Continuum mechanics model of graphene as a doubly-periodic perforated thin elastic plate

In this paper, a continuum mechanics model of graphene is proposed, and its analytical solution is derived. Graphene is modeled as a doubly-periodic thin elastic plate with a hexagonal cell having a circular hole at the hexagon center. Graphene is characterized by a general chiral vector and is subj...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Physik Vol. 76; no. 4
Main Author Antipov, Yuri A.
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.08.2025
Subjects
Online AccessGet full text
ISSN0044-2275
1420-9039
DOI10.1007/s00033-025-02548-0

Cover

Loading…
Abstract In this paper, a continuum mechanics model of graphene is proposed, and its analytical solution is derived. Graphene is modeled as a doubly-periodic thin elastic plate with a hexagonal cell having a circular hole at the hexagon center. Graphene is characterized by a general chiral vector and is subject to remote tension. For the solution, the Filshtinskii solution obtained for the symmetric case is generalized for any chirality. The method uses the doubly-periodic Kolosov–Muskhelishvili complex potentials, the theory of the elliptic Weierstrass function and quasi-doubly-periodic meromorphic functions and reduces the model to an infinite system of linear algebraic equations with complex coefficients. Analytical expressions and numerical values for the stresses and displacements are obtained and discussed. The displacements expressions possess the Young modulus and Poisson ratio of the graphene bonds. They are derived as functions of the effective graphene moduli available in the literature.
AbstractList In this paper, a continuum mechanics model of graphene is proposed, and its analytical solution is derived. Graphene is modeled as a doubly-periodic thin elastic plate with a hexagonal cell having a circular hole at the hexagon center. Graphene is characterized by a general chiral vector and is subject to remote tension. For the solution, the Filshtinskii solution obtained for the symmetric case is generalized for any chirality. The method uses the doubly-periodic Kolosov–Muskhelishvili complex potentials, the theory of the elliptic Weierstrass function and quasi-doubly-periodic meromorphic functions and reduces the model to an infinite system of linear algebraic equations with complex coefficients. Analytical expressions and numerical values for the stresses and displacements are obtained and discussed. The displacements expressions possess the Young modulus and Poisson ratio of the graphene bonds. They are derived as functions of the effective graphene moduli available in the literature.
ArticleNumber 169
Author Antipov, Yuri A.
Author_xml – sequence: 1
  givenname: Yuri A.
  surname: Antipov
  fullname: Antipov, Yuri A.
BookMark eNotkE1rwzAMhs3oYG23P7CTYedsiu3G8XGUfUFhlw12M4o_1pTEzuzk0H-_dN1BSLw8SOhZkUWIwRFyW8J9CSAfMgBwXgDbnErUBVyQZSkYFAq4WpAlgBAFY3JzRVY5H2ZclsCX5Gsbw9iGaepp78weQ2sy7aN1HY2eficc9i44ipkitXFqumMxuNRG2xo6Dz4mHJ2l474N1HWYx1Pezdk1ufTYZXfz39fk8_npY_ta7N5f3raPu8IwycZCNrZE21RoSkTkXPnKuxK9NUxVUDXS1WhRKs6Ur1ktoGnQGiXU_Jxg0vM1uTvvHVL8mVwe9SFOKcwnNWdcVJIrIWaKnSmTYs7JeT2ktsd01CXok0F9Nqhne_rPoAb-C2YzZqo
Cites_doi 10.1142/p080
10.1177/1081286507086898
10.1016/j.ijengsci.2014.08.007
10.1016/j.ijnonlinmec.2014.09.005
10.1016/j.ijsolstr.2017.11.008
10.1016/j.ijsolstr.2015.03.030
10.1007/s11012-016-0503-2
10.1016/S0020-7683(00)00126-8
10.1016/S0009-2614(00)00764-8
10.1007/s00707-011-0528-5
10.1016/j.spmi.2015.06.001
10.1016/0021-8928(64)90095-4
10.1016/j.physe.2018.11.025
10.1103/PhysRevLett.102.235502
ContentType Journal Article
Copyright The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
DOI 10.1007/s00033-025-02548-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1420-9039
ExternalDocumentID 10_1007_s00033_025_02548_0
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFDZB
AFEXP
AFFNX
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PQQKQ
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
ID FETCH-LOGICAL-c272t-7bd1adb6ac1aaa339f6fe1afdc29606b7e8ada79329f82840bbadc949142427f3
ISSN 0044-2275
IngestDate Wed Sep 03 00:23:39 EDT 2025
Wed Sep 03 16:35:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c272t-7bd1adb6ac1aaa339f6fe1afdc29606b7e8ada79329f82840bbadc949142427f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00033-025-02548-0.pdf
PQID 3234673944
PQPubID 2043593
ParticipantIDs proquest_journals_3234673944
crossref_primary_10_1007_s00033_025_02548_0
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Zeitschrift für angewandte Mathematik und Physik
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References E Cadelano (2548_CR2) 2009; 102
IV Lebedeva (2548_CR11) 2019; 108
GV Lier (2548_CR12) 2000; 326
HM Shodja (2548_CR22) 2011; 222
2548_CR16
R Ghaffari (2548_CR8) 2018; 135
G Cao (2548_CR3) 2024; 146
M Pitteri (2548_CR18) 2003
D Sfyris (2548_CR20) 2014; 67
A Favata (2548_CR6) 2017; 52
D Sfyris (2548_CR19) 2014; 85
JL Ericksen (2548_CR5) 2008; 13
F Liu (2548_CR13) 2007; 76
D Sfyris (2548_CR21) 2015; 66
EG Kirsch (2548_CR10) 1898; 42
G Zhang (2548_CR23) 2022; 169
LA Filshtinskii (2548_CR7) 1964; 28
NI Muskhelishvili (2548_CR15) 1963
AH England (2548_CR4) 1971
R Saito (2548_CR17) 1998
YA Antipov (2548_CR1) 2001; 38
H Hancock (2548_CR9) 1958
F Memarian (2548_CR14) 2015; 85
References_xml – volume-title: Complex Variable Methods in Elasticity
  year: 1971
  ident: 2548_CR4
– volume-title: Physical Properties of Carbon Nanotubes
  year: 1998
  ident: 2548_CR17
  doi: 10.1142/p080
– volume: 13
  start-page: 199
  year: 2008
  ident: 2548_CR5
  publication-title: Math. Mech. Solids
  doi: 10.1177/1081286507086898
– volume: 76
  year: 2007
  ident: 2548_CR13
  publication-title: Phys. Rev. B
– volume: 85
  start-page: 224
  year: 2014
  ident: 2548_CR19
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2014.08.007
– volume: 67
  start-page: 186
  year: 2014
  ident: 2548_CR20
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2014.09.005
– volume: 146
  year: 2024
  ident: 2548_CR3
  publication-title: Diamond Relat. Mater.
– volume: 135
  start-page: 37
  year: 2018
  ident: 2548_CR8
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.11.008
– volume-title: Continuum Models for Phase Transitions and Twinning in Crystals
  year: 2003
  ident: 2548_CR18
– volume: 66
  start-page: 98
  year: 2015
  ident: 2548_CR21
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2015.03.030
– volume: 42
  start-page: 797
  year: 1898
  ident: 2548_CR10
  publication-title: Zeitschrift des Vereines deutscher Ingenieure
– volume: 52
  start-page: 1601
  year: 2017
  ident: 2548_CR6
  publication-title: Meccanica
  doi: 10.1007/s11012-016-0503-2
– volume: 38
  start-page: 1659
  year: 2001
  ident: 2548_CR1
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(00)00126-8
– volume: 326
  start-page: 181
  year: 2000
  ident: 2548_CR12
  publication-title: Chem. Phys. Let.
