A computational framework for irreversibility analysis in chemically reactive viscous hybrid nanofluid flow with heat source and thermal radiation
Entropy generation (EG) due to its applications in the industrial sector has turned into an attractive research area. Applications of EG frequently occur in air conditioners, chillers, air coolers, refrigerators, and all types of vehicle engines. Due to such extensive applications, the current study...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 150; no. 8; pp. 6561 - 6571 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Entropy generation (EG) due to its applications in the industrial sector has turned into an attractive research area. Applications of EG frequently occur in air conditioners, chillers, air coolers, refrigerators, and all types of vehicle engines. Due to such extensive applications, the current study is focused on evaluating EG in the chemically reactive viscous flow of single-particle nanofluid (SPNF) and hybrid nanofluid (HNF) by a permeable stretchable sheet. Darcy–Forchheimer's relation is deliberated while reporting the momentum equation. Rigid nanoparticles of aluminum oxide Al
2
O
3
and copper Cu are suspended in water to form single-phase nanofluid
(
Al
2
O
3
/
H
2
O
)
and hybrid nanofluid
(
Al
2
O
3
-
Cu
/
H
2
O
)
. Dissipation, radiation, and heat source impacts are accounted in the expression for thermal energy. Chemical reaction impact is accounted in relation to concentration. The EG is modeled by the second law of thermodynamics. Through transformation, the partial differential equations (PDEs) representing the flow are altered into ordinary ones. To solve the ordinary system, the NDSolve function of Mathematica is utilized. Important variables impression on velocity, Bejan number, concentration, temperature, and EG for both single-particle nanofluid and HNF are analyzed graphically. Engineering quantities are inspected numerically. Results reveal that the temperature field of SPNF and HNF upsurges for higher radiation parameter while it decays for raising the Prandtl number. Concentration diminished for an upturn in chemical reaction and Schmidt number. EG is more for greater diffusion, temperature difference ratio, and Brinkman variables. Bejan number escalates for increasing diffusion and temperature difference ratio variables while it decays for up surging values of Brinkman variable. |
---|---|
AbstractList | Entropy generation (EG) due to its applications in the industrial sector has turned into an attractive research area. Applications of EG frequently occur in air conditioners, chillers, air coolers, refrigerators, and all types of vehicle engines. Due to such extensive applications, the current study is focused on evaluating EG in the chemically reactive viscous flow of single-particle nanofluid (SPNF) and hybrid nanofluid (HNF) by a permeable stretchable sheet. Darcy–Forchheimer's relation is deliberated while reporting the momentum equation. Rigid nanoparticles of aluminum oxide Al
2
O
3
and copper Cu are suspended in water to form single-phase nanofluid
(
Al
2
O
3
/
H
2
O
)
and hybrid nanofluid
(
Al
2
O
3
-
Cu
/
H
2
O
)
. Dissipation, radiation, and heat source impacts are accounted in the expression for thermal energy. Chemical reaction impact is accounted in relation to concentration. The EG is modeled by the second law of thermodynamics. Through transformation, the partial differential equations (PDEs) representing the flow are altered into ordinary ones. To solve the ordinary system, the NDSolve function of Mathematica is utilized. Important variables impression on velocity, Bejan number, concentration, temperature, and EG for both single-particle nanofluid and HNF are analyzed graphically. Engineering quantities are inspected numerically. Results reveal that the temperature field of SPNF and HNF upsurges for higher radiation parameter while it decays for raising the Prandtl number. Concentration diminished for an upturn in chemical reaction and Schmidt number. EG is more for greater diffusion, temperature difference ratio, and Brinkman variables. Bejan number escalates for increasing diffusion and temperature difference ratio variables while it decays for up surging values of Brinkman variable. Entropy generation (EG) due to its applications in the industrial sector has turned into an attractive research area. Applications of EG frequently occur in air conditioners, chillers, air coolers, refrigerators, and all types of vehicle engines. Due to such extensive applications, the current study is focused on evaluating EG in the chemically reactive viscous flow of single-particle nanofluid (SPNF) and hybrid nanofluid (HNF) by a permeable stretchable sheet. Darcy–Forchheimer's relation is deliberated while reporting the momentum equation. Rigid nanoparticles of aluminum oxide Al2O3 and copper Cu are suspended in water to form single-phase nanofluid (Al2O3/H2O) and hybrid nanofluid (Al2O3-Cu/H2O). Dissipation, radiation, and heat source impacts are accounted in the expression for thermal energy. Chemical reaction impact is accounted in relation to concentration. The EG is modeled by the second law of thermodynamics. Through transformation, the partial differential equations (PDEs) representing the flow are altered into ordinary ones. To solve the ordinary system, the NDSolve function of Mathematica is utilized. Important variables impression on velocity, Bejan number, concentration, temperature, and EG for both single-particle nanofluid and HNF are analyzed graphically. Engineering quantities are inspected numerically. Results reveal that the temperature field of SPNF and HNF upsurges for higher radiation parameter while it decays for raising the Prandtl number. Concentration diminished for an upturn in chemical reaction and Schmidt number. EG is more for greater diffusion, temperature difference ratio, and Brinkman variables. Bejan number escalates for increasing diffusion and temperature difference ratio variables while it decays for up surging values of Brinkman variable. |
Author | Khouqeer, Ghada A. Rahman, Mujeeb ur Sallah, Mohammed Haq, Fazal |
Author_xml | – sequence: 1 givenname: Mujeeb ur surname: Rahman fullname: Rahman, Mujeeb ur organization: Department of Mathematical Sciences, Karakoram International University – sequence: 2 givenname: Ghada A. surname: Khouqeer fullname: Khouqeer, Ghada A. organization: Physics Department, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) – sequence: 3 givenname: Fazal orcidid: 0000-0002-9860-5707 surname: Haq fullname: Haq, Fazal email: fazal.haq@kiu.edu.pk organization: Department of Mathematical Sciences, Karakoram International University – sequence: 4 givenname: Mohammed surname: Sallah fullname: Sallah, Mohammed organization: Applied Mathematical Physics Research Group, Physics Department, Faculty of Science, Mansoura University |
BookMark | eNp9kE9P3DAQxS1EJWDpF-jJEucU_0ni-IgQtJWQuMDZmnXsxjSJt2NnV_kafOK6LBI3TvMO772Z-V2Q0znOjpBvnH3njKnrxJlWsmKiqXjN67pqTsg5b7quElq0p0XLolvesDNykdILY0xrxs_J6w21cdotGXKIM4zUI0zuEPEP9RFpQHR7hylswxjySqFY1hQSDTO1g5uChXFcKTqwOewd3Ydk45LosG4x9HSGOfpxKcqP8UAPIQ90cJBpigtaV-p6mgeHU1mM0Ie3Iy7JFw9jcl_f54Y839893f6sHh5__Lq9eaisUCJXbS81U8q24Dm03m-V1LpVoJT0AMp53_SN71zdSNczqzrJBai288XEe6Hlhlwde3cY_y4uZfNSrioPJiOF0LVuu8J0Q8TRZTGmhM6bHYYJcDWcmf_szZG9KezNG3vTlJA8hlIxz78dflR_kvoHvNuNMg |
Cites_doi | 10.24200/sci.2024.61292.7237 10.1038/s41598-022-14692-y 10.1038/s41598-023-34871-9 10.1016/j.heliyon.2023.e17678 10.1016/j.aej.2022.03.054 10.1515/ijnsns-2016-0037 10.1016/j.icheatmasstransfer.2022.106115 10.3390/sym15091794 10.1016/j.csite.2023.103764 10.1016/j.ces.2021.116596 10.1016/j.applthermaleng.2016.08.208 10.1016/j.molliq.2023.123179 10.3390/sym14091759 10.1016/j.csite.2023.102992 10.4283/JMAG.2021.26.2.146 10.1016/j.euromechflu.2020.11.006 10.1115/1.4051671 10.32604/fhmt.2024.052749 10.1038/s41598-023-39176-5 10.1016/j.applthermaleng.2015.12.138 10.1002/htj.22012 10.1016/j.molliq.2023.123408 10.1080/02286203.2023.2301212 10.1080/17455030.2022.2117432 10.1016/j.molliq.2021.116103 10.1016/j.ijheatmasstransfer.2017.05.042 10.1016/j.hybadv.2024.100294 10.1007/s42452-024-05866-6 10.1080/10407782.2023.2233730 10.1016/j.energy.2017.05.004 10.1140/epjp/s13360-024-05228-6 10.1016/j.ijft.2024.100986 10.1142/S2737416523420073 10.1177/23977914231223820 10.1108/HFF-04-2024-0254 10.3390/nano12132174 10.1016/j.ijheatmasstransfer.2019.02.101 |
ContentType | Journal Article |
Copyright | Akadémiai Kiadó Zrt 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Akadémiai Kiadó Zrt 2025. |
Copyright_xml | – notice: Akadémiai Kiadó Zrt 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Akadémiai Kiadó Zrt 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10973-025-14144-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1588-2926 |
EndPage | 6571 |
ExternalDocumentID | 10_1007_s10973_025_14144_5 |
GrantInformation_xml | – fundername: Imam Mohammed Ibn Saud Islamic University grantid: IMSIU-DDRSP2503 funderid: http://dx.doi.org/10.13039/501100002713 |
GroupedDBID | -Y2 .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHIR ADHKG ADKNI ADKPE ADMLS ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 ZE2 ZMTXR ~02 ~8M AAYXX CITATION |
ID | FETCH-LOGICAL-c272t-6d39077c6af1a6ffb739967a773faa7eff5d5f8e453ed0c78312a768f9671d293 |
IEDL.DBID | U2A |
ISSN | 1388-6150 |
IngestDate | Fri Jul 25 08:53:18 EDT 2025 Wed Jul 16 16:44:46 EDT 2025 Sat Jul 12 03:47:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Bejan number Thermal radiation Viscous hybrid nanoliquid Chemical reaction Entropy generation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-6d39077c6af1a6ffb739967a773faa7eff5d5f8e453ed0c78312a768f9671d293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9860-5707 |
PQID | 3229496897 |
PQPubID | 2043843 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3229496897 crossref_primary_10_1007_s10973_025_14144_5 springer_journals_10_1007_s10973_025_14144_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Forum for Thermal Studies |
PublicationTitle | Journal of thermal analysis and calorimetry |
PublicationTitleAbbrev | J Therm Anal Calorim |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | K-L Hsiao (14144_CR2) 2017; 112 M Turkyilmazoglu (14144_CR14) 2021 JK Madhukesh (14144_CR10) 2021; 335 14144_CR45 M Mumtaz (14144_CR18) 2023; 390 F Ahmad (14144_CR4) 2021; 27 SPA Devi (14144_CR7) 2016; 17 M Turkyilmazoglu (14144_CR8) 2024; 34 S Afzal (14144_CR39) 2023; 13 G Dharmaiah (14144_CR28) 2023; 20 J Wang (14144_CR37) 2024; 54 A Jafarimoghaddam (14144_CR9) 2021; 86 US Mahabaleshwar (14144_CR20) 2022; 12 MZ Abidin (14144_CR40) 2023; 52 M Santhi (14144_CR11) 2021; 50 MJ Khan (14144_CR13) 2021; 28 K-L Hsiao (14144_CR17) 2017; 112 NK Mishra (14144_CR31) 2023; 9 I Waini (14144_CR46) 2019; 136 S Elattar (14144_CR22) 2022; 61 F Mebarek-Oudina (14144_CR5) 2025; 25 B Venkateswarlu (14144_CR19) 2024; 19 SAA Shah (14144_CR25) 2022; 12 TS Neethu (14144_CR29) 2022; 135 F Haq (14144_CR30) 2024 K Rafique (14144_CR36) 2023; 45 14144_CR34 G Dharmaiah (14144_CR27) 2023; 391 MS Junaid (14144_CR43) 2024; 139 SJ Tao (14144_CR44) 2024; 59 S Mondal (14144_CR41) 2024; 7 MB Jeelani (14144_CR12) 2023; 15 J Raza (14144_CR26) 2024; 22 H Waqas (14144_CR3) 2022; 138 AT Akinshilo (14144_CR42) 2022 M Turkyilmazoglu (14144_CR15) 2021; 238 RD Murugan (14144_CR35) 2024; 6 F Haq (14144_CR33) 2020; 36 F Mebarek-Oudina (14144_CR6) 2023; 22 K-L Hsiao (14144_CR16) 2016; 98 I Haq (14144_CR23) 2022; 14 M Arshad (14144_CR24) 2023; 13 S Nandi (14144_CR38) 2023 K-L Hsiao (14144_CR21) 2017; 130 14144_CR1 W-M Qian (14144_CR32) 2021; 26 |
References_xml | – ident: 14144_CR34 doi: 10.24200/sci.2024.61292.7237 – volume: 12 start-page: 10451 issue: 1 year: 2022 ident: 14144_CR20 publication-title: Sci Rep doi: 10.1038/s41598-022-14692-y – volume: 13 start-page: 7828 issue: 1 year: 2023 ident: 14144_CR24 publication-title: Sci Rep doi: 10.1038/s41598-023-34871-9 – volume: 27 year: 2021 ident: 14144_CR4 publication-title: Case Stud Therm Eng – volume: 9 issue: 7 year: 2023 ident: 14144_CR31 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e17678 – volume: 61 start-page: 10319 issue: 12 year: 2022 ident: 14144_CR22 publication-title: Alex Eng J doi: 10.1016/j.aej.2022.03.054 – volume: 28 year: 2021 ident: 14144_CR13 publication-title: Case Stud Therm Eng – volume: 17 start-page: 249 issue: 5 year: 2016 ident: 14144_CR7 publication-title: Int J Nonlinear Sci Numer Simul doi: 10.1515/ijnsns-2016-0037 – volume: 135 year: 2022 ident: 14144_CR29 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2022.106115 – volume: 15 start-page: 1794 issue: 9 year: 2023 ident: 14144_CR12 publication-title: Symmetry doi: 10.3390/sym15091794 – volume: 52 year: 2023 ident: 14144_CR40 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2023.103764 – ident: 14144_CR1 – volume: 238 year: 2021 ident: 14144_CR15 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2021.116596 – volume: 112 start-page: 1281 year: 2017 ident: 14144_CR17 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.08.208 – volume: 390 year: 2023 ident: 14144_CR18 publication-title: J Mol Liq doi: 10.1016/j.molliq.2023.123179 – volume: 14 start-page: 1759 issue: 9 year: 2022 ident: 14144_CR23 publication-title: Symmetry doi: 10.3390/sym14091759 – volume: 45 year: 2023 ident: 14144_CR36 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2023.102992 – volume: 26 start-page: 146 issue: 2 year: 2021 ident: 14144_CR32 publication-title: J Magn doi: 10.4283/JMAG.2021.26.2.146 – volume: 86 start-page: 25 year: 2021 ident: 14144_CR9 publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2020.11.006 – year: 2021 ident: 14144_CR14 publication-title: J Heat Transfer doi: 10.1115/1.4051671 – volume: 138 year: 2022 ident: 14144_CR3 publication-title: Int Commun Heat Mass Transfer – volume: 22 start-page: 1017 issue: 4 year: 2024 ident: 14144_CR26 publication-title: Front Heat Mass Transfer doi: 10.32604/fhmt.2024.052749 – volume: 13 start-page: 12392 issue: 1 year: 2023 ident: 14144_CR39 publication-title: Sci Rep doi: 10.1038/s41598-023-39176-5 – volume: 98 start-page: 850 year: 2016 ident: 14144_CR16 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.12.138 – volume: 54 year: 2024 ident: 14144_CR37 publication-title: Case Stud Therm Eng – volume: 50 start-page: 2929 issue: 3 year: 2021 ident: 14144_CR11 publication-title: Heat Transfer doi: 10.1002/htj.22012 – volume: 391 year: 2023 ident: 14144_CR27 publication-title: J Mol Liq doi: 10.1016/j.molliq.2023.123408 – year: 2024 ident: 14144_CR30 publication-title: Int J Modell Simul. doi: 10.1080/02286203.2023.2301212 – year: 2022 ident: 14144_CR42 publication-title: Waves Random Complex Media. doi: 10.1080/17455030.2022.2117432 – volume: 335 year: 2021 ident: 14144_CR10 publication-title: J Mol Liq doi: 10.1016/j.molliq.2021.116103 – volume: 112 start-page: 983 year: 2017 ident: 14144_CR2 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.05.042 – volume: 7 year: 2024 ident: 14144_CR41 publication-title: Hybrid Adv doi: 10.1016/j.hybadv.2024.100294 – volume: 6 start-page: 199 issue: 4 year: 2024 ident: 14144_CR35 publication-title: Discover Applied Sciences doi: 10.1007/s42452-024-05866-6 – year: 2023 ident: 14144_CR38 publication-title: Numer Heat Trans Part A Appl. doi: 10.1080/10407782.2023.2233730 – volume: 19 issue: 1 year: 2024 ident: 14144_CR19 publication-title: Asia-Pac J Chem Eng – volume: 130 start-page: 486 year: 2017 ident: 14144_CR21 publication-title: Energy doi: 10.1016/j.energy.2017.05.004 – volume: 59 year: 2024 ident: 14144_CR44 publication-title: Case Stud Therm Eng – volume: 139 start-page: 460 issue: 5 year: 2024 ident: 14144_CR43 publication-title: Euro Phys J Plus doi: 10.1140/epjp/s13360-024-05228-6 – volume: 20 start-page: 293 issue: 2 year: 2023 ident: 14144_CR28 publication-title: Fluid Dyn Mater Process – volume: 25 year: 2025 ident: 14144_CR5 publication-title: Int J Thermofluids doi: 10.1016/j.ijft.2024.100986 – volume: 22 start-page: 997 issue: 08 year: 2023 ident: 14144_CR6 publication-title: J Comput Biophys Chem doi: 10.1142/S2737416523420073 – ident: 14144_CR45 doi: 10.1177/23977914231223820 – volume: 34 start-page: 3598 issue: 9 year: 2024 ident: 14144_CR8 publication-title: Int J Numer Meth Heat Fluid Flow doi: 10.1108/HFF-04-2024-0254 – volume: 12 start-page: 2174 issue: 13 year: 2022 ident: 14144_CR25 publication-title: Nanomaterials doi: 10.3390/nano12132174 – volume: 36 start-page: 612 issue: 2 year: 2020 ident: 14144_CR33 publication-title: Sarhad Journal of Agriculture – volume: 136 start-page: 288 year: 2019 ident: 14144_CR46 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.02.101 |
SSID | ssj0009901 |
Score | 2.4213293 |
Snippet | Entropy generation (EG) due to its applications in the industrial sector has turned into an attractive research area. Applications of EG frequently occur in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6561 |
SubjectTerms | Air conditioners Aluminum oxide Analytical Chemistry Chemical reactions Chemistry Chemistry and Materials Science Coolers Copper Fluid flow Inorganic Chemistry Measurement Science and Instrumentation Nanofluids Partial differential equations Physical Chemistry Polymer Sciences Prandtl number Radiation Schmidt number Temperature distribution Temperature gradients Thermal energy Thermal radiation Thermodynamics Variables Viscous flow |
Title | A computational framework for irreversibility analysis in chemically reactive viscous hybrid nanofluid flow with heat source and thermal radiation |
URI | https://link.springer.com/article/10.1007/s10973-025-14144-5 https://www.proquest.com/docview/3229496897 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-DnoRn7i-mIM3DWwfadpjlV0XBU8u6KmkeeDC2pV9KPs3_MVO0pSq6MFTCw3TkklnvpnMfCHkXKDTNEEiaaZKQ-NURjTVOqKSy25aMpMp7dg-75PBML59ZI--KWzWVLs3W5LOUn9pdsu43XNkNIgxDKBslawzjN1tIdcwzFuq3axbh1m4BizduW-V-V3Gd3fUYswf26LO2_S3yZaHiZDXet0hK7raJRvXzelse-QjB-kOZPDJPDBNlRUgDIXR1FIzTX3t6xKE5x6BUQXScwSMl4CI0dk7eBvN5GQxg-el7eCCSlQTM17gnRlP3sEma8Fabahz_ShOgUWOL_jiqWU3sB-xT4b93sP1gPrzFagMeTiniYowNOYyESYQiTElR7SScMF5ZITg2himmEl1zCKtupKnURAKDE8MDgoU4oQDslZNKn1IoOQxyxy2kTpWRpWhjGQaiDIUCPhEt0MummkuXmsajaIlTLZKKVAphVNKwTrkpNFE4X-pWYGWJ4uzJM14h1w22mkf_y3t6H_Dj8lmaBeIq845IWvz6UKfIvCYl2dkPe9fXd3b683TXe_MrbtPbv3WoA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4h9lAuiKcoy2MOcAJLjfNwcthD1QWV54lK3ILjh6hU0lUfoP6N_Q37Q3fsJiogOHDgFimWY2XGM994Zj4DHElymjZIFMt0YVmUqpClxoRMCdVKi9hm2ni2z9uk24su7-P7JfhX98L4avc6Jekt9atmt0y4nGPMgojCAFaXUl6Z2QsFauNfF79Jqsecn5_ddbqsukuAKS74hCWagnshVCJtIBNrC0GeORFSiNBKKYy1sY5taqI4NLqlRBoGXBIUtzQo0NxRLpGh_0HgI3V7p8fbC2rfrDUP60jnHL161Zrz8Zrfur8Fpn2XhvXe7XwNVitYiu25Hq3Dkik3oNGpb4PbhL9tVP4CiOrwEG1d1YUEe7E_clRQo6rWdoay4jrBfomq4iQYzJAQqrev-Nwfq-F0jI8z1zGGpSyHdjClJzsYvqA7HEbnJXCeW6DpNDqk-kQfHjk2BbeILeh9iwy2YbkclmYHsBBRnHkspUykrS64ClUayIJLApiy1YST-jfnf-a0HfmCoNkJJSeh5F4oedyEvVoSebWFxzlZuizKkjQTTTitpbN4_flsu18bfgiN7t3NdX59cXv1E1a4UxZfGbQHy5PR1OwT6JkUB17nEB6-W8n_A5IaEMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkKAXBBTUpTzmAKfWYuM8nBw4rIAVLyEOrMQtOH6oK22zaB9F-zf6S_oTGTuJtiA4cOAWKZZjZcYz33hmPgMcSHKaNkgUy3RhWZSqkKXGhEwJ1U6L2GbaeLbPm-S8F13ex_cL8K_phfHV7k1KsuppcCxN5eToUduj_xrfMuHyjzELIgoJWFNWeWVmTxS0jY8vTknCh5x3z-5Ozll9rwBTXPAJSzQF-kKoRNpAJtYWgrx0IqQQoZVSGGtjHdvURHFodFuJNAy4JFhuaVCguaNfIqO_FLnuY9pBPd6Z0_xm7SrEI_1zVOt1m87ba37pCuf49lVK1nu67hqs1hAVO5VOrcOCKTdg5aS5Ge4r_O2g8pdB1AeJaJsKLyQIjP2Ro4Ua1XW3M5Q17wn2S1Q1P8FghoRWva3FP_2xGk7H-GvmusewlOXQDqb0ZAfDJ3QHxeg8BlZ5BppOo0Otv-nDI8es4BaxCb1PkcEWLJbD0nwDLEQUZx5XKRNpqwuuQpUGsuCSwKZst-BH85vzx4rCI5-TNTuh5CSU3Aslj1uw00gir7fzOCerl0VZkmaiBT8b6cxfvz_b9seG78Py7Wk3v764ufoOX7jTFV8ktAOLk9HU7BL-mRR7XuUQHj5bx58BWMgU-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+framework+for+irreversibility+analysis+in+chemically+reactive+viscous+hybrid+nanofluid+flow+with+heat+source+and+thermal+radiation&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Rahman%2C+Mujeeb+ur&rft.au=Khouqeer%2C+Ghada+A.&rft.au=Haq%2C+Fazal&rft.au=Sallah%2C+Mohammed&rft.date=2025-04-01&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=150&rft.issue=8&rft.spage=6561&rft.epage=6571&rft_id=info:doi/10.1007%2Fs10973-025-14144-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10973_025_14144_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |