A computational framework for irreversibility analysis in chemically reactive viscous hybrid nanofluid flow with heat source and thermal radiation

Entropy generation (EG) due to its applications in the industrial sector has turned into an attractive research area. Applications of EG frequently occur in air conditioners, chillers, air coolers, refrigerators, and all types of vehicle engines. Due to such extensive applications, the current study...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 150; no. 8; pp. 6561 - 6571
Main Authors Rahman, Mujeeb ur, Khouqeer, Ghada A., Haq, Fazal, Sallah, Mohammed
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Entropy generation (EG) due to its applications in the industrial sector has turned into an attractive research area. Applications of EG frequently occur in air conditioners, chillers, air coolers, refrigerators, and all types of vehicle engines. Due to such extensive applications, the current study is focused on evaluating EG in the chemically reactive viscous flow of single-particle nanofluid (SPNF) and hybrid nanofluid (HNF) by a permeable stretchable sheet. Darcy–Forchheimer's relation is deliberated while reporting the momentum equation. Rigid nanoparticles of aluminum oxide Al 2 O 3 and copper Cu are suspended in water to form single-phase nanofluid ( Al 2 O 3 / H 2 O ) and hybrid nanofluid ( Al 2 O 3 - Cu / H 2 O ) . Dissipation, radiation, and heat source impacts are accounted in the expression for thermal energy. Chemical reaction impact is accounted in relation to concentration. The EG is modeled by the second law of thermodynamics. Through transformation, the partial differential equations (PDEs) representing the flow are altered into ordinary ones. To solve the ordinary system, the NDSolve function of Mathematica is utilized. Important variables impression on velocity, Bejan number, concentration, temperature, and EG for both single-particle nanofluid and HNF are analyzed graphically. Engineering quantities are inspected numerically. Results reveal that the temperature field of SPNF and HNF upsurges for higher radiation parameter while it decays for raising the Prandtl number. Concentration diminished for an upturn in chemical reaction and Schmidt number. EG is more for greater diffusion, temperature difference ratio, and Brinkman variables. Bejan number escalates for increasing diffusion and temperature difference ratio variables while it decays for up surging values of Brinkman variable.
AbstractList Entropy generation (EG) due to its applications in the industrial sector has turned into an attractive research area. Applications of EG frequently occur in air conditioners, chillers, air coolers, refrigerators, and all types of vehicle engines. Due to such extensive applications, the current study is focused on evaluating EG in the chemically reactive viscous flow of single-particle nanofluid (SPNF) and hybrid nanofluid (HNF) by a permeable stretchable sheet. Darcy–Forchheimer's relation is deliberated while reporting the momentum equation. Rigid nanoparticles of aluminum oxide Al 2 O 3 and copper Cu are suspended in water to form single-phase nanofluid ( Al 2 O 3 / H 2 O ) and hybrid nanofluid ( Al 2 O 3 - Cu / H 2 O ) . Dissipation, radiation, and heat source impacts are accounted in the expression for thermal energy. Chemical reaction impact is accounted in relation to concentration. The EG is modeled by the second law of thermodynamics. Through transformation, the partial differential equations (PDEs) representing the flow are altered into ordinary ones. To solve the ordinary system, the NDSolve function of Mathematica is utilized. Important variables impression on velocity, Bejan number, concentration, temperature, and EG for both single-particle nanofluid and HNF are analyzed graphically. Engineering quantities are inspected numerically. Results reveal that the temperature field of SPNF and HNF upsurges for higher radiation parameter while it decays for raising the Prandtl number. Concentration diminished for an upturn in chemical reaction and Schmidt number. EG is more for greater diffusion, temperature difference ratio, and Brinkman variables. Bejan number escalates for increasing diffusion and temperature difference ratio variables while it decays for up surging values of Brinkman variable.
Entropy generation (EG) due to its applications in the industrial sector has turned into an attractive research area. Applications of EG frequently occur in air conditioners, chillers, air coolers, refrigerators, and all types of vehicle engines. Due to such extensive applications, the current study is focused on evaluating EG in the chemically reactive viscous flow of single-particle nanofluid (SPNF) and hybrid nanofluid (HNF) by a permeable stretchable sheet. Darcy–Forchheimer's relation is deliberated while reporting the momentum equation. Rigid nanoparticles of aluminum oxide Al2O3 and copper Cu are suspended in water to form single-phase nanofluid (Al2O3/H2O) and hybrid nanofluid (Al2O3-Cu/H2O). Dissipation, radiation, and heat source impacts are accounted in the expression for thermal energy. Chemical reaction impact is accounted in relation to concentration. The EG is modeled by the second law of thermodynamics. Through transformation, the partial differential equations (PDEs) representing the flow are altered into ordinary ones. To solve the ordinary system, the NDSolve function of Mathematica is utilized. Important variables impression on velocity, Bejan number, concentration, temperature, and EG for both single-particle nanofluid and HNF are analyzed graphically. Engineering quantities are inspected numerically. Results reveal that the temperature field of SPNF and HNF upsurges for higher radiation parameter while it decays for raising the Prandtl number. Concentration diminished for an upturn in chemical reaction and Schmidt number. EG is more for greater diffusion, temperature difference ratio, and Brinkman variables. Bejan number escalates for increasing diffusion and temperature difference ratio variables while it decays for up surging values of Brinkman variable.
Author Khouqeer, Ghada A.
Rahman, Mujeeb ur
Sallah, Mohammed
Haq, Fazal
Author_xml – sequence: 1
  givenname: Mujeeb ur
  surname: Rahman
  fullname: Rahman, Mujeeb ur
  organization: Department of Mathematical Sciences, Karakoram International University
– sequence: 2
  givenname: Ghada A.
  surname: Khouqeer
  fullname: Khouqeer, Ghada A.
  organization: Physics Department, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU)
– sequence: 3
  givenname: Fazal
  orcidid: 0000-0002-9860-5707
  surname: Haq
  fullname: Haq, Fazal
  email: fazal.haq@kiu.edu.pk
  organization: Department of Mathematical Sciences, Karakoram International University
– sequence: 4
  givenname: Mohammed
  surname: Sallah
  fullname: Sallah, Mohammed
  organization: Applied Mathematical Physics Research Group, Physics Department, Faculty of Science, Mansoura University
BookMark eNp9kE9P3DAQxS1EJWDpF-jJEucU_0ni-IgQtJWQuMDZmnXsxjSJt2NnV_kafOK6LBI3TvMO772Z-V2Q0znOjpBvnH3njKnrxJlWsmKiqXjN67pqTsg5b7quElq0p0XLolvesDNykdILY0xrxs_J6w21cdotGXKIM4zUI0zuEPEP9RFpQHR7hylswxjySqFY1hQSDTO1g5uChXFcKTqwOewd3Ydk45LosG4x9HSGOfpxKcqP8UAPIQ90cJBpigtaV-p6mgeHU1mM0Ie3Iy7JFw9jcl_f54Y839893f6sHh5__Lq9eaisUCJXbS81U8q24Dm03m-V1LpVoJT0AMp53_SN71zdSNczqzrJBai288XEe6Hlhlwde3cY_y4uZfNSrioPJiOF0LVuu8J0Q8TRZTGmhM6bHYYJcDWcmf_szZG9KezNG3vTlJA8hlIxz78dflR_kvoHvNuNMg
Cites_doi 10.24200/sci.2024.61292.7237
10.1038/s41598-022-14692-y
10.1038/s41598-023-34871-9
10.1016/j.heliyon.2023.e17678
10.1016/j.aej.2022.03.054
10.1515/ijnsns-2016-0037
10.1016/j.icheatmasstransfer.2022.106115
10.3390/sym15091794
10.1016/j.csite.2023.103764
10.1016/j.ces.2021.116596
10.1016/j.applthermaleng.2016.08.208
10.1016/j.molliq.2023.123179
10.3390/sym14091759
10.1016/j.csite.2023.102992
10.4283/JMAG.2021.26.2.146
10.1016/j.euromechflu.2020.11.006
10.1115/1.4051671
10.32604/fhmt.2024.052749
10.1038/s41598-023-39176-5
10.1016/j.applthermaleng.2015.12.138
10.1002/htj.22012
10.1016/j.molliq.2023.123408
10.1080/02286203.2023.2301212
10.1080/17455030.2022.2117432
10.1016/j.molliq.2021.116103
10.1016/j.ijheatmasstransfer.2017.05.042
10.1016/j.hybadv.2024.100294
10.1007/s42452-024-05866-6
10.1080/10407782.2023.2233730
10.1016/j.energy.2017.05.004
10.1140/epjp/s13360-024-05228-6
10.1016/j.ijft.2024.100986
10.1142/S2737416523420073
10.1177/23977914231223820
10.1108/HFF-04-2024-0254
10.3390/nano12132174
10.1016/j.ijheatmasstransfer.2019.02.101
ContentType Journal Article
Copyright Akadémiai Kiadó Zrt 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Akadémiai Kiadó Zrt 2025.
