
AB Çolak (5527_CR33) 2021; 45
5527_CR20
DH Lee (5527_CR5) 2022; 54
JR Thome (5527_CR50) 2003; 24
S Laohalertdecha (5527_CR42) 2011; 38
JJ Garcia (5527_CR14) 2018; 85
JA Montañez-Barrera (5527_CR22) 2022; 194
J Wongsa-ngam (5527_CR58) 2004; 40
W Li (5527_CR28) 2024; 224
References_xml – volume: 37
  start-page: 827
  issue: 7
  year: 2010
  ident: 5527_CR53
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2010.02.010
– volume: 81
  start-page: 8
  year: 2017
  ident: 5527_CR45
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2016.11.010
– volume: 194
  year: 2022
  ident: 5527_CR9
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2022.123109
– volume: 28
  start-page: 1060
  issue: 5
  year: 2007
  ident: 5527_CR57
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2007.01.004
– ident: 5527_CR2
  doi: 10.1016/j.ijthermalsci.2021.107202
– volume: 210
  year: 2020
  ident: 5527_CR17
  publication-title: Energy
– volume: 48
  start-page: 123
  year: 2012
  ident: 5527_CR40
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-011-0854-0
– ident: 5527_CR29
  doi: 10.1063/5.0203144
– volume: 14
  start-page: 10515
  issue: 1
  year: 2024
  ident: 5527_CR27
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-60898-7
– volume: 87
  start-page: 35
  year: 2016
  ident: 5527_CR18
  publication-title: Int J Multiph Flow
  doi: 10.1016/j.ijmultiphaseflow.2016.08.004
– volume: 39
  start-page: 1271
  year: 2014
  ident: 5527_CR16
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-013-0659-1
– volume: 25
  start-page: 2683
  year: 2011
  ident: 5527_CR39
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-011-0618-2
– volume: 45
  start-page: 478
  issue: 1
  year: 2021
  ident: 5527_CR33
  publication-title: Int J Energy Res
  doi: 10.1002/er.5680
– volume: 34
  start-page: 692
  issue: 6
  year: 2010
  ident: 5527_CR51
  publication-title: Exp Thermal Fluid Sci
  doi: 10.1016/j.expthermflusci.2009.12.011
– volume: 194
  year: 2022
  ident: 5527_CR22
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2022.123017
– volume: 26
  start-page: 41
  issue: 1
  year: 2013
  ident: 5527_CR43
  publication-title: Experiment Heat Transfer
  doi: 10.1080/08916152.2011.631080
– volume: 178
  year: 2022
  ident: 5527_CR34
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2022.107624
– ident: 5527_CR56
– ident: 5527_CR31
  doi: 10.1007/s10973-024-13082-y
– volume: 35
  start-page: 20
  issue: 1
  year: 2011
  ident: 5527_CR49
  publication-title: Exp Thermal Fluid Sci
  doi: 10.1016/j.expthermflusci.2010.08.002
– volume: 85
  start-page: 292
  year: 2018
  ident: 5527_CR14
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2017.10.007
– volume: 36
  start-page: 854
  issue: 2
  year: 2011
  ident: 5527_CR24
  publication-title: Energy
  doi: 10.1016/j.energy.2010.12.029
– volume: 54
  start-page: 2297
  issue: 6
  year: 2022
  ident: 5527_CR5
  publication-title: Nucl Eng Technol
  doi: 10.1016/j.net.2021.12.023
– volume: 86
  start-page: 166
  year: 2017
  ident: 5527_CR7
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2017.05.030
– volume: 21
  start-page: 689
  issue: 7
  year: 2019
  ident: 5527_CR11
  publication-title: Entropy
  doi: 10.3390/e21070689
– volume: 184
  year: 2023
  ident: 5527_CR6
  publication-title: Int J Therm Sci
– volume: 45
  start-page: 39
  issue: 1
  year: 1949
  ident: 5527_CR54
  publication-title: Chem Eng Prog
– volume: 50
  start-page: 469
  year: 2014
  ident: 5527_CR44
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-013-1252-6
– volume: 16
  start-page: 347
  issue: 2
  year: 1973
  ident: 5527_CR55
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(73)90063-X
– ident: 5527_CR3
  doi: 10.3390/fluids9080181
– volume: 38
  start-page: 75
  issue: 1
  year: 2011
  ident: 5527_CR38
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2010.10.009
– volume: 40
  start-page: 425
  year: 2004
  ident: 5527_CR58
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-002-0397-5
– volume: 31
  start-page: 8
  issue: 1
  year: 2023
  ident: 5527_CR26
  publication-title: Int J Air Condition Refrigerat
  doi: 10.1007/s44189-023-00025-9
– volume: 23
  start-page: 871
  issue: 3
  year: 2019
  ident: 5527_CR25
  publication-title: Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  doi: 10.19113/sdufenbed.503829
– volume: 168
  start-page: 149
  year: 2024
  ident: 5527_CR15
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2024.07.027
– volume: 224
  year: 2024
  ident: 5527_CR28
  publication-title: Int J Heat Mass Transf
– volume: 75
  start-page: 3
  year: 1963
  ident: 5527_CR32
  publication-title: Mech Eng
– volume: 57
  start-page: 465
  year: 2021
  ident: 5527_CR47
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-020-02956-0
– ident: 5527_CR30
– volume: 80
  start-page: 181
  year: 2016
  ident: 5527_CR19
  publication-title: Int J Multiph Flow
  doi: 10.1016/j.ijmultiphaseflow.2015.12.010
– volume: 167
  start-page: 252
  year: 2021
  ident: 5527_CR23
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2021.01.002
– ident: 5527_CR52
  doi: 10.1115/IHTC14-22057
– volume: 133
  start-page: 361
  year: 2018
  ident: 5527_CR13
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.01.084
– volume: 38
  start-page: 1406
  issue: 10
  year: 2011
  ident: 5527_CR42
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2011.08.014
– volume: 106
  start-page: 203
  year: 2016
  ident: 5527_CR4
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.05.189
– volume: 51
  start-page: 2535
  issue: 12
  year: 2010
  ident: 5527_CR37
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.05.019
– ident: 5527_CR10
  doi: 10.1115/HT2024-131476
– volume: 144
  year: 2019
  ident: 5527_CR46
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.118688
– volume: 178
  year: 2021
  ident: 5527_CR12
  publication-title: Int J Heat Mass Transf
– volume: 38
  start-page: 1493
  year: 2013
  ident: 5527_CR41
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-013-0595-0
– ident: 5527_CR48
– ident: 5527_CR8
  doi: 10.1016/j.ijrefrig.2023.04.031
– ident: 5527_CR1
  doi: 10.1115/HT2024-121705
– volume: 395
  year: 2022
  ident: 5527_CR21
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2022.111863
– volume: 35
  start-page: 1147
  issue: 9
  year: 2008
  ident: 5527_CR36
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2008.06.002
– volume: 53
  start-page: 2052
  issue: 9–10
  year: 2010
  ident: 5527_CR35
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2009.12.051
– volume: 24
  start-page: 3
  issue: 6
  year: 2003
  ident: 5527_CR50
  publication-title: Heat Transfer Eng
  doi: 10.1080/714044410
– ident: 5527_CR20
  doi: 10.3390/en16041686
SSID ssj0032565
Score 2.3386426
Snippet The study of condensation and evaporation in plain pipes is a significant area of engineering and scientific inquiry, as it has relevance for enhancing and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Artificial intelligence
Artificial neural networks
Bayesian analysis
Condensation
Data points
Deviation
Differential pressure
Engineering
Evaporation
Heat exchangers
Machine learning
Mechanical Engineering
Network analysis
Neural networks
Pressure drop
Regularization
Technical Paper
Vaporization
Title Machine learning application with Bayesian regularization for predicting pressure drop in R134a's annular evaporation and condensation
URI https://link.springer.com/article/10.1007/s40430-025-05527-8
https://www.proquest.com/docview/3188050657
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWDgjSgU5AGJAVw5D8fpWFBLBSoDolKZoji2EUJKo7RFgh_A7-acOG2pYGDNw0p8zvm73H3fIXTuCMCoinEC4J0T31cOCXVAiWaeSHzXaIobovDgIegP_bsRG1lS2KSqdq9SkoWnnpPdjA4MJab9KjWyYSRcR3XAH9SvoXrn9vm-W3lgD7ZxU7rogCMmLOShJcv8PsrPDWmBMlcSo8V-09tGw-pJyzKTt9ZsKlrJ54qI439fZQdtWQCKO-WK2UVrKt1Dm0uyhPvoa1BUWCpsW0q84KU0NzZ_bvF1_KEM_RLnRS_73LI5MUBgnOUm-WPKqXFRZTvLFZb5OMOvKX50PD--mGBDUIbbsHqPM7sI4ZjEEJ2DIywrjA7QsNd9uukT26-BJC53p0QKl3k-11oIQWMGkZwjXIjcZRhwwSDOajuaSaodJmMqNDUKpO1YKg4hKefgeg5RLR2n6ghhDy4W1I1Dw5SNk0RIlgiIlqj0ldYBb6DLymhRVspyRHMB5mJ2I5jdqJjdKGygZmXXyH6ik8gzSnQMEBgMdlWZaXH679GO_3f5CdpwS0sT6jRRbZrP1CkAmak4s-v2Gwp86gk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMDAG1Eo4AGJAVw5D8fpWFBLgbYDolKZoji2EUJqq7RFgh_A7-acOFAqGLomjpX4Luc7333fIXTmCPBRFeMEnHdOfF85JNQBJZp5IvFdwylugMKdbtDq-Xd91regsHFR7V6kJDNL_Q12MzwwlJj2q9TQhpFwGa34EIODXq_Ub57uG4UF9mAbN6WLDhhiwkIeWrDM37P83pB-vMy5xGi23zQ3Ua9407zM5LU6nYhq8jFH4rjop2yhDeuA4nquMdtoSQ120PoMLeEu-uxkFZYK25YSz3gmzY3NyS2-it-VgV_iNOtln1o0JwYXGI9Sk_wx5dQ4q7KdpgrLdDjCLwP84Hh-fD7GBqAMj2H1Fo-sEsI1iSE6B0OYVxjtoV6z8XjdIrZfA0lc7k6IFC7zfK61EILGDCI5R7gQucsw4IJBnFVzNJNUO0zGVGhqGEhrsVQcQlLOwfTso9JgOFAHCHswWFA3Dg1SNk4SIVkiIFqi0ldaB7yMLgqhRaOcliP6JmDOVjeC1Y2y1Y3CMqoUco3sLzqOPMNEx8ADg8kuCzH93P5_tsPFhp-i1dZjpx21b7v3R2jNzaVOqFNBpUk6Vcfg1EzEidXhLzEs7Pg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8UwEB70CaIHd3E3B8GDRtMlL_Xo9txFREFPJWkSEaGW2ifoD_B3O-miT9GDeG3T0Mykk5nOfN8ArHgKfVTDBUXnXdAwNB6NbJtRywOVhL7jFHdA4bPz9uF1eHzDb3pQ_GW1e5OSrDANjqUpLTYzbTc_gG-OE4ZR14qVOQoxGvXDQOi47VowsH1we7LfWOMAj3RXxuihUaY8ElENnPl5lq-H06fH-S1JWp49nVGQzVtXJScPG91CbSSv3wgd_7OsMRipHVOyXe2kcegz6QQM99AVTsLbWVl5aUjdauKO9KS_ifujS3bki3GwTJKXPe7zGuVJ0DUmWe6SQq7MmpTVt93cEJ0_ZuQ-JZdeEMrVJ-KAy_gYMc8yqzcnXtME14EGsqo8moLrzv7V7iGt-zjQxBd-QbXyeRAKa5VSTHKM8DzlY0Svo7ZQHOOvLc9yzazHtWTKMsdMuiW1ERiqCoEmaRpa6WNqZoAEOFgxX0YOQSuTRGmeKIyimA6NtW0xC2uNAuOsouuIP4iZS-nGKN24lG4czcJCo-O4_nSf4sAx1HH0zHCy9UZln7d_n23ub8OXYfBirxOfHp2fzMOQXymdMm8BWkXeNYvo6xRqqd7O75Ph9dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+application+with+Bayesian+regularization+for+predicting+pressure+drop+in+R134a%27s+annular+evaporation+and+condensation&rft.jtitle=Journal+of+the+Brazilian+Society+of+Mechanical+Sciences+and+Engineering&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1678-5878&rft.eissn=1806-3691&rft.volume=47&rft.issue=5&rft_id=info:doi/10.1007%2Fs40430-025-05527-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1678-5878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1678-5878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1678-5878&client=summon