Continuum mechanics model of graphene as a doubly-periodic perforated thin elastic plate
In this paper, a continuum mechanics model of graphene is proposed, and its analytical solution is derived. Graphene is modeled as a doubly-periodic thin elastic plate with a hexagonal cell having a circular hole at the hexagon center. Graphene is characterized by a general chiral vector and is subj...
Saved in:
Published in | Zeitschrift für angewandte Mathematik und Physik Vol. 76; no. 4 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0044-2275 1420-9039 |
DOI | 10.1007/s00033-025-02548-0 |
Cover
Loading…
Abstract | In this paper, a continuum mechanics model of graphene is proposed, and its analytical solution is derived. Graphene is modeled as a doubly-periodic thin elastic plate with a hexagonal cell having a circular hole at the hexagon center. Graphene is characterized by a general chiral vector and is subject to remote tension. For the solution, the Filshtinskii solution obtained for the symmetric case is generalized for any chirality. The method uses the doubly-periodic Kolosov–Muskhelishvili complex potentials, the theory of the elliptic Weierstrass function and quasi-doubly-periodic meromorphic functions and reduces the model to an infinite system of linear algebraic equations with complex coefficients. Analytical expressions and numerical values for the stresses and displacements are obtained and discussed. The displacements expressions possess the Young modulus and Poisson ratio of the graphene bonds. They are derived as functions of the effective graphene moduli available in the literature. |
---|---|
AbstractList | In this paper, a continuum mechanics model of graphene is proposed, and its analytical solution is derived. Graphene is modeled as a doubly-periodic thin elastic plate with a hexagonal cell having a circular hole at the hexagon center. Graphene is characterized by a general chiral vector and is subject to remote tension. For the solution, the Filshtinskii solution obtained for the symmetric case is generalized for any chirality. The method uses the doubly-periodic Kolosov–Muskhelishvili complex potentials, the theory of the elliptic Weierstrass function and quasi-doubly-periodic meromorphic functions and reduces the model to an infinite system of linear algebraic equations with complex coefficients. Analytical expressions and numerical values for the stresses and displacements are obtained and discussed. The displacements expressions possess the Young modulus and Poisson ratio of the graphene bonds. They are derived as functions of the effective graphene moduli available in the literature. |
ArticleNumber | 169 |
Author | Antipov, Yuri A. |
Author_xml | – sequence: 1 givenname: Yuri A. surname: Antipov fullname: Antipov, Yuri A. |
BookMark | eNotkE1rwzAMhs3oYG23P7CTYedsiu3G8XGUfUFhlw12M4o_1pTEzuzk0H-_dN1BSLw8SOhZkUWIwRFyW8J9CSAfMgBwXgDbnErUBVyQZSkYFAq4WpAlgBAFY3JzRVY5H2ZclsCX5Gsbw9iGaepp78weQ2sy7aN1HY2eficc9i44ipkitXFqumMxuNRG2xo6Dz4mHJ2l474N1HWYx1Pezdk1ufTYZXfz39fk8_npY_ta7N5f3raPu8IwycZCNrZE21RoSkTkXPnKuxK9NUxVUDXS1WhRKs6Ur1ktoGnQGiXU_Jxg0vM1uTvvHVL8mVwe9SFOKcwnNWdcVJIrIWaKnSmTYs7JeT2ktsd01CXok0F9Nqhne_rPoAb-C2YzZqo |
Cites_doi | 10.1142/p080 10.1177/1081286507086898 10.1016/j.ijengsci.2014.08.007 10.1016/j.ijnonlinmec.2014.09.005 10.1016/j.ijsolstr.2017.11.008 10.1016/j.ijsolstr.2015.03.030 10.1007/s11012-016-0503-2 10.1016/S0020-7683(00)00126-8 10.1016/S0009-2614(00)00764-8 10.1007/s00707-011-0528-5 10.1016/j.spmi.2015.06.001 10.1016/0021-8928(64)90095-4 10.1016/j.physe.2018.11.025 10.1103/PhysRevLett.102.235502 |
ContentType | Journal Article |
Copyright | The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00033-025-02548-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
EISSN | 1420-9039 |
ExternalDocumentID | 10_1007_s00033_025_02548_0 |
GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1SB 2.D 203 28- 29R 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFDZB AFEXP AFFNX AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG CITATION COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PQQKQ PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 ZMTXR ~EX |
ID | FETCH-LOGICAL-c272t-7bd1adb6ac1aaa339f6fe1afdc29606b7e8ada79329f82840bbadc949142427f3 |
ISSN | 0044-2275 |
IngestDate | Wed Sep 03 00:23:39 EDT 2025 Wed Sep 03 16:35:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c272t-7bd1adb6ac1aaa339f6fe1afdc29606b7e8ada79329f82840bbadc949142427f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s00033-025-02548-0.pdf |
PQID | 3234673944 |
PQPubID | 2043593 |
ParticipantIDs | proquest_journals_3234673944 crossref_primary_10_1007_s00033_025_02548_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Zeitschrift für angewandte Mathematik und Physik |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | E Cadelano (2548_CR2) 2009; 102 IV Lebedeva (2548_CR11) 2019; 108 GV Lier (2548_CR12) 2000; 326 HM Shodja (2548_CR22) 2011; 222 2548_CR16 R Ghaffari (2548_CR8) 2018; 135 G Cao (2548_CR3) 2024; 146 M Pitteri (2548_CR18) 2003 D Sfyris (2548_CR20) 2014; 67 A Favata (2548_CR6) 2017; 52 D Sfyris (2548_CR19) 2014; 85 JL Ericksen (2548_CR5) 2008; 13 F Liu (2548_CR13) 2007; 76 D Sfyris (2548_CR21) 2015; 66 EG Kirsch (2548_CR10) 1898; 42 G Zhang (2548_CR23) 2022; 169 LA Filshtinskii (2548_CR7) 1964; 28 NI Muskhelishvili (2548_CR15) 1963 AH England (2548_CR4) 1971 R Saito (2548_CR17) 1998 YA Antipov (2548_CR1) 2001; 38 H Hancock (2548_CR9) 1958 F Memarian (2548_CR14) 2015; 85 |
References_xml | – volume-title: Complex Variable Methods in Elasticity year: 1971 ident: 2548_CR4 – volume-title: Physical Properties of Carbon Nanotubes year: 1998 ident: 2548_CR17 doi: 10.1142/p080 – volume: 13 start-page: 199 year: 2008 ident: 2548_CR5 publication-title: Math. Mech. Solids doi: 10.1177/1081286507086898 – volume: 76 year: 2007 ident: 2548_CR13 publication-title: Phys. Rev. B – volume: 85 start-page: 224 year: 2014 ident: 2548_CR19 publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2014.08.007 – volume: 67 start-page: 186 year: 2014 ident: 2548_CR20 publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2014.09.005 – volume: 146 year: 2024 ident: 2548_CR3 publication-title: Diamond Relat. Mater. – volume: 135 start-page: 37 year: 2018 ident: 2548_CR8 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.11.008 – volume-title: Continuum Models for Phase Transitions and Twinning in Crystals year: 2003 ident: 2548_CR18 – volume: 66 start-page: 98 year: 2015 ident: 2548_CR21 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.03.030 – volume: 42 start-page: 797 year: 1898 ident: 2548_CR10 publication-title: Zeitschrift des Vereines deutscher Ingenieure – volume: 52 start-page: 1601 year: 2017 ident: 2548_CR6 publication-title: Meccanica doi: 10.1007/s11012-016-0503-2 – volume: 38 start-page: 1659 year: 2001 ident: 2548_CR1 publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(00)00126-8 – volume: 326 start-page: 181 year: 2000 ident: 2548_CR12 publication-title: Chem. Phys. Let. doi: 10.1016/S0009-2614(00)00764-8 – volume-title: Lectures on the Theory of Elliptic Functions year: 1958 ident: 2548_CR9 – ident: 2548_CR16 – volume-title: Some Basic Problems of the Mathematical Theory of Elasticity year: 1963 ident: 2548_CR15 – volume: 222 start-page: 91 year: 2011 ident: 2548_CR22 publication-title: Acta Mech. doi: 10.1007/s00707-011-0528-5 – volume: 85 start-page: 348 year: 2015 ident: 2548_CR14 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.06.001 – volume: 28 start-page: 530 year: 1964 ident: 2548_CR7 publication-title: J. Appl. Math. Mech. doi: 10.1016/0021-8928(64)90095-4 – volume: 108 start-page: 326 year: 2019 ident: 2548_CR11 publication-title: Physica E: Low-dimen. Syst. Nanostruct. doi: 10.1016/j.physe.2018.11.025 – volume: 169 year: 2022 ident: 2548_CR23 publication-title: J. Mech. Phys. Solids – volume: 102 year: 2009 ident: 2548_CR2 publication-title: Phys. Rev. Let. doi: 10.1103/PhysRevLett.102.235502 |
SSID | ssj0007103 |
Score | 2.3893142 |
Snippet | In this paper, a continuum mechanics model of graphene is proposed, and its analytical solution is derived. Graphene is modeled as a doubly-periodic thin... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Chirality Continuum mechanics Elastic plates Exact solutions Graphene Hexagonal cells Linear algebra Mathematical analysis Meromorphic functions Poisson's ratio |
Title | Continuum mechanics model of graphene as a doubly-periodic perforated thin elastic plate |
URI | https://www.proquest.com/docview/3234673944 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF60IuiD1KrY2so--Ba25Ha3yeXxLC1Fan25g8OXsD8l2F6Ou0Rp__rObDY5TouoL-HIQS7MfDc7szvfN4R8GFshFC8sU7BWMOmMYDp1GRvrrBCwwGTcBrXPq-xiJj_NT-b9rPbILmn0sbl7kFfyP16Fe-BXZMn-g2eHh8IN-Az-hSt4GK5_5WOUlqoWbXuT3Dhk8KLichhtgylgkKKGSIaTZFRi61Zf3zLUNa5tZVCu2KP3HfZPomwIZNGo3bq8Vs1Wd9BXVzVQAa8q3yQej9U_nmLb5Tf3UyETIPnc675-x5G6YZZONbB_JvB-y_pHiPPtqoobp3GTgZ8MLW7bm4zYQY3nGgMJpguqUjLOuwEox66LoxKq0iLtdIr6QNsNeomAkg_G765lA7WtBB4vI3kcSiqWblar_oT-6kt5Pru8LKdn8-lj8oRDlYADLGZ8MizEkDzFBoPu_SJnKjAnf_uF7bxke1kOucZ0l7yIRQKddB5_SR65xR55PljarPfI02Bos35F5gMK6IACGlBAa097FFC1por-ggK6QQFFFNCIAhpQ8JrMzs-mpxcszstghue8Ybm2I2V1psxIKSVE4TPvRspbw7FO1bkbK6sgIPPCQ6EtU62VNYUskO3Icy_ekJ1FvXBvCYXE0lpuvZVWy8zoce7gOT4XfCR8mrt9kvTWKpedLEo5CGAH25Zg1zLYtkz3yWFv0DL-fdal4AIWaeRlH_z563fk2QaSh2SnWbXuCDLBRr8P_r4HSQxfoA |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuum+mechanics+model+of+graphene+as+a+doubly-periodic+perforated+thin+elastic+plate&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Physik&rft.au=Antipov%2C+Yuri+A&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0044-2275&rft.eissn=1420-9039&rft.volume=76&rft.issue=4&rft_id=info:doi/10.1007%2Fs00033-025-02548-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2275&client=summon |