Analysis of One-Dimensional Hexagonal Piezoelectric Quasicrystal with a Periodic Distribution of Slant Mode-III Cracks
The electroelastic problems of one-dimensional hexagonal piezoelectric quasicrystal materials with a periodic distribution of slant mode-III cracks under anti-plane shear and electromechanical loading are analyzed in this paper. Based on the three electrical boundary conditions at the crack surfaces...
Saved in:
Published in | Journal of elasticity Vol. 157; no. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0374-3535 1573-2681 |
DOI | 10.1007/s10659-025-10132-w |
Cover
Abstract | The electroelastic problems of one-dimensional hexagonal piezoelectric quasicrystal materials with a periodic distribution of slant mode-III cracks under anti-plane shear and electromechanical loading are analyzed in this paper. Based on the three electrical boundary conditions at the crack surfaces, electrically permeable, electrically semi-permeable and electrically impermeable condition, the problems are classified as solving singular integral equations by using screw dislocation solutions. For two special cases of coplanar and parallel periodic crack arrays, the closed form solutions for the electroelastic fields, including stress fields, electric fields and tearing displacements, have been determined. The solutions of the singular integral equations for slant cracks can be transformed into the solutions of algebraic equations, the field intensity factors and mechanical strain energy release rates have been determined. The numerical solutions show that the normalized mechanical strain energy release rates increase under the influence of phonon field stress, phason field stress as well as electric fields, indicating that cracks are more likely to propagate in piezoelectric quasicrystal materials. In addition, it is found that the stress fields at the crack tips exhibited singularity, and the variation law of the total energy release rates with the applied electrical loading are also obtained. |
---|---|
AbstractList | The electroelastic problems of one-dimensional hexagonal piezoelectric quasicrystal materials with a periodic distribution of slant mode-III cracks under anti-plane shear and electromechanical loading are analyzed in this paper. Based on the three electrical boundary conditions at the crack surfaces, electrically permeable, electrically semi-permeable and electrically impermeable condition, the problems are classified as solving singular integral equations by using screw dislocation solutions. For two special cases of coplanar and parallel periodic crack arrays, the closed form solutions for the electroelastic fields, including stress fields, electric fields and tearing displacements, have been determined. The solutions of the singular integral equations for slant cracks can be transformed into the solutions of algebraic equations, the field intensity factors and mechanical strain energy release rates have been determined. The numerical solutions show that the normalized mechanical strain energy release rates increase under the influence of phonon field stress, phason field stress as well as electric fields, indicating that cracks are more likely to propagate in piezoelectric quasicrystal materials. In addition, it is found that the stress fields at the crack tips exhibited singularity, and the variation law of the total energy release rates with the applied electrical loading are also obtained. |