Copyright_xml – notice: Akadémiai Kiadó Zrt 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Akadémiai Kiadó Zrt 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10973-025-14144-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1588-2926
EndPage 6571
ExternalDocumentID 10_1007_s10973_025_14144_5
GrantInformation_xml – fundername: Imam Mohammed Ibn Saud Islamic University
  grantid: IMSIU-DDRSP2503
  funderid: http://dx.doi.org/10.13039/501100002713
GroupedDBID -Y2
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WJK
WK8
YLTOR
Z45
ZE2
ZMTXR
~02
~8M
AAYXX
CITATION
ID FETCH-LOGICAL-c272t-6d39077c6af1a6ffb739967a773faa7eff5d5f8e453ed0c78312a768f9671d293
IEDL.DBID U2A
ISSN 1388-6150
IngestDate Fri Jul 25 08:53:18 EDT 2025
Wed Jul 16 16:44:46 EDT 2025
Sat Jul 12 03:47:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Bejan number
Thermal radiation
Viscous hybrid nanoliquid
Chemical reaction
Entropy generation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-6d39077c6af1a6ffb739967a773faa7eff5d5f8e453ed0c78312a768f9671d293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9860-5707
PQID 3229496897
PQPubID 2043843
PageCount 11
ParticipantIDs proquest_journals_3229496897
crossref_primary_10_1007_s10973_025_14144_5
springer_journals_10_1007_s10973_025_14144_5
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Forum for Thermal Studies
PublicationTitle Journal of thermal analysis and calorimetry
PublicationTitleAbbrev J Therm Anal Calorim
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References K-L Hsiao (14144_CR2) 2017; 112
M Turkyilmazoglu (14144_CR14) 2021
JK Madhukesh (14144_CR10) 2021; 335
14144_CR45
M Mumtaz (14144_CR18) 2023; 390
F Ahmad (14144_CR4) 2021; 27
SPA Devi (14144_CR7) 2016; 17
M Turkyilmazoglu (14144_CR8) 2024; 34
S Afzal (14144_CR39) 2023; 13
G Dharmaiah (14144_CR28) 2023; 20
J Wang (14144_CR37) 2024; 54
A Jafarimoghaddam (14144_CR9) 2021; 86
US Mahabaleshwar (14144_CR20) 2022; 12
MZ Abidin (14144_CR40) 2023; 52
M Santhi (14144_CR11) 2021; 50
MJ Khan (14144_CR13) 2021; 28
K-L Hsiao (14144_CR17) 2017; 112
NK Mishra (14144_CR31) 2023; 9
I Waini (14144_CR46) 2019; 136
S Elattar (14144_CR22) 2022; 61
F Mebarek-Oudina (14144_CR5) 2025; 25
B Venkateswarlu (14144_CR19) 2024; 19
SAA Shah (14144_CR25) 2022; 12
TS Neethu (14144_CR29) 2022; 135
F Haq (14144_CR30) 2024
K Rafique (14144_CR36) 2023; 45
14144_CR34
G Dharmaiah (14144_CR27) 2023; 391
MS Junaid (14144_CR43) 2024; 139
SJ Tao (14144_CR44) 2024; 59
S Mondal (14144_CR41) 2024; 7
MB Jeelani (14144_CR12) 2023; 15
J Raza (14144_CR26) 2024; 22
H Waqas (14144_CR3) 2022; 138
AT Akinshilo (14144_CR42) 2022
M Turkyilmazoglu (14144_CR15) 2021; 238
RD Murugan (14144_CR35) 2024; 6
F Haq (14144_CR33) 2020; 36
F Mebarek-Oudina (14144_CR6) 2023; 22
K-L Hsiao (14144_CR16) 2016; 98
I Haq (14144_CR23) 2022; 14
M Arshad (14144_CR24) 2023; 13
S Nandi (14144_CR38) 2023
K-L Hsiao (14144_CR21) 2017; 130
14144_CR1
W-M Qian (14144_CR32) 2021; 26
References_xml – ident: 14144_CR34
  doi: 10.24200/sci.2024.61292.7237
– volume: 12
  start-page: 10451
  issue: 1
  year: 2022
  ident: 14144_CR20
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-14692-y
– volume: 13
  start-page: 7828
  issue: 1
  year: 2023
  ident: 14144_CR24
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-34871-9
– volume: 27
  year: 2021
  ident: 14144_CR4
  publication-title: Case Stud Therm Eng
– volume: 9
  issue: 7
  year: 2023
  ident: 14144_CR31
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e17678
– volume: 61
  start-page: 10319
  issue: 12
  year: 2022
  ident: 14144_CR22
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2022.03.054
– volume: 28
  year: 2021
  ident: 14144_CR13
  publication-title: Case Stud Therm Eng
– volume: 17
  start-page: 249
  issue: 5
  year: 2016
  ident: 14144_CR7
  publication-title: Int J Nonlinear Sci Numer Simul
  doi: 10.1515/ijnsns-2016-0037
– volume: 135
  year: 2022
  ident: 14144_CR29
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2022.106115
– volume: 15
  start-page: 1794
  issue: 9
  year: 2023
  ident: 14144_CR12
  publication-title: Symmetry
  doi: 10.3390/sym15091794
– volume: 52
  year: 2023
  ident: 14144_CR40
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2023.103764
– ident: 14144_CR1
– volume: 238
  year: 2021
  ident: 14144_CR15
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2021.116596
– volume: 112
  start-page: 1281
  year: 2017
  ident: 14144_CR17
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.08.208
– volume: 390
  year: 2023
  ident: 14144_CR18
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2023.123179
– volume: 14
  start-page: 1759
  issue: 9
  year: 2022
  ident: 14144_CR23
  publication-title: Symmetry
  doi: 10.3390/sym14091759
– volume: 45
  year: 2023
  ident: 14144_CR36
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2023.102992
– volume: 26
  start-page: 146
  issue: 2
  year: 2021
  ident: 14144_CR32
  publication-title: J Magn
  doi: 10.4283/JMAG.2021.26.2.146
– volume: 86
  start-page: 25
  year: 2021
  ident: 14144_CR9
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/j.euromechflu.2020.11.006
– year: 2021
  ident: 14144_CR14
  publication-title: J Heat Transfer
  doi: 10.1115/1.4051671
– volume: 138
  year: 2022
  ident: 14144_CR3
  publication-title: Int Commun Heat Mass Transfer
– volume: 22
  start-page: 1017
  issue: 4
  year: 2024
  ident: 14144_CR26
  publication-title: Front Heat Mass Transfer
  doi: 10.32604/fhmt.2024.052749
– volume: 13
  start-page: 12392
  issue: 1
  year: 2023
  ident: 14144_CR39
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-39176-5
– volume: 98
  start-page: 850
  year: 2016
  ident: 14144_CR16
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.12.138
– volume: 54
  year: 2024
  ident: 14144_CR37
  publication-title: Case Stud Therm Eng
– volume: 50
  start-page: 2929
  issue: 3
  year: 2021
  ident: 14144_CR11
  publication-title: Heat Transfer
  doi: 10.1002/htj.22012
– volume: 391
  year: 2023
  ident: 14144_CR27
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2023.123408
– year: 2024
  ident: 14144_CR30
  publication-title: Int J Modell Simul.
  doi: 10.1080/02286203.2023.2301212
– year: 2022
  ident: 14144_CR42
  publication-title: Waves Random Complex Media.
