Coercive and noncoercive elliptic problems with variable exponent Laplacian under Robin boundary conditions
In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ = λ ) ± ) under Robin boundary condition in a regular open bounded domain Ω of ℝ , ≥ 2. Δ is the )-Laplacian operator where ∈ ) and > 1. Our proofs are based on the sub solutio...
Saved in:
Published in | Mathematica Slovaca Vol. 72; no. 6; pp. 1541 - 1550 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
De Gruyter
16.12.2022
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ
= λ
)
±
)
under Robin boundary condition in a regular open bounded domain Ω of ℝ
,
≥ 2. Δ
is the
)-Laplacian operator where
∈
) and
> 1. Our proofs are based on the sub solution-super solution method and also on variational arguments. |
---|---|
AbstractList | Abstract
In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ
p
(
x
)
u
= λ
k
(
x
)
u
q
±
h
(
x
)
u
r
under Robin boundary condition in a regular open bounded domain Ω of ℝ
N
,
N
≥ 2. Δ
p
(
x
)
is the
p
(
x
)-Laplacian operator where
p
∈
C
1
(
Ω
) and
p
> 1. Our proofs are based on the sub solution-super solution method and also on variational arguments. In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δp(x) u = λ k(x) uq ± h(x) ur under Robin boundary condition in a regular open bounded domain Ω of ℝN, N ≥ 2. Δp(x) is the p(x)-Laplacian operator where p ∈ C1(Ω) and p > 1. Our proofs are based on the sub solution-super solution method and also on variational arguments. In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ = λ ) ± ) under Robin boundary condition in a regular open bounded domain Ω of ℝ , ≥ 2. Δ is the )-Laplacian operator where ∈ ) and > 1. Our proofs are based on the sub solution-super solution method and also on variational arguments. |
Author | Dammak, Makkia Ali, Abir Amor Ben |
Author_xml | – sequence: 1 givenname: Makkia surname: Dammak fullname: Dammak, Makkia email: makkia.dammak@gmail.com organization: Department of Mathematics Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia – sequence: 2 givenname: Abir Amor Ben surname: Ali fullname: Ali, Abir Amor Ben email: abir.amorbenali@gmail.com organization: Department of Mathematics Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia |
BookMark | eNptkE9LAzEQxYMoWKs3P0DAq6uZpNl08STFf1AQpPclm8xqdJusyba1396UKl48zTz4zZvHOyGHPngk5BzYFUiQ18tUcMZ5wYDJAzICIVTBOcAhGTEQVVFVMD0mJym9MyaVFGJEPmYBo3FrpNpbmv3Mr8auc_3gDO1jaDpcJrpxwxtd6-h01hS_-vzdD3Su-04bpz1deYuRvoTGedqErHTcUhO8dYMLPp2So1Z3Cc9-5pgs7u8Ws8di_vzwNLudF4YrPhSNUCW0gMowLlRrbYOV1QqFksB4WzJpZYmiAgsaDQPdoixbOzWcl6yaijG52Nvm4J8rTEP9HlbR5481VxPFSiUEz9TlnjIxpBSxrfvoljlwDazetVkvM5_brHdtZvxmj290N2C0-BpX27z8ef93pngJcgLiGysYfq8 |
Cites_doi | 10.21136/CMJ.1991.102493 10.1080/10652469.2015.1121255 10.1155/2012/275748 10.1090/trans2/029/12 10.1515/anona-2020-0063 10.1016/j.jmaa.2009.06.032 10.1016/j.jmaa.2021.125197 10.1006/jmaa.2000.7617 10.4171/ZAA/1600 10.1512/iumj.1967.16.16087 10.1016/j.na.2011.01.037 10.1515/anona-2020-0022 10.1515/acv-2018-0003 10.4064/sm-3-1-200-211 10.1016/j.amc.2010.12.042 10.1090/qam/272272 |
ContentType | Journal Article |
Copyright | 2022 Mathematical Institute Slovak Academy of Sciences |