ArticleNumber | 41 |
Author | Rang, Xue Zhou, Yan-Bin |
Author_xml | – sequence: 1 givenname: Xue surname: Rang fullname: Rang, Xue organization: School of Mathematical Science, Inner Mongolia Normal University – sequence: 2 givenname: Yan-Bin surname: Zhou fullname: Zhou, Yan-Bin email: yanbinzhou@imnu.edu.cn organization: School of Mathematical Science, Inner Mongolia Normal University, Center for Applied Mathematical Sciences, Inner Mongolia Normal University |
BookMark | eNp9kE1PAjEQhhujiYj-AU-beK5Ov7ZwNPgBCQaNem5qdxarsMV2EfHXW8DEm6eZzLzvk5n3iOw3oUFCThmcMwB9kRiUqk-BK8qACU5Xe6TDlBaUlz22TzogtKRCCXVIjlJ6A4B-T0KHfF42drZOPhWhLiYN0is_xyb5kMfFEL_sdNvde_wOOEPXRu-Kh6VN3sV1avNq5dvXwhb3GH2o8vLKpyx6WbaZsYE-zmzTFnehQjoajYpBtO49HZOD2s4SnvzWLnm-uX4aDOl4cjsaXI6p45q3VNX5-kpJyxCF0yVaK8u-UpUEWTHdE6wGzcq6dEIKp7jUigMKUUuobSX7okvOdtxFDB9LTK15C8uYP0pGcGAaOCshq_hO5WJIKWJtFtHPbVwbBmaTr9nla3K-ZpuvWWWT2JlSFjdTjH_of1w_j_aAJQ |
Cites_doi | 10.1016/S0927-0256(98)00047-0 10.1016/S0020-7683(97)00168-6 10.1007/s00707-021-02955-0 10.1080/14786435.2018.1459057 10.1007/s00419-024-02538-0 10.1177/10812865231186341 10.1016/0013-7944(94)90059-0 10.1007/s00707-020-02721-8 10.1007/s10338-022-00360-1 10.1016/j.mechmat.2004.01.003 10.1115/1.2897071 10.1115/1.2897653 10.1007/s12043-007-0051-3 10.1016/j.ijsolstr.2012.06.016 10.1016/j.mechmat.2005.06.008 10.1088/0953-8984/7/39/001 10.1016/j.tafmec.2003.11.019 10.1002/zamm.201000053 10.1063/1.365290 10.1016/j.ijsolstr.2016.12.012 10.1007/s10483-020-2615-6 10.1007/BF02487770 10.1063/1.350483 10.1090/qam/445873 10.1007/978-94-017-3034-1 10.1007/s10704-009-9360-5 10.1002/zamm.202300393 10.1016/0167-8442(96)00008-0 10.1016/j.euromechsol.2019.04.011 10.1007/BF00012935 10.1016/S0921-5093(03)00475-1 10.1002/nme.1620330110 10.1080/14786436808218181 10.1103/PhysRevLett.53.1951 10.1088/0031-9112/26/12/035 10.1016/j.engfracmech.2017.10.030 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1007/s10659-025-10132-w |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-2681 |
ExternalDocumentID | 10_1007_s10659_025_10132_w |
GrantInformation_xml | – fundername: the Talent Development Fund Project of Inner Mongolia Autonomous Region of China grantid: 5909002123 – fundername: the First-class Disciplines Project Fund of Inner Mongolia Autonomous Region of China grantid: YLXKZX-NSD-013 – fundername: the Fundamental Research Funds for the Inner Mongolia Normal University grantid: 2022JBQN076 |
GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDPE ABDZT ABECU ABEFU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 ZMTXR ZY4 ~02 ~A9 ~EX AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION 7SR 7TB 8BQ 8FD ABRTQ FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c272t-5f681d54a1ee3c76eaa46955d404d17831f0716f6c343c5247520e33f40fad493 |
IEDL.DBID | U2A |
ISSN | 0374-3535 |
IngestDate | Fri Jul 25 10:00:25 EDT 2025 Tue Jul 01 04:50:13 EDT 2025 Wed May 21 12:02:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | One-dimensional hexagonal piezoelectric quasicrystal Mechanical strain energy release rate 74R10 Singular integral equations Slant mode-III cracks Screw dislocation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-5f681d54a1ee3c76eaa46955d404d17831f0716f6c343c5247520e33f40fad493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3201702160 |
PQPubID | 326256 |
ParticipantIDs | proquest_journals_3201702160 crossref_primary_10_1007_s10659_025_10132_w springer_journals_10_1007_s10659_025_10132_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Groningen |