  doi: 10.1080/17455030.2022.2117432
– volume: 335
  year: 2021
  ident: 14144_CR10
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2021.116103
– volume: 112
  start-page: 983
  year: 2017
  ident: 14144_CR2
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.05.042
– volume: 7
  year: 2024
  ident: 14144_CR41
  publication-title: Hybrid Adv
  doi: 10.1016/j.hybadv.2024.100294
– volume: 6
  start-page: 199
  issue: 4
  year: 2024
  ident: 14144_CR35
  publication-title: Discover Applied Sciences
  doi: 10.1007/s42452-024-05866-6
– year: 2023
  ident: 14144_CR38
  publication-title: Numer Heat Trans Part A Appl.
  doi: 10.1080/10407782.2023.2233730
– volume: 19
  issue: 1
  year: 2024
  ident: 14144_CR19
  publication-title: Asia-Pac J Chem Eng
– volume: 130
  start-page: 486
  year: 2017
  ident: 14144_CR21
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.004
– volume: 59
  year: 2024
  ident: 14144_CR44
  publication-title: Case Stud Therm Eng
– volume: 139
  start-page: 460
  issue: 5
  year: 2024
  ident: 14144_CR43
  publication-title: Euro Phys J Plus
  doi: 10.1140/epjp/s13360-024-05228-6
– volume: 20
  start-page: 293
  issue: 2
  year: 2023
  ident: 14144_CR28
  publication-title: Fluid Dyn Mater Process
– volume: 25
  year: 2025
  ident: 14144_CR5
  publication-title: Int J Thermofluids
  doi: 10.1016/j.ijft.2024.100986
– volume: 22
  start-page: 997
  issue: 08
  year: 2023
  ident: 14144_CR6
  publication-title: J Comput Biophys Chem
  doi: 10.1142/S2737416523420073
– ident: 14144_CR45
  doi: 10.1177/23977914231223820
– volume: 34
  start-page: 3598
  issue: 9
  year: 2024
  ident: 14144_CR8
  publication-title: Int J Numer Meth Heat Fluid Flow
  doi: 10.1108/HFF-04-2024-0254
– volume: 12
  start-page: 2174
  issue: 13
  year: 2022
  ident: 14144_CR25
  publication-title: Nanomaterials
  doi: 10.3390/nano12132174
– volume: 36
  start-page: 612
  issue: 2
  year: 2020
  ident: 14144_CR33
  publication-title: Sarhad Journal of Agriculture
– volume: 136
  start-page: 288
  year: 2019
  ident: 14144_CR46
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.02.101
SSID ssj0009901
Score 2.4213293
Snippet Entropy generation (EG) due to its applications in the industrial sector has turned into an attractive research area. Applications of EG frequently occur in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 6561
SubjectTerms Air conditioners
Aluminum oxide
Analytical Chemistry
Chemical reactions
Chemistry
Chemistry and Materials Science
Coolers
Copper
Fluid flow
Inorganic Chemistry
Measurement Science and Instrumentation
Nanofluids
Partial differential equations
Physical Chemistry
Polymer Sciences
Prandtl number
Radiation
Schmidt number
Temperature distribution
Temperature gradients
Thermal energy
Thermal radiation
Thermodynamics
Variables
Viscous flow
Title A computational framework for irreversibility analysis in chemically reactive viscous hybrid nanofluid flow with heat source and thermal radiation
URI https://link.springer.com/article/10.1007/s10973-025-14144-5
https://www.proquest.com/docview/3229496897
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-DnoRn7i-mIM3DWwfadpjlV0XBU8u6KmkeeDC2pV9KPs3_MVO0pSq6MFTCw3TkklnvpnMfCHkXKDTNEEiaaZKQ-NURjTVOqKSy25aMpMp7dg-75PBML59ZI--KWzWVLs3W5LOUn9pdsu43XNkNIgxDKBslawzjN1tIdcwzFuq3axbh1m4BizduW-V-V3Gd3fUYswf26LO2_S3yZaHiZDXet0hK7raJRvXzelse-QjB-kOZPDJPDBNlRUgDIXR1FIzTX3t6xKE5x6BUQXScwSMl4CI0dk7eBvN5GQxg-el7eCCSlQTM17gnRlP3sEma8Fabahz_ShOgUWOL_jiqWU3sB-xT4b93sP1gPrzFagMeTiniYowNOYyESYQiTElR7SScMF5ZITg2himmEl1zCKtupKnURAKDE8MDgoU4oQDslZNKn1IoOQxyxy2kTpWRpWhjGQaiDIUCPhEt0MummkuXmsajaIlTLZKKVAphVNKwTrkpNFE4X-pWYGWJ4uzJM14h1w22mkf_y3t6H_Dj8lmaBeIq845IWvz6UKfIvCYl2dkPe9fXd3b683TXe_MrbtPbv3WoA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4h9lAuiKcoy2MOcAJLjfNwcthD1QWV54lK3ILjh6hU0lUfoP6N_Q37Q3fsJiogOHDgFimWY2XGM994Zj4DHElymjZIFMt0YVmUqpClxoRMCdVKi9hm2ni2z9uk24su7-P7JfhX98L4avc6Jekt9atmt0y4nGPMgojCAFaXUl6Z2QsFauNfF79Jqsecn5_ddbqsukuAKS74hCWagnshVCJtIBNrC0GeORFSiNBKKYy1sY5taqI4NLqlRBoGXBIUtzQo0NxRLpGh_0HgI3V7p8fbC2rfrDUP60jnHL161Zrz8Zrfur8Fpn2XhvXe7XwNVitYiu25Hq3Dkik3oNGpb4PbhL9tVP4CiOrwEG1d1YUEe7E_clRQo6rWdoay4jrBfomq4iQYzJAQqrev-Nwfq-F0jI8z1zGGpSyHdjClJzsYvqA7HEbnJXCeW6DpNDqk-kQfHjk2BbeILeh9iwy2YbkclmYHsBBRnHkspUykrS64ClUayIJLApiy1YST-jfnf-a0HfmCoNkJJSeh5F4oedyEvVoSebWFxzlZuizKkjQTTTitpbN4_flsu18bfgiN7t3NdX59cXv1E1a4UxZfGbQHy5PR1OwT6JkUB17nEB6-W8n_A5IaEMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkKAXBBTUpTzmAKfWYuM8nBw4rIAVLyEOrMQtOH6oK22zaB9F-zf6S_oTGTuJtiA4cOAWKZZjZcYz33hmPgMcSHKaNkgUy3RhWZSqkKXGhEwJ1U6L2GbaeLbPm-S8F13ex_cL8K_phfHV7k1KsuppcCxN5eToUduj_xrfMuHyjzELIgoJWFNWeWVmTxS0jY8vTknCh5x3z-5Ozll9rwBTXPAJSzQF-kKoRNpAJtYWgrx0IqQQoZVSGGtjHdvURHFodFuJNAy4JFhuaVCguaNfIqO_FLnuY9pBPd6Z0_xm7SrEI_1zVOt1m87ba37pCuf49lVK1nu67hqs1hAVO5VOrcOCKTdg5aS5Ge4r_O2g8pdB1AeJaJsKLyQIjP2Ro4Ua1XW3M5Q17wn2S1Q1P8FghoRWva3FP_2xGk7H-GvmusewlOXQDqb0ZAfDJ3QHxeg8BlZ5BppOo0Otv-nDI8es4BaxCb1PkcEWLJbD0nwDLEQUZx5XKRNpqwuuQpUGsuCSwKZst-BH85vzx4rCI5-TNTuh5CSU3Aslj1uw00gir7fzOCerl0VZkmaiBT8b6cxfvz_b9seG78Py7Wk3v764ufoOX7jTFV8ktAOLk9HU7BL-mRR7XuUQHj5bx58BWMgU-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+framework+for+irreversibility+analysis+in+chemically+reactive+viscous+hybrid+nanofluid+flow+with+heat+source+and+thermal+radiation&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Rahman%2C+Mujeeb+ur&rft.au=Khouqeer%2C+Ghada+A.&rft.au=Haq%2C+Fazal&rft.au=Sallah%2C+Mohammed&rft.date=2025-04-01&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=150&rft.issue=8&rft.spage=6561&rft.epage=6571&rft_id=info:doi/10.1007%2Fs10973-025-14144-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10973_025_14144_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon