Laser processing of organic materials

IntroductionLaser ablation of polymers and other molecular materials constitutes the basis for a range of well-established applications, such as matrix-assisted laser desorption–ionization (MALDI) (Hillenkamp and Karas, 2000), laser surgery (Niemz, 2003) including the widely used laser-assisted in s...

Full description

Saved in:
Bibliographic Details
Published inTransport in Laser Microfabrication pp. 265 - 281
Main Authors Mao, S., Grigoropoulos, C. P.
Format Book Chapter
LanguageEnglish
Published United Kingdom Cambridge University Press 30.07.2009
Subjects
Online AccessGet full text
ISBN9780521821728
052182172X
DOI10.1017/CBO9780511596674.010

Cover

Abstract IntroductionLaser ablation of polymers and other molecular materials constitutes the basis for a range of well-established applications, such as matrix-assisted laser desorption–ionization (MALDI) (Hillenkamp and Karas, 2000), laser surgery (Niemz, 2003) including the widely used laser-assisted in situ keratomileusis (LASIK) technique, surface microfabrication and lithography (Lankard and Wolbold, 1992), and pulsed laser deposition (PLD) of organic coatings (Bäuerle, 2000; Chrisey and Hubler, 1994). Interaction of UV laser pulses with an organic substance typically results in photothermal and/or photochemical processes in the irradiated material. Generally, photothermal processes, which produce heat in the sample, dominate when the laser photon energy is small, whereas photochemical processes occur when the laser photon energy is larger than the chemical-bond energies of the molecules.For lasers operating at near-IR wavelengths, photothermal processes usually play a major role. With deep-UV (wavelength shorter than ∼200 nm) laser irradiation, in which the photon energy is larger than the typical energy of the chemical bonds of molecules, photochemical processes are usually responsible for the onset of ablation. For laser ablation of organic materials with wavelengths between the near IR and deep UV, photothermal and photochemical processes are often interrelated (Ichimura et al., 1994). On the other hand, the characteristics of material ejection depend on the nature of the ablation process (Srinivasan, 1986; Georgiou et al., 1998). For instance, ablation of organic materials results in little lateral damage in the sample when the photochemical processes are dominant.
AbstractList IntroductionLaser ablation of polymers and other molecular materials constitutes the basis for a range of well-established applications, such as matrix-assisted laser desorption–ionization (MALDI) (Hillenkamp and Karas, 2000), laser surgery (Niemz, 2003) including the widely used laser-assisted in situ keratomileusis (LASIK) technique, surface microfabrication and lithography (Lankard and Wolbold, 1992), and pulsed laser deposition (PLD) of organic coatings (Bäuerle, 2000; Chrisey and Hubler, 1994). Interaction of UV laser pulses with an organic substance typically results in photothermal and/or photochemical processes in the irradiated material. Generally, photothermal processes, which produce heat in the sample, dominate when the laser photon energy is small, whereas photochemical processes occur when the laser photon energy is larger than the chemical-bond energies of the molecules.For lasers operating at near-IR wavelengths, photothermal processes usually play a major role. With deep-UV (wavelength shorter than ∼200 nm) laser irradiation, in which the photon energy is larger than the typical energy of the chemical bonds of molecules, photochemical processes are usually responsible for the onset of ablation. For laser ablation of organic materials with wavelengths between the near IR and deep UV, photothermal and photochemical processes are often interrelated (Ichimura et al., 1994). On the other hand, the characteristics of material ejection depend on the nature of the ablation process (Srinivasan, 1986; Georgiou et al., 1998). For instance, ablation of organic materials results in little lateral damage in the sample when the photochemical processes are dominant.
Author Mao, S.
Grigoropoulos, C. P.
Author_xml – sequence: 1
  givenname: S.
  surname: Mao
  fullname: Mao, S.
– sequence: 2
  givenname: C. P.
  surname: Grigoropoulos
  fullname: Grigoropoulos, C. P.
BookMark eNqNUE1LAzEQjfiBtfYfeNiL4KV18rH5wFNb1AqFHlTwFrJpWtfubmqyiv57Q1sE9eJcHjO89-bNnKCDxjcOoTMMAwxYXI5HMyUk5BjninPBBoBhD518D8Q-6m0IBEuCBZFHqMNBSUYBs2PUi_EFUlFGFfAOOp-a6EK2Dt66GMtmmflF5sPSNKXNatO6UJoqnqLDRQLX22EXPd5cP4wn_ens9m48nPYtEaTtFwueczmXVDFCBCOCp55wrIRSYIQlOZkbrEjBlMBEpHSWAgOrcKEYk5x2Ed36pjyvby622hXer6xr2mAq-2zWKVDULMfpII2F1ESopLrYqlaNf3eVXoeyNuFT7_h61QKop_vRhCbqcEu1pi5COV86bX3YLIn6x1_1R13p388eAofkcfXHo_D_VX8BrMp93w
ContentType Book Chapter
Copyright C. Grigoropoulos 2009
2009
Copyright_xml – notice: C. Grigoropoulos 2009
– notice: 2009
DBID FFUUA
DEWEY 621.366
DOI 10.1017/CBO9780511596674.010
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISBN 0511596677
9780511596674
9780511591365
0511591365
0511593228
9780511593222
EndPage 281
ExternalDocumentID EBC451984_178_279
chapter_kt009XSBH3
9780511596674_xml_CBO9780511596674A060
GroupedDBID -G2
-U1
089
20A
38.
A4I
A4J
AAAAZ
AABBV
AAHFW
AAWZI
ABVLP
ABWAU
ABZUC
ACNOG
ADBMJ
ADCGF
ADQZK
AEDFS
AEWAL
AEWQY
AFTBM
AGSJN
AHAWV
AJPFC
AJXXZ
ALMA_UNASSIGNED_HOLDINGS
AMJDZ
ANGWU
ASYWF
AZZ
BBABE
BFIBU
BOIVQ
CMZ
COBLI
COXPH
CZZ
DOUIK
EBACC
EBSCA
FH2
GMSEZ
ICERG
JJU
OLDIN
OTBUH
OZASK
OZBHS
PP-
S2O
SACVX
SN-
TD3
ZXKUE
ABESS
ABMRC
FFUUA
ID FETCH-LOGICAL-c272t-bf6568d8394227427665626197990a7c252da192b497127172c3040c91b944863
IEDL.DBID CMZ
ISBN 9780521821728
052182172X
IngestDate Thu May 29 19:27:21 EDT 2025
Sat Nov 23 13:55:03 EST 2024
Fri Feb 21 02:37:01 EST 2025
Fri Aug 04 03:40:59 EDT 2023
IsPeerReviewed false
IsScholarly false
LCCallNum TA1677 .G76 2009
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-bf6568d8394227427665626197990a7c252da192b497127172c3040c91b944863
OCLC 609843014
PQID EBC451984_178_279
PageCount 17
ParticipantIDs proquest_ebookcentralchapters_451984_178_279
knovel_primary_chapter_kt009XSBH3
cambridge_corebooks_9780511596674_xml_CBO9780511596674A060
cambridge_cbo_9780511596674_xml_CBO9780511596674A060
PublicationCentury 2000
PublicationDate 20090730
2009
PublicationDateYYYYMMDD 2009-07-30
2009-01-01
PublicationDate_xml – month: 07
  year: 2009
  text: 20090730
  day: 30
PublicationDecade 2000
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationSubtitle Fundamentals and Applications
PublicationTitle Transport in Laser Microfabrication
PublicationYear 2009
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0000343906
ssib027746238
Score 1.3458593
Snippet IntroductionLaser ablation of polymers and other molecular materials constitutes the basis for a range of well-established applications, such as...
SourceID proquest
knovel
cambridge
SourceType Publisher
StartPage 265
SubjectTerms Manufacturing Engineering
Materials & Manufacturing Processes
Materials science
MECHANICAL ENGINEERING & MATERIALS
Mechanics of fluids
TableOfContents 9.1 Introduction 9.2 Fundamental Processes 9.3 Applications References
Title Laser processing of organic materials
URI http://dx.doi.org/10.1017/CBO9780511596674.010
https://doi.org/10.1017/CBO9780511596674.010?locatt=mode:legacy
https://app.knovel.com/hotlink/pdf/rcid:kpTLMFA008/id:kt009XSBH3/transport-in-laser-microfabrication/laser-processing-organic?kpromoter=Summon
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=451984&ppg=279
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5RTqgH2kLV7Q9KJXqrN4njtRMuFaCuVohtkcpKq16s2I7VaiGJdgNCfYi-Sl-x4zhZWrhw5GjHHikee-az5w9gX9vYZlYzlH6RJmyUMJIlPCJMc5NxY4zOWy_fL3wyYyfz0XwDfvexMK641aKsrouLVkz_qBpnyAxrY0NXZPZgUZ-fTseHqLlC12oQIsy_HU2SsOlzgZOfJUHgWSzJpXNps7ladq9foe-uvQc-agbiKyfpT4u69X3DvePfnpxIR93pbL_T7-snmyhB7R3xLuI1daWd-hw-fTvto_NiER4ffW0_IebCO4Vgw8iF6d5mcECd5__0nhpoddt4G_70q-JdWhbDq0YN9a87CSMfz7I9g6cuQiNwoRPY-xw2ivIFbHd4Ouik1WoHPpw6ksHZmmRQ2cAHn-pgmjf-8O3CbPz5_HhCurIQRFNBG6IsYtDUILJj1BmaBce2uwgK1Ky50HRETY7AVbFMxBSvq1QnKKp0FqsML6M8eQmbZVUWryCImSgs8sg4XEhNrFSGo2liKRLidjQAtmaX1KqS_zFU3lxeyLtcPox4NICDf6ZVy9buvXrw5Peek7L2-Uak9sspb9k2gI_9jpEt8c6Ttxu5ki5pUMpkLFJJRfb6ASTfwJY3lLnXpbew2SyvineItxq1B0_ILN5rz8JfeqsoxQ
linkProvider Knovel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Transport+in+Laser+Microfabrication&rft.au=Grigoropoulos%2C+Costas+P&rft.atitle=Laser+processing+of+organic+materials&rft.date=2009-01-01&rft.pub=Cambridge+University+Press&rft.isbn=9780521821728&rft_id=info:doi/10.1017%2FCBO9780511596674.010&rft.externalDBID=279&rft.externalDocID=EBC451984_178_279
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fassets.cambridge.org%2F97805218%2F21728%2Fcover%2F9780521821728.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcontent.knovel.com%2Fcontent%2FThumbs%2Fthumb4999.gif
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F451984-l.jpg