PublicationSubtitle | The Physical and Mathematical Science of Solids |
PublicationTitle | Journal of elasticity |
PublicationTitleAbbrev | J Elast |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Y.B. Zhou (10132_CR40) 2018; 98 K.R.M. Rao (10132_CR23) 2007; 68 S.B. Park (10132_CR21) 1993; 70 L.D. Landau (10132_CR9) 1958 D. Shechtman (10132_CR24) 1984; 53 T.Y. Zhang (10132_CR36) 2004; 41 T.Y. Zhang (10132_CR37) 1992; 71 K.Q. Hu (10132_CR7) 2021; 232 P.S. Theocaris (10132_CR28) 1977; 35 Z.G. Zhang (10132_CR39) 2023; 13 M. Kuna (10132_CR8) 1998; 13 W.C. Shi (10132_CR25) 2009; 215 Y.B. Zhou (10132_CR41) 2018; 189 Y.E. Pak (10132_CR19) 1990; 57 Y.B. Zhou (10132_CR43) 2021; 86 L.H. Li (10132_CR13) 2020; 41 Y.D. Li (10132_CR12) 2011; 91 Y.Z. Chen (10132_CR2) 2009; 156 Z.H. Tong (10132_CR29) 2006; 38 H.Y. Wang (10132_CR31) 1997; 81 G. Altay (10132_CR1) 2012; 49 Y. Shindo (10132_CR26) 1996; 25 G.E. Tupholme (10132_CR30) 2017; 53 T.Y. Zhang (10132_CR38) 1998; 35 H. Qi (10132_CR22) 2001; 17 W.G. Yang (10132_CR33) 1995; 7 R.W. Lardner (10132_CR10) 1968; 17 T.H. Hao (10132_CR6) 1994; 47 J.D. Eshelby (10132_CR4) 1975; 26 X. Mu (10132_CR16) 2022; 36 V. Govorukha (10132_CR5) 2024; 94 Y. Li (10132_CR14) 2024; 108 V. Loboda (10132_CR15) 2020; 231 Z.T. Yang (10132_CR35) 2020; 107 A.C. Chrysakis (10132_CR3) 1992; 33 Y.E. Pak (10132_CR18) 1990; 57 Y.Y. Xin (10132_CR32) 2023; 29 X.F. Li (10132_CR11) 2005; 37 F. Zhu (10132_CR44) 2019; 13 N.I. Muskhelishvili (10132_CR17) 1977 A.K. Soh (10132_CR27) 2003; 360 Y.B. Zhou (10132_CR42) 2019; 76 S.K. Panja (10132_CR20) 2023; 104 J. Yang (10132_CR34) 2017; 108 |
References_xml | – volume: 13 start-page: 67 issue: 1–3 year: 1998 ident: 10132_CR8 publication-title: Comput. Mater. Sci. doi: 10.1016/S0927-0256(98)00047-0 – volume: 35 start-page: 2121 issue: 17 year: 1998 ident: 10132_CR38 publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(97)00168-6 – volume: 232 start-page: 2513 issue: 7 year: 2021 ident: 10132_CR7 publication-title: Acta Mech. doi: 10.1007/s00707-021-02955-0 – volume: 98 start-page: 1780 issue: 19 year: 2018 ident: 10132_CR40 publication-title: Philos. Mag. doi: 10.1080/14786435.2018.1459057 – volume: 94 start-page: 589 issue: 3 year: 2024 ident: 10132_CR5 publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-024-02538-0 – volume: 29 start-page: 71 issue: 1 year: 2023 ident: 10132_CR32 publication-title: Math. Mech. Solids doi: 10.1177/10812865231186341 – volume: 47 start-page: 793 issue: 6 year: 1994 ident: 10132_CR6 publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(94)90059-0 – volume: 107 year: 2020 ident: 10132_CR35 publication-title: Theor. Appl. Fract. Mech. – volume: 13 issue: 10 year: 2023 ident: 10132_CR39 publication-title: Crystals – volume: 231 start-page: 3419 issue: 8 year: 2020 ident: 10132_CR15 publication-title: Acta Mech. doi: 10.1007/s00707-020-02721-8 – volume: 36 start-page: 143 issue: 1 year: 2022 ident: 10132_CR16 publication-title: Acta Mech. Solida Sin. doi: 10.1007/s10338-022-00360-1 – volume: 37 start-page: 189 issue: 1 year: 2005 ident: 10132_CR11 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2004.01.003 – volume: 57 start-page: 647 issue: 3 year: 1990 ident: 10132_CR18 publication-title: J. Appl. Mech. doi: 10.1115/1.2897071 – volume: 53 start-page: 973 issue: 4–5 year: 2017 ident: 10132_CR30 publication-title: Meccanica – volume: 57 start-page: 863 issue: 4 year: 1990 ident: 10132_CR19 publication-title: J. Appl. Mech. doi: 10.1115/1.2897653 – volume-title: Course of Theoretical Physics. Vol. 5: Statistical Physics year: 1958 ident: 10132_CR9 – volume: 68 start-page: 481 issue: 3 year: 2007 ident: 10132_CR23 publication-title: Pramana doi: 10.1007/s12043-007-0051-3 – volume: 49 start-page: 3255 issue: 23–24 year: 2012 ident: 10132_CR1 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2012.06.016 – volume: 38 start-page: 269 issue: 4 year: 2006 ident: 10132_CR29 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2005.06.008 – volume: 7 start-page: 499 issue: 39 year: 1995 ident: 10132_CR33 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/7/39/001 – volume: 215 start-page: 1062 issue: 3 year: 2009 ident: 10132_CR25 publication-title: Appl. Math. Comput. – volume: 41 start-page: 339 issue: 1–3 year: 2004 ident: 10132_CR36 publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2003.11.019 – volume: 91 start-page: 743 issue: 9 year: 2011 ident: 10132_CR12 publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.201000053 – volume: 108 year: 2024 ident: 10132_CR14 publication-title: Eur. J. Mech. A, Solids – volume: 81 start-page: 7471 issue: 11 year: 1997 ident: 10132_CR31 publication-title: J. Appl. Phys. doi: 10.1063/1.365290 – volume: 108 start-page: 175 year: 2017 ident: 10132_CR34 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.12.012 – volume: 41 start-page: 899 issue: 6 year: 2020 ident: 10132_CR13 publication-title: Appl. Math. Mech. doi: 10.1007/s10483-020-2615-6 – volume: 17 start-page: 59 issue: 1 year: 2001 ident: 10132_CR22 publication-title: Acta Mech. Sin. doi: 10.1007/BF02487770 – volume: 71 start-page: 5865 issue: 12 year: 1992 ident: 10132_CR37 publication-title: J. Appl. Phys. doi: 10.1063/1.350483 – volume: 35 start-page: 173 issue: 1 year: 1977 ident: 10132_CR28 publication-title: Q. Appl. Math. doi: 10.1090/qam/445873 – volume-title: Some Basic Problems of the Mathematical Theory of Elasticity year: 1977 ident: 10132_CR17 doi: 10.1007/978-94-017-3034-1 – volume: 156 start-page: 203 issue: 2 year: 2009 ident: 10132_CR2 publication-title: Int. J. Fract. doi: 10.1007/s10704-009-9360-5 – volume: 104 issue: 2 year: 2023 ident: 10132_CR20 publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.202300393 – volume: 25 start-page: 65 issue: 1 year: 1996 ident: 10132_CR26 publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/0167-8442(96)00008-0 – volume: 76 start-page: 224 year: 2019 ident: 10132_CR42 publication-title: Eur. J. Mech. A, Solids doi: 10.1016/j.euromechsol.2019.04.011 – volume: 13 year: 2019 ident: 10132_CR44 publication-title: Results Phys. – volume: 70 start-page: 203 issue: 3 year: 1993 ident: 10132_CR21 publication-title: Int. J. Fract. doi: 10.1007/BF00012935 – volume: 360 start-page: 306 issue: 1–2 year: 2003 ident: 10132_CR27 publication-title: Mater. Sci. Eng. doi: 10.1016/S0921-5093(03)00475-1 – volume: 33 start-page: 143 issue: 1 year: 1992 ident: 10132_CR3 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620330110 – volume: 17 start-page: 71 issue: 145 year: 1968 ident: 10132_CR10 publication-title: Philos. Mag.: J. Theoret. Exp. Appl. Phys. doi: 10.1080/14786436808218181 – volume: 86 year: 2021 ident: 10132_CR43 publication-title: Eur. J. Mech. A, Solids – volume: 53 start-page: 1951 issue: 20 year: 1984 ident: 10132_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.53.1951 – volume: 26 start-page: 544 issue: 12 year: 1975 ident: 10132_CR4 publication-title: Phys. Bull. doi: 10.1088/0031-9112/26/12/035 – volume: 189 start-page: 133 year: 2018 ident: 10132_CR41 publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.10.030 |