Copyright_xml | – notice: 2022 Mathematical Institute Slovak Academy of Sciences |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1515/ms-2022-0105 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1337-2211 |
EndPage | 1550 |
ExternalDocumentID | 10_1515_ms_2022_0105 10_1515_ms_2022_01057261541 |
GroupedDBID | .86 .VR 06D 1N0 29M 2~H 30V 4.4 408 40D 5GY 67Z 6NX 8TC 95. 95~ AAAEU AADQG AAEMA AAFPC AAGVJ AAJBH AALGR AAPBV AAPJK AAQCX AASQH AAXCG ABAQN ABFKT ABFLS ABJCF ABPLS ABSOE ABYKJ ACEFL ACGFS ACIWK ACOMO ACTFP ACZBO ADGQD ADGYE ADINQ ADJVZ ADOZN AEICA AENEX AEQDQ AERZL AFBAA AFCXV AFKRA AFWTZ AFYRI AHBYD AHVWV AHXUK AIGSN ALMA_UNASSIGNED_HOLDINGS ARAPS ASYPN BA0 BAKPI BBCWN BCIFA BENPR CAG CFGNV CS3 DBYYV DU5 E3Z EBS GQ6 GQ7 HCIFZ HF~ HMJXF IJ- IXC IY9 I~Z K7- M7S MA- P2P P9R PF0 QD8 QOS R9I RPX RSV S1Z S27 S3B SDH SHX SMT SOJ T13 TSV TUC U2A VC2 WK8 WTRAM ~A9 8FE 8FG AAYXX ABJNI ABVMU ABWLS ACPMA AFBBN AGBEV AKXKS BGLVJ BPHCQ CITATION K6V KDIRW L6V OK1 PQQKQ PROAC SLJYH UK5 7SC 7TB 8FD AZQEC FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c272t-b3761f1e7c0237fddbe9da7e375102f605d56e391d1aec01afe56fd8c2260983 |
ISSN | 0139-9918 |
IngestDate | Thu Oct 10 22:06:38 EDT 2024 Thu Sep 12 17:09:56 EDT 2024 Wed Dec 07 02:20:12 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c272t-b3761f1e7c0237fddbe9da7e375102f605d56e391d1aec01afe56fd8c2260983 |
PQID | 2747067332 |
PQPubID | 2038886 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2747067332 crossref_primary_10_1515_ms_2022_0105 walterdegruyter_journals_10_1515_ms_2022_01057261541 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-16 |
PublicationDateYYYYMMDD | 2022-12-16 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Mathematica Slovaca |
PublicationYear | 2022 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2022122109555605513_j_ms-2022-0105_ref_004 2022122109555605513_j_ms-2022-0105_ref_015 2022122109555605513_j_ms-2022-0105_ref_003 2022122109555605513_j_ms-2022-0105_ref_014 2022122109555605513_j_ms-2022-0105_ref_006 2022122109555605513_j_ms-2022-0105_ref_017 2022122109555605513_j_ms-2022-0105_ref_005 2022122109555605513_j_ms-2022-0105_ref_016 2022122109555605513_j_ms-2022-0105_ref_008 2022122109555605513_j_ms-2022-0105_ref_019 2022122109555605513_j_ms-2022-0105_ref_007 2022122109555605513_j_ms-2022-0105_ref_018 2022122109555605513_j_ms-2022-0105_ref_009 2022122109555605513_j_ms-2022-0105_ref_011 2022122109555605513_j_ms-2022-0105_ref_010 2022122109555605513_j_ms-2022-0105_ref_002 2022122109555605513_j_ms-2022-0105_ref_013 2022122109555605513_j_ms-2022-0105_ref_001 2022122109555605513_j_ms-2022-0105_ref_012 |
References_xml | – ident: 2022122109555605513_j_ms-2022-0105_ref_010 doi: 10.21136/CMJ.1991.102493 – ident: 2022122109555605513_j_ms-2022-0105_ref_011 doi: 10.1080/10652469.2015.1121255 – ident: 2022122109555605513_j_ms-2022-0105_ref_018 doi: 10.1155/2012/275748 – ident: 2022122109555605513_j_ms-2022-0105_ref_006 doi: 10.1090/trans2/029/12 – ident: 2022122109555605513_j_ms-2022-0105_ref_001 doi: 10.1515/anona-2020-0063 – ident: 2022122109555605513_j_ms-2022-0105_ref_003 doi: 10.1016/j.jmaa.2009.06.032 – ident: 2022122109555605513_j_ms-2022-0105_ref_012 doi: 10.1016/j.jmaa.2021.125197 – ident: 2022122109555605513_j_ms-2022-0105_ref_005 doi: 10.1006/jmaa.2000.7617 – ident: 2022122109555605513_j_ms-2022-0105_ref_008 doi: 10.4171/ZAA/1600 – ident: 2022122109555605513_j_ms-2022-0105_ref_009 doi: 10.1512/iumj.1967.16.16087 – ident: 2022122109555605513_j_ms-2022-0105_ref_014 – ident: 2022122109555605513_j_ms-2022-0105_ref_015 doi: 10.1016/j.na.2011.01.037 – ident: 2022122109555605513_j_ms-2022-0105_ref_016 – ident: 2022122109555605513_j_ms-2022-0105_ref_017 doi: 10.1515/anona-2020-0022 – ident: 2022122109555605513_j_ms-2022-0105_ref_019 doi: 10.1515/acv-2018-0003 – ident: 2022122109555605513_j_ms-2022-0105_ref_013 doi: 10.4064/sm-3-1-200-211 – ident: 2022122109555605513_j_ms-2022-0105_ref_004 doi: 10.1016/j.amc.2010.12.042 – ident: 2022122109555605513_j_ms-2022-0105_ref_007 doi: 10.1090/qam/272272 – ident: 2022122109555605513_j_ms-2022-0105_ref_002 |
SSID | ssj0057533 |
Score | 2.2906182 |
Snippet | In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ
= λ
)
±
)
under Robin boundary... Abstract In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δ p ( x ) u = λ k ( x ) u q ± h... In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δp(x) u = λ k(x) uq ± h(x) ur under... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Publisher |
StartPage | 1541 |
SubjectTerms | 35J60 35J70 35K57 Boundary conditions Coercivity generalised Sobolev spaces Laplace operator Primary 35J20 quasilinear equation sub solution-super solution method variational methods |
Title | Coercive and noncoercive elliptic problems with variable exponent Laplacian under Robin boundary conditions |
URI | http://www.degruyter.com/doi/10.1515/ms-2022-0105 https://www.proquest.com/docview/2747067332 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuMBh4lOUjckHOFWGxs5Hc4wGY0LAhU7aLbJjB1Vd2ir9YOPCv857dpyEqUKwS9S6der6_fz8e877IOQ1iBWIfJEw5AYsFFKxdBzDupJclEIAhTAY7_zla3x-EX66jC4Hg189r6XtRr0tfu6NK7mLVKEN5IpRsv8h2fam0ACvQb5wBQnD9Z9kfLrEekk79wQA7PjCv8csmytMxdrUi2li2HZgGNtQKXO9Wi7QC-CzRKcsXOQYTFaPbDjYSNlaS_UN-qTrWXek5ys_tale5ejb1XInO3ef97Kq5NwFAc3ns7Y9c1HYmZrVo6xaYl7GRf_AgdvaJy4e0nmNAHrr7Y13Hm6OJUXKgGk6TWqcKhUiYZw3qrTRtQnvYaqvOIHJBb1NGA2nvQo-srkwqjWzI8Pynt1G5h_e39rfWq9DtHegf16tc-ydY-8ELMgIEx_c56CpUEVe8Mxv5UBlhXVR8H-viZyAm7zrD-FPTtMZKoc_rMuDNt_dhPWYy_QROWxMDpo5_DwmA7N4Qh52Qlw_JXOPJApIoj0kUY8k6pFEEUnUI4l6JNEWSdQiiVokUY8k2iHpGZmefZienrOmDAcreMI3TMEeFJSBSQrgd0mptTKplokRCehzXoI9rKPYiDTQgTTFOJClieJSTwpg9uN0Ip6TAxi3eUFoUJSlSCeh0XERAmVSUoE5CyaL4kEIPzEkb_w85iuXbCXfJ7QhOfaTnDfLET4FwxirLgk-JOGtie--9RcMvLxbtyPyoFslx-RgU2_NKyCqG3VC7k3OPp5YSP0GSe-VXQ |
link.rule.ids | 315,783,787,27936,27937,33385 |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coercive+and+noncoercive+elliptic+problems+with+variable+exponent+Laplacian+under+Robin+boundary+conditions&rft.jtitle=Mathematica+Slovaca&rft.au=Dammak%2C+Makkia&rft.au=Ali%2C+Abir+Amor+Ben&rft.date=2022-12-16&rft.pub=De+Gruyter&rft.issn=0139-9918&rft.eissn=1337-2211&rft.volume=72&rft.issue=6&rft.spage=1541&rft.epage=1550&rft_id=info:doi/10.1515%2Fms-2022-0105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_ms_2022_01057261541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0139-9918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0139-9918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0139-9918&client=summon |