Machine learning application with Bayesian regularization for predicting pressure drop in R134a's annular evaporation and condensation
The study of condensation and evaporation in plain pipes is a significant area of engineering and scientific inquiry, as it has relevance for enhancing and developing various industrial procedures. This study utilized a Bayesian artificial intelligence method to determine the pressure drop in a vert...
Saved in:
Published in | Journal of the Brazilian Society of Mechanical Sciences and Engineering Vol. 47; no. 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1678-5878 1806-3691 |
DOI | 10.1007/s40430-025-05527-8 |
Cover
Loading…
Abstract | The study of condensation and evaporation in plain pipes is a significant area of engineering and scientific inquiry, as it has relevance for enhancing and developing various industrial procedures. This study utilized a Bayesian artificial intelligence method to determine the pressure drop in a vertically oriented plain copper pipe during R134a's annular condensation and vaporization. The heat exchanger uses R134a and water in the tube and annulus sides, in turn. The tube has an inner diameter of 8 and a length of 500 mm. The training sets for artificial neural networks comprise R134a mass fluxes within the interval of 260–515 kg/m
2
s for in-tube condensation and 200–405 kg/m
2
s for evaporation. The obtained data on pressure drop during condensation and evaporation experiments were utilized in artificial neural network analysis using a differential pressure transducer in the test section. The study randomly divided 368 and 50 data points into training (85%) and testing (15%) sets for condensation and evaporation. The Bayesian method, primarily applied on this subject, effectively forecasts pressure drop during experimental condensation and evaporation. Regarding margin of deviation analyses, the models' condensation and evaporation conditions display variations of approximately ± 7.5 and ± 8.9%, respectively. The artificial neural network training technique was optimized to achieve minimal mean squared error values of 1.4211E-06 after 32 iterations for condensation and 1.3511E-06 after 40 iterations for evaporation. The predicted pressure drop data has a deviation of ± 10% with the experimental one for both condensation and evaporation. The artificial neural network model produced R-values of 0.99903 and 0.98451 for condensation and evaporation, correspondingly. |
---|---|
AbstractList | The study of condensation and evaporation in plain pipes is a significant area of engineering and scientific inquiry, as it has relevance for enhancing and developing various industrial procedures. This study utilized a Bayesian artificial intelligence method to determine the pressure drop in a vertically oriented plain copper pipe during R134a's annular condensation and vaporization. The heat exchanger uses R134a and water in the tube and annulus sides, in turn. The tube has an inner diameter of 8 and a length of 500 mm. The training sets for artificial neural networks comprise R134a mass fluxes within the interval of 260–515 kg/m
2
s for in-tube condensation and 200–405 kg/m
2
s for evaporation. The obtained data on pressure drop during condensation and evaporation experiments were utilized in artificial neural network analysis using a differential pressure transducer in the test section. The study randomly divided 368 and 50 data points into training (85%) and testing (15%) sets for condensation and evaporation. The Bayesian method, primarily applied on this subject, effectively forecasts pressure drop during experimental condensation and evaporation. Regarding margin of deviation analyses, the models' condensation and evaporation conditions display variations of approximately ± 7.5 and ± 8.9%, respectively. The artificial neural network training technique was optimized to achieve minimal mean squared error values of 1.4211E-06 after 32 iterations for condensation and 1.3511E-06 after 40 iterations for evaporation. The predicted pressure drop data has a deviation of ± 10% with the experimental one for both condensation and evaporation. The artificial neural network model produced R-values of 0.99903 and 0.98451 for condensation and evaporation, correspondingly. The study of condensation and evaporation in plain pipes is a significant area of engineering and scientific inquiry, as it has relevance for enhancing and developing various industrial procedures. This study utilized a Bayesian artificial intelligence method to determine the pressure drop in a vertically oriented plain copper pipe during R134a's annular condensation and vaporization. The heat exchanger uses R134a and water in the tube and annulus sides, in turn. The tube has an inner diameter of 8 and a length of 500 mm. The training sets for artificial neural networks comprise R134a mass fluxes within the interval of 260–515 kg/m2s for in-tube condensation and 200–405 kg/m2s for evaporation. The obtained data on pressure drop during condensation and evaporation experiments were utilized in artificial neural network analysis using a differential pressure transducer in the test section. The study randomly divided 368 and 50 data points into training (85%) and testing (15%) sets for condensation and evaporation. The Bayesian method, primarily applied on this subject, effectively forecasts pressure drop during experimental condensation and evaporation. Regarding margin of deviation analyses, the models' condensation and evaporation conditions display variations of approximately ± 7.5 and ± 8.9%, respectively. The artificial neural network training technique was optimized to achieve minimal mean squared error values of 1.4211E-06 after 32 iterations for condensation and 1.3511E-06 after 40 iterations for evaporation. The predicted pressure drop data has a deviation of ± 10% with the experimental one for both condensation and evaporation. The artificial neural network model produced R-values of 0.99903 and 0.98451 for condensation and evaporation, correspondingly. |
ArticleNumber | 221 |
Author | Bacak, Aykut Karakoyun, Yakup Çolak, Andaç Batur Koca, Aliihsan Dalkilic, Ahmet Selim |
Author_xml | – sequence: 1 givenname: Andaç Batur orcidid: 0000-0001-9297-8134 surname: Çolak fullname: Çolak, Andaç Batur email: bcolak@ohu.edu.tr organization: Department of Information Systems and Technologies, Niğde Ömer Halisdemir University – sequence: 2 givenname: Aykut surname: Bacak fullname: Bacak, Aykut organization: Department of Mechanical Engineering, Faculty of Mechanical Engineering, Yildiz Technical University – sequence: 3 givenname: Yakup surname: Karakoyun fullname: Karakoyun, Yakup organization: Department of Mechanical Engineering, Engineering Faculty, Van Yüzüncü Yıl University – sequence: 4 givenname: Aliihsan surname: Koca fullname: Koca, Aliihsan organization: Department of Mechanical Engineering, Faculty of Mechanical Engineering, Istanbul Technical University (ITU) – sequence: 5 givenname: Ahmet Selim surname: Dalkilic fullname: Dalkilic, Ahmet Selim organization: Department of Mechanical Engineering, Faculty of Mechanical Engineering, Yildiz Technical University |
BookMark | eNp9kM1KxDAUhYOM4MzoC7gKuHBVvUmbJl3q4B-MCKLrkDbpTIaa1KRVxgfwue1MBXeu7t_5zoUzQxPnnUHolMAFAeCXMYMshQQoS4AxyhNxgKZEQJ6keUEmQ59zkTDBxRGaxbgBSCnL2RR9P6pqbZ3BjVHBWbfCqm0bW6nOeoc_bbfG12prolUOB7PqGxXs13isfcBtMNpW3Y4b2hj7YLAOvsXW4WeSZuo8YuXcDsPmQ7U-jKxyGlfeaePifnGMDmvVRHPyW-fo9fbmZXGfLJ_uHhZXy6SinHaJLilLM17XZVmCYqIoSElNSbXIeckoG-aaaagJ0wrKGjJBeaG04VmWc84hnaOz0bcN_r03sZMb3wc3vJQpEQIY5IwPKjqqquBjDKaWbbBvKmwlAbnLW455yyFvuc9bigFKRygOYrcy4c_6H-oHtGKHTw |
Cites_doi | 10.1016/j.icheatmasstransfer.2010.02.010 10.1016/j.icheatmasstransfer.2016.11.010 10.1016/j.ijheatmasstransfer.2022.123109 10.1016/j.ijheatfluidflow.2007.01.004 10.1016/j.ijthermalsci.2021.107202 10.1007/s00231-011-0854-0 10.1063/5.0203144 10.1038/s41598-024-60898-7 10.1016/j.ijmultiphaseflow.2016.08.004 10.1007/s13369-013-0659-1 10.1007/s12206-011-0618-2 10.1002/er.5680 10.1016/j.expthermflusci.2009.12.011 10.1016/j.ijheatmasstransfer.2022.123017 10.1080/08916152.2011.631080 10.1016/j.ijthermalsci.2022.107624 10.1007/s10973-024-13082-y 10.1016/j.expthermflusci.2010.08.002 10.1016/j.ijrefrig.2017.10.007 10.1016/j.energy.2010.12.029 10.1016/j.net.2021.12.023 10.1016/j.icheatmasstransfer.2017.05.030 10.3390/e21070689 10.1007/s00231-013-1252-6 10.1016/0017-9310(73)90063-X 10.3390/fluids9080181 10.1016/j.icheatmasstransfer.2010.10.009 10.1007/s00231-002-0397-5 10.1007/s44189-023-00025-9 10.19113/sdufenbed.503829 10.1016/j.ijrefrig.2024.07.027 10.1007/s00231-020-02956-0 10.1016/j.ijmultiphaseflow.2015.12.010 10.1016/j.cherd.2021.01.002 10.1115/IHTC14-22057 10.1016/j.applthermaleng.2018.01.084 10.1016/j.icheatmasstransfer.2011.08.014 10.1016/j.applthermaleng.2016.05.189 10.1016/j.enconman.2010.05.019 10.1115/HT2024-131476 10.1016/j.ijheatmasstransfer.2019.118688 10.1007/s13369-013-0595-0 10.1016/j.ijrefrig.2023.04.031 10.1115/HT2024-121705 10.1016/j.nucengdes.2022.111863 10.1016/j.icheatmasstransfer.2008.06.002 10.1016/j.ijheatmasstransfer.2009.12.051 10.1080/714044410 10.3390/en16041686 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s40430-025-05527-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1806-3691 |
ExternalDocumentID | 10_1007_s40430_025_05527_8 |
GroupedDBID | 06D 0R~ 203 29L 29~ 2WC 30V 4.4 406 5GY 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXHO ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACIWK ACKNC ACMFV ACMLO ACOKC ACPIV ACREN ACZOJ ADBBV ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFDZB AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH APOWU ASPBG ATHPR AUKKA AVWKF AXYYD AYFIA AYJHY AZFZN BGNMA C1A CS3 CSCUP DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HZ~ I0C IKXTQ IWAJR IXD J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9G O9J OK1 PT4 RIG RLLFE RNS ROL RSC RSV SCD SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 XSB ZMTXR AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION OVT |
ID | FETCH-LOGICAL-c272t-db25347ffbbb0a58991b2eb2d867b525991f5d0f15da0bf048279ade744677703 |
IEDL.DBID | AGYKE |
ISSN | 1678-5878 |
IngestDate | Fri Jul 25 09:48:32 EDT 2025 Tue Aug 05 11:59:03 EDT 2025 Sat May 10 01:10:24 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | Evaporation Bayesian regularization Pressure drop Condensation Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-db25347ffbbb0a58991b2eb2d867b525991f5d0f15da0bf048279ade744677703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9297-8134 |
PQID | 3188050657 |
PQPubID | 2043642 |
ParticipantIDs | proquest_journals_3188050657 crossref_primary_10_1007_s40430_025_05527_8 springer_journals_10_1007_s40430_025_05527_8 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of the Brazilian Society of Mechanical Sciences and Engineering |
PublicationTitleAbbrev | J Braz. Soc. Mech. Sci. Eng |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | 5527_CR8 GGL de Souza (5527_CR15) 2024; 168 K Aroonrat (5527_CR47) 2021; 57 S Azizi (5527_CR4) 2016; 106 D Chisholm (5527_CR55) 1973; 16 AS Dalkilic (5527_CR41) 2013; 38 5527_CR3 SA Shourehdeli (5527_CR26) 2023; 31 B Najafi (5527_CR23) 2021; 167 5527_CR1 5527_CR2 M Balcilar (5527_CR38) 2011; 38 AS Dalkilic (5527_CR36) 2008; 35 5527_CR52 S Azizi (5527_CR18) 2016; 87 AS Dalkılıç (5527_CR45) 2017; 81 K Aroonrat (5527_CR46) 2019; 144 A Zendehboudi (5527_CR7) 2017; 86 AS Dalkilic (5527_CR53) 2010; 37 S Laohalertdecha (5527_CR44) 2014; 50 MT Hughes (5527_CR9) 2022; 194 5527_CR10 A Parrales (5527_CR11) 2019; 21 Z Lin (5527_CR17) 2020; 210 5527_CR56 F Nie (5527_CR6) 2023; 184 S Azizi (5527_CR19) 2016; 80 AS Dalkilic (5527_CR37) 2010; 51 WR Lockhart (5527_CR54) 1949; 45 F Faraji (5527_CR21) 2022; 395 A Khosravi (5527_CR13) 2018; 133 O Acikgoz (5527_CR34) 2022; 178 5527_CR48 JM Quibén (5527_CR57) 2007; 28 K Aroonrat (5527_CR49) 2011; 35 5527_CR31 AS Dalkilic (5527_CR51) 2010; 34 5527_CR30 SJ Kline (5527_CR32) 1963; 75 M Balcılar (5527_CR39) 2011; 25 Y Qiu (5527_CR12) 2021; 178 M Balcilar (5527_CR16) 2014; 39 K Aroonrat (5527_CR43) 2013; 26 AS Dalkilic (5527_CR40) 2012; 48 MA Moradkhani (5527_CR27) 2024; 14 MK Sevindir (5527_CR25) 2019; 23 AS Dalkilic (5527_CR35) 2010; 53 D Colorado (5527_CR24) 2011; 36 5527_CR29 AB Çolak (5527_CR33) 2021; 45 5527_CR20 DH Lee (5527_CR5) 2022; 54 JR Thome (5527_CR50) 2003; 24 S Laohalertdecha (5527_CR42) 2011; 38 JJ Garcia (5527_CR14) 2018; 85 JA Montañez-Barrera (5527_CR22) 2022; 194 J Wongsa-ngam (5527_CR58) 2004; 40 W Li (5527_CR28) 2024; 224 |
References_xml | – volume: 37 start-page: 827 issue: 7 year: 2010 ident: 5527_CR53 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.02.010 – volume: 81 start-page: 8 year: 2017 ident: 5527_CR45 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2016.11.010 – volume: 194 year: 2022 ident: 5527_CR9 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2022.123109 – volume: 28 start-page: 1060 issue: 5 year: 2007 ident: 5527_CR57 publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2007.01.004 – ident: 5527_CR2 doi: 10.1016/j.ijthermalsci.2021.107202 – volume: 210 year: 2020 ident: 5527_CR17 publication-title: Energy – volume: 48 start-page: 123 year: 2012 ident: 5527_CR40 publication-title: Heat Mass Transf doi: 10.1007/s00231-011-0854-0 – ident: 5527_CR29 doi: 10.1063/5.0203144 – volume: 14 start-page: 10515 issue: 1 year: 2024 ident: 5527_CR27 publication-title: Sci Rep doi: 10.1038/s41598-024-60898-7 – volume: 87 start-page: 35 year: 2016 ident: 5527_CR18 publication-title: Int J Multiph Flow doi: 10.1016/j.ijmultiphaseflow.2016.08.004 – volume: 39 start-page: 1271 year: 2014 ident: 5527_CR16 publication-title: Arab J Sci Eng doi: 10.1007/s13369-013-0659-1 – volume: 25 start-page: 2683 year: 2011 ident: 5527_CR39 publication-title: J Mech Sci Technol doi: 10.1007/s12206-011-0618-2 – volume: 45 start-page: 478 issue: 1 year: 2021 ident: 5527_CR33 publication-title: Int J Energy Res doi: 10.1002/er.5680 – volume: 34 start-page: 692 issue: 6 year: 2010 ident: 5527_CR51 publication-title: Exp Thermal Fluid Sci doi: 10.1016/j.expthermflusci.2009.12.011 – volume: 194 year: 2022 ident: 5527_CR22 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2022.123017 – volume: 26 start-page: 41 issue: 1 year: 2013 ident: 5527_CR43 publication-title: Experiment Heat Transfer doi: 10.1080/08916152.2011.631080 – volume: 178 year: 2022 ident: 5527_CR34 publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2022.107624 – ident: 5527_CR56 – ident: 5527_CR31 doi: 10.1007/s10973-024-13082-y – volume: 35 start-page: 20 issue: 1 year: 2011 ident: 5527_CR49 publication-title: Exp Thermal Fluid Sci doi: 10.1016/j.expthermflusci.2010.08.002 – volume: 85 start-page: 292 year: 2018 ident: 5527_CR14 publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2017.10.007 – volume: 36 start-page: 854 issue: 2 year: 2011 ident: 5527_CR24 publication-title: Energy doi: 10.1016/j.energy.2010.12.029 – volume: 54 start-page: 2297 issue: 6 year: 2022 ident: 5527_CR5 publication-title: Nucl Eng Technol doi: 10.1016/j.net.2021.12.023 – volume: 86 start-page: 166 year: 2017 ident: 5527_CR7 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2017.05.030 – volume: 21 start-page: 689 issue: 7 year: 2019 ident: 5527_CR11 publication-title: Entropy doi: 10.3390/e21070689 – volume: 184 year: 2023 ident: 5527_CR6 publication-title: Int J Therm Sci – volume: 45 start-page: 39 issue: 1 year: 1949 ident: 5527_CR54 publication-title: Chem Eng Prog – volume: 50 start-page: 469 year: 2014 ident: 5527_CR44 publication-title: Heat Mass Transf doi: 10.1007/s00231-013-1252-6 – volume: 16 start-page: 347 issue: 2 year: 1973 ident: 5527_CR55 publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(73)90063-X – ident: 5527_CR3 doi: 10.3390/fluids9080181 – volume: 38 start-page: 75 issue: 1 year: 2011 ident: 5527_CR38 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2010.10.009 – volume: 40 start-page: 425 year: 2004 ident: 5527_CR58 publication-title: Heat Mass Transf doi: 10.1007/s00231-002-0397-5 – volume: 31 start-page: 8 issue: 1 year: 2023 ident: 5527_CR26 publication-title: Int J Air Condition Refrigerat doi: 10.1007/s44189-023-00025-9 – volume: 23 start-page: 871 issue: 3 year: 2019 ident: 5527_CR25 publication-title: Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi doi: 10.19113/sdufenbed.503829 – volume: 168 start-page: 149 year: 2024 ident: 5527_CR15 publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2024.07.027 – volume: 224 year: 2024 ident: 5527_CR28 publication-title: Int J Heat Mass Transf – volume: 75 start-page: 3 year: 1963 ident: 5527_CR32 publication-title: Mech Eng – volume: 57 start-page: 465 year: 2021 ident: 5527_CR47 publication-title: Heat Mass Transf doi: 10.1007/s00231-020-02956-0 – ident: 5527_CR30 – volume: 80 start-page: 181 year: 2016 ident: 5527_CR19 publication-title: Int J Multiph Flow doi: 10.1016/j.ijmultiphaseflow.2015.12.010 – volume: 167 start-page: 252 year: 2021 ident: 5527_CR23 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2021.01.002 – ident: 5527_CR52 doi: 10.1115/IHTC14-22057 – volume: 133 start-page: 361 year: 2018 ident: 5527_CR13 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.01.084 – volume: 38 start-page: 1406 issue: 10 year: 2011 ident: 5527_CR42 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2011.08.014 – volume: 106 start-page: 203 year: 2016 ident: 5527_CR4 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.05.189 – volume: 51 start-page: 2535 issue: 12 year: 2010 ident: 5527_CR37 publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2010.05.019 – ident: 5527_CR10 doi: 10.1115/HT2024-131476 – volume: 144 year: 2019 ident: 5527_CR46 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.118688 – volume: 178 year: 2021 ident: 5527_CR12 publication-title: Int J Heat Mass Transf – volume: 38 start-page: 1493 year: 2013 ident: 5527_CR41 publication-title: Arab J Sci Eng doi: 10.1007/s13369-013-0595-0 – ident: 5527_CR48 – ident: 5527_CR8 doi: 10.1016/j.ijrefrig.2023.04.031 – ident: 5527_CR1 doi: 10.1115/HT2024-121705 – volume: 395 year: 2022 ident: 5527_CR21 publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2022.111863 – volume: 35 start-page: 1147 issue: 9 year: 2008 ident: 5527_CR36 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2008.06.002 – volume: 53 start-page: 2052 issue: 9–10 year: 2010 ident: 5527_CR35 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2009.12.051 – volume: 24 start-page: 3 issue: 6 year: 2003 ident: 5527_CR50 publication-title: Heat Transfer Eng doi: 10.1080/714044410 – ident: 5527_CR20 doi: 10.3390/en16041686 |
SSID | ssj0032565 |
Score | 2.3386426 |
Snippet | The study of condensation and evaporation in plain pipes is a significant area of engineering and scientific inquiry, as it has relevance for enhancing and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Artificial intelligence Artificial neural networks Bayesian analysis Condensation Data points Deviation Differential pressure Engineering Evaporation Heat exchangers Machine learning Mechanical Engineering Network analysis Neural networks Pressure drop Regularization Technical Paper Vaporization |
Title | Machine learning application with Bayesian regularization for predicting pressure drop in R134a's annular evaporation and condensation |
URI | https://link.springer.com/article/10.1007/s40430-025-05527-8 https://www.proquest.com/docview/3188050657 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWDgjSgU5AGJAVw5D8fpWFBLBSoDolKZoji2EUJKo7RFgh_A7-acOG2pYGDNw0p8zvm73H3fIXTuCMCoinEC4J0T31cOCXVAiWaeSHzXaIobovDgIegP_bsRG1lS2KSqdq9SkoWnnpPdjA4MJab9KjWyYSRcR3XAH9SvoXrn9vm-W3lgD7ZxU7rogCMmLOShJcv8PsrPDWmBMlcSo8V-09tGw-pJyzKTt9ZsKlrJ54qI439fZQdtWQCKO-WK2UVrKt1Dm0uyhPvoa1BUWCpsW0q84KU0NzZ_bvF1_KEM_RLnRS_73LI5MUBgnOUm-WPKqXFRZTvLFZb5OMOvKX50PD--mGBDUIbbsHqPM7sI4ZjEEJ2DIywrjA7QsNd9uukT26-BJC53p0QKl3k-11oIQWMGkZwjXIjcZRhwwSDOajuaSaodJmMqNDUKpO1YKg4hKefgeg5RLR2n6ghhDy4W1I1Dw5SNk0RIlgiIlqj0ldYBb6DLymhRVspyRHMB5mJ2I5jdqJjdKGygZmXXyH6ik8gzSnQMEBgMdlWZaXH679GO_3f5CdpwS0sT6jRRbZrP1CkAmak4s-v2Gwp86gk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMDAG1Eo4AGJAVw5D8fpWFBLgbYDolKZoji2EUJqq7RFgh_A7-acOFAqGLomjpX4Luc7333fIXTmCPBRFeMEnHdOfF85JNQBJZp5IvFdwylugMKdbtDq-Xd91regsHFR7V6kJDNL_Q12MzwwlJj2q9TQhpFwGa34EIODXq_Ub57uG4UF9mAbN6WLDhhiwkIeWrDM37P83pB-vMy5xGi23zQ3Ua9407zM5LU6nYhq8jFH4rjop2yhDeuA4nquMdtoSQ120PoMLeEu-uxkFZYK25YSz3gmzY3NyS2-it-VgV_iNOtln1o0JwYXGI9Sk_wx5dQ4q7KdpgrLdDjCLwP84Hh-fD7GBqAMj2H1Fo-sEsI1iSE6B0OYVxjtoV6z8XjdIrZfA0lc7k6IFC7zfK61EILGDCI5R7gQucsw4IJBnFVzNJNUO0zGVGhqGEhrsVQcQlLOwfTso9JgOFAHCHswWFA3Dg1SNk4SIVkiIFqi0ldaB7yMLgqhRaOcliP6JmDOVjeC1Y2y1Y3CMqoUco3sLzqOPMNEx8ADg8kuCzH93P5_tsPFhp-i1dZjpx21b7v3R2jNzaVOqFNBpUk6Vcfg1EzEidXhLzEs7Pg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8UwEB70CaIHd3E3B8GDRtMlL_Xo9txFREFPJWkSEaGW2ifoD_B3O-miT9GDeG3T0Mykk5nOfN8ArHgKfVTDBUXnXdAwNB6NbJtRywOVhL7jFHdA4bPz9uF1eHzDb3pQ_GW1e5OSrDANjqUpLTYzbTc_gG-OE4ZR14qVOQoxGvXDQOi47VowsH1we7LfWOMAj3RXxuihUaY8ElENnPl5lq-H06fH-S1JWp49nVGQzVtXJScPG91CbSSv3wgd_7OsMRipHVOyXe2kcegz6QQM99AVTsLbWVl5aUjdauKO9KS_ifujS3bki3GwTJKXPe7zGuVJ0DUmWe6SQq7MmpTVt93cEJ0_ZuQ-JZdeEMrVJ-KAy_gYMc8yqzcnXtME14EGsqo8moLrzv7V7iGt-zjQxBd-QbXyeRAKa5VSTHKM8DzlY0Svo7ZQHOOvLc9yzazHtWTKMsdMuiW1ERiqCoEmaRpa6WNqZoAEOFgxX0YOQSuTRGmeKIyimA6NtW0xC2uNAuOsouuIP4iZS-nGKN24lG4czcJCo-O4_nSf4sAx1HH0zHCy9UZln7d_n23ub8OXYfBirxOfHp2fzMOQXymdMm8BWkXeNYvo6xRqqd7O75Ph9dw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+application+with+Bayesian+regularization+for+predicting+pressure+drop+in+R134a%27s+annular+evaporation+and+condensation&rft.jtitle=Journal+of+the+Brazilian+Society+of+Mechanical+Sciences+and+Engineering&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1678-5878&rft.eissn=1806-3691&rft.volume=47&rft.issue=5&rft_id=info:doi/10.1007%2Fs40430-025-05527-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1678-5878&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1678-5878&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1678-5878&client=summon |