SSID | ssj0009840 |
Score | 2.38603 |
Snippet | The electroelastic problems of one-dimensional hexagonal piezoelectric quasicrystal materials with a periodic distribution of slant mode-III cracks under... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Biomechanics Boundary conditions Classical and Continuum Physics Classical Mechanics Closed form solutions Crack tips Cracks Dimensional analysis Electric fields Engineering Integral equations Materials Science Mathematical Applications in the Physical Sciences Permeability Piezoelectricity Quasicrystals Screw dislocations Singular integral equations Singularity (mathematics) Strain energy release rate Stress distribution Theoretical and Applied Mechanics |
Title | Analysis of One-Dimensional Hexagonal Piezoelectric Quasicrystal with a Periodic Distribution of Slant Mode-III Cracks |
URI | https://link.springer.com/article/10.1007/s10659-025-10132-w https://www.proquest.com/docview/3201702160 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXvTgAzWiSHrwpk12-1r2SHgImihGSfC06XZbQ0LA8BD119suuwGNHrxt0s0c-nXar52ZbwAuwkQb5ssEx16sMAuYwLFRBhNlHcuJpYQqTZC9E-0eu-nzflYUNs2z3fOQZLpTrxW7CR5i137VdwECvNiELW7v7s4de6S2ktqtpmWQTlgFU055Virzu43vx9GKY_4Ii6anTWsfdjOaiGpLXA9gQ4-KsJdRRpQ55LQIO2t6gofwlkuMoLFB9yONG067f6m7gdr6Xb6kX92B_hwv-98MFHqYS4vU5MPSxCFyz7JIoq41OE7sYMPp6mYtsZzRx6FFArkGarjT6aD6xJXoH0Gv1Xyqt3HWWAErEpAZ5kZYmsqZ9LWmKhBaSntL5jxhHkv8oEp9Y5mHMEJRRhUnLLDzrCk1zDMyYSE9hsJoPNIngGgivapisQoCjxmpwsQoIkJivFgHhMYluMznN3pd6mdEK6Vkh0Zk0YhSNKJFCco5BFHmS9OIEqfxQ3zhleAqh2U1_Le10__9fgbbxK2MNJuxDIXZZK7PLeOYxRXYql0_3zYr6UL7Arowz5c |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdkShgA_cwFLiLcmxAqoWSgFBJW6R49ioUtWitqxfj51FAQQHbpEczSHPE79kZt4DOIpSbZgvU5x4icIsYAInRhlMlE0sJ5YSqaxBtifafXbxwB-KobBp2e1eliSzN_WXYTfBI-zsV31XIMCv87BgyUDofAv6pFlJ7YbZGKQTVsGUU16Myvwe4_txVHHMH2XR7LRprcFKQRNRM8d1Heb0aANWC8qIioScbsDyFz3BTXgpJUbQ2KDrkcZnTrs_191Abf0mH7Orm4H-GOf-NwOFbp-lRWrybmniELnfskiiGxtwnNrFM6erW1hiuaB3Q4sEcgZquNPpoNOJG9Hfgn7r_P60jQtjBaxIQGaYG2FpKmfS15qqQGgp7Vcy5ynzWOoHIfWNZR7CCEUZVZywgBNPU2qYZ2TKIroNtdF4pHcA0VR6oWKJCgKPGami1CgiImK8RAeEJnU4Lp9v_JTrZ8SVUrJDI7ZoxBka8WsdGiUEcZFL05gSp_FDfOHV4aSEpVr-O9ru_24_hMX2_VU37nZ6l3uwRNwuyTobG1CbTZ71vmUfs-Qg22yfIt3Q9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH64gOjBXazrHLzpYDJbmqNYS6uiFS14C5NZpCCpdHH79c5koVX04C0w4R3yzct8yXvf9wCOYm0sC6XGaZAqzCImcGqVxUS5xPJmKbHKG2RvRKvLLh_545SKP-92r0qShabBuzRlo9MXbU-nhG-Cx9iPYg19sQC_zcK8ex2Hfqd3ydnEdreeSyK9yQqmnPJSNvN7jO9H04Rv_iiR5idPcxWWS8qIzgqM12DGZOuwUtJHVCbncB2WprwFN-C1shtBfYtuM4Mb3se_8OBALfMun_KrTs989otZOD2F7sbSoTb4cJTxGflftEiijgvY126x4T12y_FYPuj9s0MF-WFquN1uo_OBl-tvQrd58XDewuWQBaxIREaYW-EoK2cyNIaqSBgp3Rcz55oFTIdRnYbWsRBhhaKMKk5YxElgKLUssFKzmG7BXNbPzDYgqmVQVyxVURQwK1WsrSIiJjZITURoWoPj6vkmL4WXRjJxTfZoJA6NJEcjeavBXgVBUubVMKHE-_2QUAQ1OKlgmSz_HW3nf7cfwkKn0Uyu2zdXu7BI_CbJmxz3YG40GJt9R0RG6UG-174AV6HVMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+One-Dimensional+Hexagonal+Piezoelectric+Quasicrystal+with+a+Periodic+Distribution+of+Slant+Mode-III+Cracks&rft.jtitle=Journal+of+elasticity&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=157&rft.issue=2&rft_id=info:doi/10.1007%2Fs10659-025-10132-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon |