Coercive and noncoercive elliptic problems with variable exponent Laplacian under Robin boundary conditions

In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ = λ ) ± ) under Robin boundary condition in a regular open bounded domain Ω of ℝ , ≥ 2. Δ is the )-Laplacian operator where ∈ ) and > 1. Our proofs are based on the sub solutio...

Full description

Saved in:
Bibliographic Details
Published inMathematica Slovaca Vol. 72; no. 6; pp. 1541 - 1550
Main Authors Dammak, Makkia, Ali, Abir Amor Ben
Format Journal Article
LanguageEnglish
Published Heidelberg De Gruyter 16.12.2022
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ = λ ) ± ) under Robin boundary condition in a regular open bounded domain Ω of ℝ , ≥ 2. Δ is the )-Laplacian operator where ∈ ) and > 1. Our proofs are based on the sub solution-super solution method and also on variational arguments.
AbstractList Abstract In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ p ( x ) u = λ k ( x ) u q ± h ( x ) u r under Robin boundary condition in a regular open bounded domain Ω of ℝ N , N ≥ 2. Δ p ( x ) is the p ( x )-Laplacian operator where p ∈ C 1 ( Ω ) and p > 1. Our proofs are based on the sub solution-super solution method and also on variational arguments.
In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δp(x) u = λ k(x) uq ± h(x) ur under Robin boundary condition in a regular open bounded domain Ω of ℝN, N ≥ 2. Δp(x) is the p(x)-Laplacian operator where p ∈ C1(Ω) and p > 1. Our proofs are based on the sub solution-super solution method and also on variational arguments.
In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ = λ ) ± ) under Robin boundary condition in a regular open bounded domain Ω of ℝ , ≥ 2. Δ is the )-Laplacian operator where ∈ ) and > 1. Our proofs are based on the sub solution-super solution method and also on variational arguments.
Author Dammak, Makkia
Ali, Abir Amor Ben
Author_xml – sequence: 1
  givenname: Makkia
  surname: Dammak
  fullname: Dammak, Makkia
  email: makkia.dammak@gmail.com
  organization: Department of Mathematics Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
– sequence: 2
  givenname: Abir Amor Ben
  surname: Ali
  fullname: Ali, Abir Amor Ben
  email: abir.amorbenali@gmail.com
  organization: Department of Mathematics Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
BookMark eNptkE9LAzEQxYMoWKs3P0DAq6uZpNl08STFf1AQpPclm8xqdJusyba1396UKl48zTz4zZvHOyGHPngk5BzYFUiQ18tUcMZ5wYDJAzICIVTBOcAhGTEQVVFVMD0mJym9MyaVFGJEPmYBo3FrpNpbmv3Mr8auc_3gDO1jaDpcJrpxwxtd6-h01hS_-vzdD3Su-04bpz1deYuRvoTGedqErHTcUhO8dYMLPp2So1Z3Cc9-5pgs7u8Ws8di_vzwNLudF4YrPhSNUCW0gMowLlRrbYOV1QqFksB4WzJpZYmiAgsaDQPdoixbOzWcl6yaijG52Nvm4J8rTEP9HlbR5481VxPFSiUEz9TlnjIxpBSxrfvoljlwDazetVkvM5_brHdtZvxmj290N2C0-BpX27z8ef93pngJcgLiGysYfq8
Cites_doi 10.21136/CMJ.1991.102493
10.1080/10652469.2015.1121255
10.1155/2012/275748
10.1090/trans2/029/12
10.1515/anona-2020-0063
10.1016/j.jmaa.2009.06.032
10.1016/j.jmaa.2021.125197
10.1006/jmaa.2000.7617
10.4171/ZAA/1600
10.1512/iumj.1967.16.16087
10.1016/j.na.2011.01.037
10.1515/anona-2020-0022
10.1515/acv-2018-0003
10.4064/sm-3-1-200-211
10.1016/j.amc.2010.12.042
10.1090/qam/272272
ContentType Journal Article
Copyright 2022 Mathematical Institute Slovak Academy of Sciences
Copyright_xml – notice: 2022 Mathematical Institute Slovak Academy of Sciences
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/ms-2022-0105
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1337-2211
EndPage 1550
ExternalDocumentID 10_1515_ms_2022_0105
10_1515_ms_2022_01057261541
GroupedDBID .86
.VR
06D
1N0
29M
2~H
30V
4.4
408
40D
5GY
67Z
6NX
8TC
95.
95~
AAAEU
AADQG
AAEMA
AAFPC
AAGVJ
AAJBH
AALGR
AAPBV
AAPJK
AAQCX
AASQH
AAXCG
ABAQN
ABFKT
ABFLS
ABJCF
ABPLS
ABSOE
ABYKJ
ACEFL
ACGFS
ACIWK
ACOMO
ACTFP
ACZBO
ADGQD
ADGYE
ADINQ
ADJVZ
ADOZN
AEICA
AENEX
AEQDQ
AERZL
AFBAA
AFCXV
AFKRA
AFWTZ
AFYRI
AHBYD
AHVWV
AHXUK
AIGSN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASYPN
BA0
BAKPI
BBCWN
BCIFA
BENPR
CAG
CFGNV
CS3
DBYYV
DU5
E3Z
EBS
GQ6
GQ7
HCIFZ
HF~
HMJXF
IJ-
IXC
IY9
I~Z
K7-
M7S
MA-
P2P
P9R
PF0
QD8
QOS
R9I
RPX
RSV
S1Z
S27
S3B
SDH
SHX
SMT
SOJ
T13
TSV
TUC
U2A
VC2
WK8
WTRAM
~A9
8FE
8FG
AAYXX
ABJNI
ABVMU
ABWLS
ACPMA
AFBBN
AGBEV
AKXKS
BGLVJ
BPHCQ
CITATION
K6V
KDIRW
L6V
OK1
PQQKQ
PROAC
SLJYH
UK5
7SC
7TB
8FD
AZQEC
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-b3761f1e7c0237fddbe9da7e375102f605d56e391d1aec01afe56fd8c2260983
ISSN 0139-9918
IngestDate Thu Oct 10 22:06:38 EDT 2024
Thu Sep 12 17:09:56 EDT 2024
Wed Dec 07 02:20:12 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c272t-b3761f1e7c0237fddbe9da7e375102f605d56e391d1aec01afe56fd8c2260983
PQID 2747067332
PQPubID 2038886
PageCount 10
ParticipantIDs proquest_journals_2747067332
crossref_primary_10_1515_ms_2022_0105
walterdegruyter_journals_10_1515_ms_2022_01057261541
PublicationCentury 2000
PublicationDate 2022-12-16
PublicationDateYYYYMMDD 2022-12-16
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-16
  day: 16
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Mathematica Slovaca
PublicationYear 2022
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2022122109555605513_j_ms-2022-0105_ref_004
2022122109555605513_j_ms-2022-0105_ref_015
2022122109555605513_j_ms-2022-0105_ref_003
2022122109555605513_j_ms-2022-0105_ref_014
2022122109555605513_j_ms-2022-0105_ref_006
2022122109555605513_j_ms-2022-0105_ref_017
2022122109555605513_j_ms-2022-0105_ref_005
2022122109555605513_j_ms-2022-0105_ref_016
2022122109555605513_j_ms-2022-0105_ref_008
2022122109555605513_j_ms-2022-0105_ref_019
2022122109555605513_j_ms-2022-0105_ref_007
2022122109555605513_j_ms-2022-0105_ref_018
2022122109555605513_j_ms-2022-0105_ref_009
2022122109555605513_j_ms-2022-0105_ref_011
2022122109555605513_j_ms-2022-0105_ref_010
2022122109555605513_j_ms-2022-0105_ref_002
2022122109555605513_j_ms-2022-0105_ref_013
2022122109555605513_j_ms-2022-0105_ref_001
2022122109555605513_j_ms-2022-0105_ref_012
References_xml – ident: 2022122109555605513_j_ms-2022-0105_ref_010
  doi: 10.21136/CMJ.1991.102493
– ident: 2022122109555605513_j_ms-2022-0105_ref_011
  doi: 10.1080/10652469.2015.1121255
– ident: 2022122109555605513_j_ms-2022-0105_ref_018
  doi: 10.1155/2012/275748
– ident: 2022122109555605513_j_ms-2022-0105_ref_006
  doi: 10.1090/trans2/029/12
– ident: 2022122109555605513_j_ms-2022-0105_ref_001
  doi: 10.1515/anona-2020-0063
– ident: 2022122109555605513_j_ms-2022-0105_ref_003
  doi: 10.1016/j.jmaa.2009.06.032
– ident: 2022122109555605513_j_ms-2022-0105_ref_012
  doi: 10.1016/j.jmaa.2021.125197
– ident: 2022122109555605513_j_ms-2022-0105_ref_005
  doi: 10.1006/jmaa.2000.7617
– ident: 2022122109555605513_j_ms-2022-0105_ref_008
  doi: 10.4171/ZAA/1600
– ident: 2022122109555605513_j_ms-2022-0105_ref_009
  doi: 10.1512/iumj.1967.16.16087
– ident: 2022122109555605513_j_ms-2022-0105_ref_014
– ident: 2022122109555605513_j_ms-2022-0105_ref_015
  doi: 10.1016/j.na.2011.01.037
– ident: 2022122109555605513_j_ms-2022-0105_ref_016
– ident: 2022122109555605513_j_ms-2022-0105_ref_017
  doi: 10.1515/anona-2020-0022
– ident: 2022122109555605513_j_ms-2022-0105_ref_019
  doi: 10.1515/acv-2018-0003
– ident: 2022122109555605513_j_ms-2022-0105_ref_013
  doi: 10.4064/sm-3-1-200-211
– ident: 2022122109555605513_j_ms-2022-0105_ref_004
  doi: 10.1016/j.amc.2010.12.042
– ident: 2022122109555605513_j_ms-2022-0105_ref_007
  doi: 10.1090/qam/272272
– ident: 2022122109555605513_j_ms-2022-0105_ref_002
SSID ssj0057533
Score 2.2906182
Snippet In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ = λ ) ± ) under Robin boundary...
Abstract In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ p ( x ) u = λ k ( x ) u q ± h...
In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δp(x) u = λ k(x) uq ± h(x) ur under...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Publisher
StartPage 1541
SubjectTerms 35J60
35J70
35K57
Boundary conditions
Coercivity
generalised Sobolev spaces
Laplace operator
Primary 35J20
quasilinear equation
sub solution-super solution method
variational methods
Title Coercive and noncoercive elliptic problems with variable exponent Laplacian under Robin boundary conditions
URI http://www.degruyter.com/doi/10.1515/ms-2022-0105
https://www.proquest.com/docview/2747067332
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuMBh4lOUjckHOFWGxs5Hc4wGY0LAhU7aLbJjB1Vd2ir9YOPCv857dpyEqUKwS9S6der6_fz8e877IOQ1iBWIfJEw5AYsFFKxdBzDupJclEIAhTAY7_zla3x-EX66jC4Hg189r6XtRr0tfu6NK7mLVKEN5IpRsv8h2fam0ACvQb5wBQnD9Z9kfLrEekk79wQA7PjCv8csmytMxdrUi2li2HZgGNtQKXO9Wi7QC-CzRKcsXOQYTFaPbDjYSNlaS_UN-qTrWXek5ys_tale5ejb1XInO3ef97Kq5NwFAc3ns7Y9c1HYmZrVo6xaYl7GRf_AgdvaJy4e0nmNAHrr7Y13Hm6OJUXKgGk6TWqcKhUiYZw3qrTRtQnvYaqvOIHJBb1NGA2nvQo-srkwqjWzI8Pynt1G5h_e39rfWq9DtHegf16tc-ydY-8ELMgIEx_c56CpUEVe8Mxv5UBlhXVR8H-viZyAm7zrD-FPTtMZKoc_rMuDNt_dhPWYy_QROWxMDpo5_DwmA7N4Qh52Qlw_JXOPJApIoj0kUY8k6pFEEUnUI4l6JNEWSdQiiVokUY8k2iHpGZmefZienrOmDAcreMI3TMEeFJSBSQrgd0mptTKplokRCehzXoI9rKPYiDTQgTTFOJClieJSTwpg9uN0Ip6TAxi3eUFoUJSlSCeh0XERAmVSUoE5CyaL4kEIPzEkb_w85iuXbCXfJ7QhOfaTnDfLET4FwxirLgk-JOGtie--9RcMvLxbtyPyoFslx-RgU2_NKyCqG3VC7k3OPp5YSP0GSe-VXQ
link.rule.ids 315,783,787,27936,27937,33385
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coercive+and+noncoercive+elliptic+problems+with+variable+exponent+Laplacian+under+Robin+boundary+conditions&rft.jtitle=Mathematica+Slovaca&rft.au=Dammak%2C+Makkia&rft.au=Ali%2C+Abir+Amor+Ben&rft.date=2022-12-16&rft.pub=De+Gruyter&rft.issn=0139-9918&rft.eissn=1337-2211&rft.volume=72&rft.issue=6&rft.spage=1541&rft.epage=1550&rft_id=info:doi/10.1515%2Fms-2022-0105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_ms_2022_01057261541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0139-9918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0139-9918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0139-9918&client=summon