Composite gas sensors based on carbon and tin oxide nanoparticles

The methods for manufacturing NO 2 sensors from carbon-tin nanoparticle composites and the results of detection of NO 2 impurities in the range of 10–40 ppm in air are presented. All sensors operate at room temperature. The sensors with arc discharge soot and tin nanoparticles demonstrate the highes...

Full description

Saved in:
Bibliographic Details
Published inRussian physics journal Vol. 68; no. 3; pp. 488 - 499
Main Authors Bogomolova, A. I., Gareev, T. I., Nerushev, O. A., Sorokin, D. V., Bannov, A. G., Smovzh, D. V.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The methods for manufacturing NO 2 sensors from carbon-tin nanoparticle composites and the results of detection of NO 2 impurities in the range of 10–40 ppm in air are presented. All sensors operate at room temperature. The sensors with arc discharge soot and tin nanoparticles demonstrate the highest sensitivity. A combination of the graphene and SnO nanoparticle layers demonstrates the lowest response time. The interaction mechanisms of sensors with low NO 2 concentrations are discussed.
AbstractList The methods for manufacturing NO 2 sensors from carbon-tin nanoparticle composites and the results of detection of NO 2 impurities in the range of 10–40 ppm in air are presented. All sensors operate at room temperature. The sensors with arc discharge soot and tin nanoparticles demonstrate the highest sensitivity. A combination of the graphene and SnO nanoparticle layers demonstrates the lowest response time. The interaction mechanisms of sensors with low NO 2 concentrations are discussed.
The methods for manufacturing NO2 sensors from carbon-tin nanoparticle composites and the results of detection of NO2 impurities in the range of 10–40 ppm in air are presented. All sensors operate at room temperature. The sensors with arc discharge soot and tin nanoparticles demonstrate the highest sensitivity. A combination of the graphene and SnO nanoparticle layers demonstrates the lowest response time. The interaction mechanisms of sensors with low NO2 concentrations are discussed.
Author Sorokin, D. V.
Bannov, A. G.
Smovzh, D. V.
Bogomolova, A. I.
Gareev, T. I.
Nerushev, O. A.
Author_xml – sequence: 1
  givenname: A. I.
  surname: Bogomolova
  fullname: Bogomolova, A. I.
  email: a.bogomolova1@g.nsu.ru
  organization: Novosibirsk National Research State University, S. S. Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences
– sequence: 2
  givenname: T. I.
  surname: Gareev
  fullname: Gareev, T. I.
  organization: Novosibirsk National Research State University, S. S. Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences
– sequence: 3
  givenname: O. A.
  surname: Nerushev
  fullname: Nerushev, O. A.
  organization: S. S. Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences
– sequence: 4
  givenname: D. V.
  surname: Sorokin
  fullname: Sorokin, D. V.
  organization: Novosibirsk National Research State University, S. S. Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences
– sequence: 5
  givenname: A. G.
  surname: Bannov
  fullname: Bannov, A. G.
  organization: Novosibirsk State Technical University
– sequence: 6
  givenname: D. V.
  surname: Smovzh
  fullname: Smovzh, D. V.
  organization: S. S. Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences
BookMark eNp9kEtPwzAQhC1UJNrCH-BkibPBj_iRYxXxkipx6d1yYqdK1drBm0rw7zEEiRun2cN8s7uzQouYYkDoltF7Rql-AMaY4YRySaiopCLqAi2Z1ILUnJtFmamqiDFGX6EVwIHSgim9RJsmncYEwxTw3gGGECFlwK2D4HGKuHO5LeKix9MQcfoYfMDRxTS6PA3dMcA1uuzdEcLNr67R7ulx17yQ7dvza7PZko5rPpG6N06ZwD0XrTfUBFmrcpPkomdaU9_zzrfMS69Vz6qqq4UUSuiOStcyJcQa3c2xY07v5wCTPaRzjmWjFVxQyWj5rrj47OpyAsiht2MeTi5_Wkbtd1N2bsqWpuxPU1YVSMwQFHPch_wX_Q_1BRxCbCk
Cites_doi 10.1134/1.1258821
10.3390/chemosensors10120525
10.1007/s11182-014-0195-9
10.1016/j.snb.2009.12.044
10.1063/1.4916755
10.1134/S0021894423030021
10.1134/1.1804577
10.3390/mi14040728
10.1016/j.apsusc.2021.150843
10.1007/s11182-012-9721-9
10.1007/BF02766530
10.1016/0039-6028(79)90411-4
10.1016/j.physrep.2009.02.003
10.1134/S1061934822020083
10.1021/nl300901a
10.1007/s10934-023-01528-x
10.1021/nl201432g
10.1038/nmat1967
10.1109/JSEN.2018.2869203
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11182-025-03456-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1573-9228
EndPage 499
ExternalDocumentID 10_1007_s11182_025_03456_6
GroupedDBID -Y2
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VIT
W23
W48
WK8
YLTOR
ZMTXR
~8M
~A9
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c272t-9f8a68e2d23bd808e596064523f1770df2cdb1d5d76f144c9353637c05ab1633
IEDL.DBID U2A
ISSN 1064-8887
IngestDate Sat Aug 23 12:46:51 EDT 2025
Wed Jul 16 16:42:13 EDT 2025
Wed Jul 16 06:31:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Tin oxides
Nanoparticles
NO
sensors
Adsorption
Graphene
Arc discharge soot
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-9f8a68e2d23bd808e596064523f1770df2cdb1d5d76f144c9353637c05ab1633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3230510888
PQPubID 2043529
PageCount 12
ParticipantIDs proquest_journals_3230510888
crossref_primary_10_1007_s11182_025_03456_6
springer_journals_10_1007_s11182_025_03456_6
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Russian physics journal
PublicationTitleAbbrev Russ Phys J
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References F Schedin (3456_CR6) 2007; 6
AS Lagutin (3456_CR1) 2022; 77
N Yamazoe (3456_CR2) 1979; 86
OA Nerushev (3456_CR11) 1997; 42
A Singh (3456_CR3) 2024; 31
R Kumar (3456_CR4) 2023; 14
R Leghrib (3456_CR8) 2010; 145
VA Andryushchenko (3456_CR12) 2023; 64
RB Tagirov (3456_CR18) 1998; 41
V Kamble (3456_CR9) 2015; 5
V Andryushchenko (3456_CR10) 2021; 567
VI Gaman (3456_CR5) 2014; 57
SY Davydov (3456_CR20) 2004; 30
LM Malard (3456_CR14) 2009; 473
A Eckmann (3456_CR16) 2012; 12
VI Gaman (3456_CR19) 2012; 54
LG Cançado (3456_CR15) 2011; 11
3456_CR17
AG Bannov (3456_CR13) 2022; 10
3456_CR7
References_xml – volume: 42
  start-page: 160
  year: 1997
  ident: 3456_CR11
  publication-title: Tech. Phys.
  doi: 10.1134/1.1258821
– volume: 10
  start-page: 525
  issue: 12
  year: 2022
  ident: 3456_CR13
  publication-title: Chemosensors
  doi: 10.3390/chemosensors10120525
– volume: 57
  start-page: 334
  year: 2014
  ident: 3456_CR5
  publication-title: Russ. Phys. J.
  doi: 10.1007/s11182-014-0195-9
– volume: 145
  start-page: 411
  issue: 1
  year: 2010
  ident: 3456_CR8
  publication-title: Sensors Actuators B: Chem.
  doi: 10.1016/j.snb.2009.12.044
– volume: 5
  start-page: 037138
  issue: 3
  year: 2015
  ident: 3456_CR9
  publication-title: AIP Adv.
  doi: 10.1063/1.4916755
– volume: 64
  start-page: 371
  issue: 3
  year: 2023
  ident: 3456_CR12
  publication-title: J. Appl. Mech. Tech. Phys.
  doi: 10.1134/S0021894423030021
– volume: 30
  start-page: 727
  year: 2004
  ident: 3456_CR20
  publication-title: Tech. Phys. Lett.
  doi: 10.1134/1.1804577
– volume: 14
  start-page: 728
  issue: 4
  year: 2023
  ident: 3456_CR4
  publication-title: Micromachines
  doi: 10.3390/mi14040728
– volume: 567
  start-page: 150843
  year: 2021
  ident: 3456_CR10
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.150843
– volume: 54
  start-page: 1137
  year: 2012
  ident: 3456_CR19
  publication-title: Russ. Phys. J.
  doi: 10.1007/s11182-012-9721-9
– volume: 41
  start-page: 331
  year: 1998
  ident: 3456_CR18
  publication-title: Russ. Phys. J.
  doi: 10.1007/BF02766530
– volume: 86
  start-page: 335
  year: 1979
  ident: 3456_CR2
  publication-title: Surf Sci
  doi: 10.1016/0039-6028(79)90411-4
– volume: 473
  start-page: 51
  issue: 5–6
  year: 2009
  ident: 3456_CR14
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2009.02.003
– volume: 77
  start-page: 131
  year: 2022
  ident: 3456_CR1
  publication-title: J. Anal. Chem.
  doi: 10.1134/S1061934822020083
– volume: 12
  start-page: 3925
  issue: 8
  year: 2012
  ident: 3456_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl300901a
– volume: 31
  start-page: 545
  issue: 2
  year: 2024
  ident: 3456_CR3
  publication-title: J. Porous Mater.
  doi: 10.1007/s10934-023-01528-x
– volume: 11
  start-page: 3190
  issue: 8
  year: 2011
  ident: 3456_CR15
  publication-title: Nano Lett.
  doi: 10.1021/nl201432g
– volume: 6
  start-page: 652
  issue: 9
  year: 2007
  ident: 3456_CR6
  publication-title: Nat Mater
  doi: 10.1038/nmat1967
– ident: 3456_CR17
  doi: 10.1063/1.4916755
– ident: 3456_CR7
  doi: 10.1109/JSEN.2018.2869203
SSID ssj0010067
Score 2.2981024
Snippet The methods for manufacturing NO 2 sensors from carbon-tin nanoparticle composites and the results of detection of NO 2 impurities in the range of 10–40 ppm in...
The methods for manufacturing NO2 sensors from carbon-tin nanoparticle composites and the results of detection of NO2 impurities in the range of 10–40 ppm in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 488
SubjectTerms Arc discharges
Condensed Matter Physics
Electric arcs
Gas sensors
Graphene
Hadrons
Heavy Ions
Lasers
Mathematical and Computational Physics
Nanoparticles
Nitrogen dioxide
Nuclear Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Room temperature
Theoretical
Tin oxides
Title Composite gas sensors based on carbon and tin oxide nanoparticles
URI https://link.springer.com/article/10.1007/s11182-025-03456-6
https://www.proquest.com/docview/3230510888
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66IXgRf-J0jhy8aaBNmh87Dtkcip42mKeSNIns0spawT_fl661KHrw1ENLCF_y3ve-vvcShK61cJJGJiHKcgECxXHwg06SWHjqrU1EZsJ_yKdnMV8mDyu-aprCyrbavU1J1p66a3YLsTAJ169GDGifiF3U56DdQyHXkk6-cgfBAdc5TgEzABtqWmV-H-M7HXUx5o-0aM02s0N00ISJeLJd1yO04_JjtFeXa2blCZoEMw7lVg6_6hKXoEWLTYkDJVlc5DjTGwMPnVtcrXNcfKytw7nOQSE3hXCnaDGbLu7mpLkMgWRU0oqMvdJCOWopM1ZFyvGgPRLQkT6WMrKeZtbEllspPIikbMw4E0xmEdcGYi52hnp5kbtzhJ2OuAXGUoIDP1tpqM98rAxjeqy8owN000KSvm2PvEi7w40DgCkAmNYApmKAhi1qabP9y5SBsAFjB_QH6LZFsnv992gX__v8Eu3T7WKSKB6iXrV5d1cQJFRmhPqT-5fH6ajeG58tIbJ8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgCMGC-BSFAh7YwFJix447VoiqQNuplbpF_kRdUtQEiZ_POU2IQDAwZUhkWc939-7lzjZCt0q4lEY6IdJyAQLFcYiDLiWx8NRbmwijw3_IyVSM5snzgi_qTWFF0-3elCSrSN1udgu5MAnXr0YMaJ-IbbQDyYAMtjyng6_aQQjAVY1TwAzAh-qtMr-P8Z2O2hzzR1m0YpvhITqo00Q82KzrEdpy-THardo1TXGCBsGNQ7uVw6-qwAVo0dW6wIGSLF7l2Ki1hofKLS6XOV59LK3DucpBIdeNcKdoNnycPYxIfRkCMTSlJel7qYR01FKmrYyk40F7JKAjfZymkfXUWB1bblPhQSSZPuNMsNREXGnIudgZ6uSr3J0j7FTELTCWFBz42aaaeuNjqRlTfekd7aK7BpLsbXPkRdYebhwAzADArAIwE13Ua1DLavMvMgbCBpwd0O-i-wbJ9vXfo1387_MbtDeaTcbZ-Gn6con26WZhSRT3UKdcv7srSBhKfV3ZxycetrPb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgCMSCeIpCAQ9sEDWxYycdK6Aqr4qhlbpFdmyjLk7VBInP5zoPAggGpgyJLOvY1_ec3IcRuhRcR8SXoRcrxkGgaAbnoI68gBtilAp5Kt1_yOcJH8_Chzmbf6niL7Pdm5BkVdPgujTZor9Upt8Wvjle7LmrWH0KFMDj62gjdNXAsKNnZPgZR3CHcRnv5DAbsKe6bOb3Mb67ppZv_giRlp5ntIt2asqIh9Ua76E1bffRZpm6meYHaOhM2qVeafwqcpyDLs1WOXbuSeHM4lSsJDyEVbhYWJy9L5TGVlhQy3VS3CGaju6mN2OvvhjBS0lECm9gYsFjTRShUsV-rJnTISFoShNEka8MSZUMFFMRNyCY0gFllNMo9ZmQwL_oEerYzOpjhLXwmQLvFXMGvlpFkpjUBLGkVAxio0kXXTWQJMuq_UXSNjp2ACYAYFICmPAu6jWoJbUp5AkFkQOGD-h30XWDZPv679FO_vf5Bdp6uR0lT_eTx1O0Tap19fyghzrF6k2fAXco5Hm5PT4A9zC4Dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composite+gas+sensors+based+on+carbon+and+tin+oxide+nanoparticles&rft.jtitle=Russian+physics+journal&rft.au=Bogomolova%2C+A.+I.&rft.au=Gareev%2C+T.+I.&rft.au=Nerushev%2C+O.+A.&rft.au=Sorokin%2C+D.+V.&rft.date=2025-03-01&rft.pub=Springer+International+Publishing&rft.issn=1064-8887&rft.eissn=1573-9228&rft.volume=68&rft.issue=3&rft.spage=488&rft.epage=499&rft_id=info:doi/10.1007%2Fs11182-025-03456-6&rft.externalDocID=10_1007_s11182_025_03456_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8887&client=summon