  doi: 10.1016/S0009-2614(00)00764-8
– volume-title: Lectures on the Theory of Elliptic Functions
  year: 1958
  ident: 2548_CR9
– ident: 2548_CR16
– volume-title: Some Basic Problems of the Mathematical Theory of Elasticity
  year: 1963
  ident: 2548_CR15
– volume: 222
  start-page: 91
  year: 2011
  ident: 2548_CR22
  publication-title: Acta Mech.
  doi: 10.1007/s00707-011-0528-5
– volume: 85
  start-page: 348
  year: 2015
  ident: 2548_CR14
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.06.001
– volume: 28
  start-page: 530
  year: 1964
  ident: 2548_CR7
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/0021-8928(64)90095-4
– volume: 108
  start-page: 326
  year: 2019
  ident: 2548_CR11
  publication-title: Physica E: Low-dimen. Syst. Nanostruct.
  doi: 10.1016/j.physe.2018.11.025
– volume: 169
  year: 2022
  ident: 2548_CR23
  publication-title: J. Mech. Phys. Solids
– volume: 102
  year: 2009
  ident: 2548_CR2
  publication-title: Phys. Rev. Let.
  doi: 10.1103/PhysRevLett.102.235502
SSID ssj0007103
Score 2.3893142
Snippet In this paper, a continuum mechanics model of graphene is proposed, and its analytical solution is derived. Graphene is modeled as a doubly-periodic thin...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Chirality
Continuum mechanics
Elastic plates
Exact solutions
Graphene
Hexagonal cells
Linear algebra
Mathematical analysis
Meromorphic functions
Poisson's ratio
Title Continuum mechanics model of graphene as a doubly-periodic perforated thin elastic plate
URI https://www.proquest.com/docview/3234673944
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF60IuiD1KrY2so--Ba25Ha3yeXxLC1Fan25g8OXsD8l2F6Ou0Rp__rObDY5TouoL-HIQS7MfDc7szvfN4R8GFshFC8sU7BWMOmMYDp1GRvrrBCwwGTcBrXPq-xiJj_NT-b9rPbILmn0sbl7kFfyP16Fe-BXZMn-g2eHh8IN-Az-hSt4GK5_5WOUlqoWbXuT3Dhk8KLichhtgylgkKKGSIaTZFRi61Zf3zLUNa5tZVCu2KP3HfZPomwIZNGo3bq8Vs1Wd9BXVzVQAa8q3yQej9U_nmLb5Tf3UyETIPnc675-x5G6YZZONbB_JvB-y_pHiPPtqoobp3GTgZ8MLW7bm4zYQY3nGgMJpguqUjLOuwEox66LoxKq0iLtdIr6QNsNeomAkg_G765lA7WtBB4vI3kcSiqWblar_oT-6kt5Pru8LKdn8-lj8oRDlYADLGZ8MizEkDzFBoPu_SJnKjAnf_uF7bxke1kOucZ0l7yIRQKddB5_SR65xR55PljarPfI02Bos35F5gMK6IACGlBAa097FFC1por-ggK6QQFFFNCIAhpQ8JrMzs-mpxcszstghue8Ybm2I2V1psxIKSVE4TPvRspbw7FO1bkbK6sgIPPCQ6EtU62VNYUskO3Icy_ekJ1FvXBvCYXE0lpuvZVWy8zoce7gOT4XfCR8mrt9kvTWKpedLEo5CGAH25Zg1zLYtkz3yWFv0DL-fdal4AIWaeRlH_z563fk2QaSh2SnWbXuCDLBRr8P_r4HSQxfoA
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuum+mechanics+model+of+graphene+as+a+doubly-periodic+perforated+thin+elastic+plate&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Physik&rft.au=Antipov%2C+Yuri+A&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0044-2275&rft.eissn=1420-9039&rft.volume=76&rft.issue=4&rft_id=info:doi/10.1007%2Fs00033-025-02548-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2275&client=summon