Analysis of One-Dimensional Hexagonal Piezoelectric Quasicrystal with a Periodic Distribution of Slant Mode-III Cracks

The electroelastic problems of one-dimensional hexagonal piezoelectric quasicrystal materials with a periodic distribution of slant mode-III cracks under anti-plane shear and electromechanical loading are analyzed in this paper. Based on the three electrical boundary conditions at the crack surfaces...

Full description

Saved in:
Bibliographic Details
Published inJournal of elasticity Vol. 157; no. 2
Main Authors Rang, Xue, Zhou, Yan-Bin
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0374-3535
1573-2681
DOI10.1007/s10659-025-10132-w

Cover

Abstract The electroelastic problems of one-dimensional hexagonal piezoelectric quasicrystal materials with a periodic distribution of slant mode-III cracks under anti-plane shear and electromechanical loading are analyzed in this paper. Based on the three electrical boundary conditions at the crack surfaces, electrically permeable, electrically semi-permeable and electrically impermeable condition, the problems are classified as solving singular integral equations by using screw dislocation solutions. For two special cases of coplanar and parallel periodic crack arrays, the closed form solutions for the electroelastic fields, including stress fields, electric fields and tearing displacements, have been determined. The solutions of the singular integral equations for slant cracks can be transformed into the solutions of algebraic equations, the field intensity factors and mechanical strain energy release rates have been determined. The numerical solutions show that the normalized mechanical strain energy release rates increase under the influence of phonon field stress, phason field stress as well as electric fields, indicating that cracks are more likely to propagate in piezoelectric quasicrystal materials. In addition, it is found that the stress fields at the crack tips exhibited singularity, and the variation law of the total energy release rates with the applied electrical loading are also obtained.
AbstractList The electroelastic problems of one-dimensional hexagonal piezoelectric quasicrystal materials with a periodic distribution of slant mode-III cracks under anti-plane shear and electromechanical loading are analyzed in this paper. Based on the three electrical boundary conditions at the crack surfaces, electrically permeable, electrically semi-permeable and electrically impermeable condition, the problems are classified as solving singular integral equations by using screw dislocation solutions. For two special cases of coplanar and parallel periodic crack arrays, the closed form solutions for the electroelastic fields, including stress fields, electric fields and tearing displacements, have been determined. The solutions of the singular integral equations for slant cracks can be transformed into the solutions of algebraic equations, the field intensity factors and mechanical strain energy release rates have been determined. The numerical solutions show that the normalized mechanical strain energy release rates increase under the influence of phonon field stress, phason field stress as well as electric fields, indicating that cracks are more likely to propagate in piezoelectric quasicrystal materials. In addition, it is found that the stress fields at the crack tips exhibited singularity, and the variation law of the total energy release rates with the applied electrical loading are also obtained.
ArticleNumber 41
Author Rang, Xue
Zhou, Yan-Bin
Author_xml – sequence: 1
  givenname: Xue
  surname: Rang
  fullname: Rang, Xue
  organization: School of Mathematical Science, Inner Mongolia Normal University
– sequence: 2
  givenname: Yan-Bin
  surname: Zhou
  fullname: Zhou, Yan-Bin
  email: yanbinzhou@imnu.edu.cn
  organization: School of Mathematical Science, Inner Mongolia Normal University, Center for Applied Mathematical Sciences, Inner Mongolia Normal University
BookMark eNp9kE1PAjEQhhujiYj-AU-beK5Ov7ZwNPgBCQaNem5qdxarsMV2EfHXW8DEm6eZzLzvk5n3iOw3oUFCThmcMwB9kRiUqk-BK8qACU5Xe6TDlBaUlz22TzogtKRCCXVIjlJ6A4B-T0KHfF42drZOPhWhLiYN0is_xyb5kMfFEL_sdNvde_wOOEPXRu-Kh6VN3sV1avNq5dvXwhb3GH2o8vLKpyx6WbaZsYE-zmzTFnehQjoajYpBtO49HZOD2s4SnvzWLnm-uX4aDOl4cjsaXI6p45q3VNX5-kpJyxCF0yVaK8u-UpUEWTHdE6wGzcq6dEIKp7jUigMKUUuobSX7okvOdtxFDB9LTK15C8uYP0pGcGAaOCshq_hO5WJIKWJtFtHPbVwbBmaTr9nla3K-ZpuvWWWT2JlSFjdTjH_of1w_j_aAJQ
Cites_doi 10.1016/S0927-0256(98)00047-0
10.1016/S0020-7683(97)00168-6
10.1007/s00707-021-02955-0
10.1080/14786435.2018.1459057
10.1007/s00419-024-02538-0
10.1177/10812865231186341
10.1016/0013-7944(94)90059-0
10.1007/s00707-020-02721-8
10.1007/s10338-022-00360-1
10.1016/j.mechmat.2004.01.003
10.1115/1.2897071
10.1115/1.2897653
10.1007/s12043-007-0051-3
10.1016/j.ijsolstr.2012.06.016
10.1016/j.mechmat.2005.06.008
10.1088/0953-8984/7/39/001
10.1016/j.tafmec.2003.11.019
10.1002/zamm.201000053
10.1063/1.365290
10.1016/j.ijsolstr.2016.12.012
10.1007/s10483-020-2615-6
10.1007/BF02487770
10.1063/1.350483
10.1090/qam/445873
10.1007/978-94-017-3034-1
10.1007/s10704-009-9360-5
10.1002/zamm.202300393
10.1016/0167-8442(96)00008-0
10.1016/j.euromechsol.2019.04.011
10.1007/BF00012935
10.1016/S0921-5093(03)00475-1
10.1002/nme.1620330110
10.1080/14786436808218181
10.1103/PhysRevLett.53.1951
10.1088/0031-9112/26/12/035
10.1016/j.engfracmech.2017.10.030
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1007/s10659-025-10132-w
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-2681
ExternalDocumentID 10_1007_s10659_025_10132_w
GrantInformation_xml – fundername: the Talent Development Fund Project of Inner Mongolia Autonomous Region of China
  grantid: 5909002123
– fundername: the First-class Disciplines Project Fund of Inner Mongolia Autonomous Region of China
  grantid: YLXKZX-NSD-013
– fundername: the Fundamental Research Funds for the Inner Mongolia Normal University
  grantid: 2022JBQN076
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABEFU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
ZMTXR
ZY4
~02
~A9
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
7SR
7TB
8BQ
8FD
ABRTQ
FR3
JG9
KR7
ID FETCH-LOGICAL-c272t-5f681d54a1ee3c76eaa46955d404d17831f0716f6c343c5247520e33f40fad493
IEDL.DBID U2A
ISSN 0374-3535
IngestDate Fri Jul 25 10:00:25 EDT 2025
Tue Jul 01 04:50:13 EDT 2025
Wed May 21 12:02:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords One-dimensional hexagonal piezoelectric quasicrystal
Mechanical strain energy release rate
74R10
Singular integral equations
Slant mode-III cracks
Screw dislocation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-5f681d54a1ee3c76eaa46955d404d17831f0716f6c343c5247520e33f40fad493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3201702160
PQPubID 326256
ParticipantIDs proquest_journals_3201702160
crossref_primary_10_1007_s10659_025_10132_w
springer_journals_10_1007_s10659_025_10132_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Groningen
PublicationSubtitle The Physical and Mathematical Science of Solids
PublicationTitle Journal of elasticity
PublicationTitleAbbrev J Elast
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Y.B. Zhou (10132_CR40) 2018; 98
K.R.M. Rao (10132_CR23) 2007; 68
S.B. Park (10132_CR21) 1993; 70
L.D. Landau (10132_CR9) 1958
D. Shechtman (10132_CR24) 1984; 53
T.Y. Zhang (10132_CR36) 2004; 41
T.Y. Zhang (10132_CR37) 1992; 71
K.Q. Hu (10132_CR7) 2021; 232
P.S. Theocaris (10132_CR28) 1977; 35
Z.G. Zhang (10132_CR39) 2023; 13
M. Kuna (10132_CR8) 1998; 13
W.C. Shi (10132_CR25) 2009; 215
Y.B. Zhou (10132_CR41) 2018; 189
Y.E. Pak (10132_CR19) 1990; 57
Y.B. Zhou (10132_CR43) 2021; 86
L.H. Li (10132_CR13) 2020; 41
Y.D. Li (10132_CR12) 2011; 91
Y.Z. Chen (10132_CR2) 2009; 156
Z.H. Tong (10132_CR29) 2006; 38
H.Y. Wang (10132_CR31) 1997; 81
G. Altay (10132_CR1) 2012; 49
Y. Shindo (10132_CR26) 1996; 25
G.E. Tupholme (10132_CR30) 2017; 53
T.Y. Zhang (10132_CR38) 1998; 35
H. Qi (10132_CR22) 2001; 17
W.G. Yang (10132_CR33) 1995; 7
R.W. Lardner (10132_CR10) 1968; 17
T.H. Hao (10132_CR6) 1994; 47
J.D. Eshelby (10132_CR4) 1975; 26
X. Mu (10132_CR16) 2022; 36
V. Govorukha (10132_CR5) 2024; 94
Y. Li (10132_CR14) 2024; 108
V. Loboda (10132_CR15) 2020; 231
Z.T. Yang (10132_CR35) 2020; 107
A.C. Chrysakis (10132_CR3) 1992; 33
Y.E. Pak (10132_CR18) 1990; 57
Y.Y. Xin (10132_CR32) 2023; 29
X.F. Li (10132_CR11) 2005; 37
F. Zhu (10132_CR44) 2019; 13
N.I. Muskhelishvili (10132_CR17) 1977
A.K. Soh (10132_CR27) 2003; 360
Y.B. Zhou (10132_CR42) 2019; 76
S.K. Panja (10132_CR20) 2023; 104
J. Yang (10132_CR34) 2017; 108
References_xml – volume: 13
  start-page: 67
  issue: 1–3
  year: 1998
  ident: 10132_CR8
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/S0927-0256(98)00047-0
– volume: 35
  start-page: 2121
  issue: 17
  year: 1998
  ident: 10132_CR38
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(97)00168-6
– volume: 232
  start-page: 2513
  issue: 7
  year: 2021
  ident: 10132_CR7
  publication-title: Acta Mech.
  doi: 10.1007/s00707-021-02955-0
– volume: 98
  start-page: 1780
  issue: 19
  year: 2018
  ident: 10132_CR40
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2018.1459057
– volume: 94
  start-page: 589
  issue: 3
  year: 2024
  ident: 10132_CR5
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-024-02538-0
– volume: 29
  start-page: 71
  issue: 1
  year: 2023
  ident: 10132_CR32
  publication-title: Math. Mech. Solids
  doi: 10.1177/10812865231186341
– volume: 47
  start-page: 793
  issue: 6
  year: 1994
  ident: 10132_CR6
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(94)90059-0
– volume: 107
  year: 2020
  ident: 10132_CR35
  publication-title: Theor. Appl. Fract. Mech.
– volume: 13
  issue: 10
  year: 2023
  ident: 10132_CR39
  publication-title: Crystals
– volume: 231
  start-page: 3419
  issue: 8
  year: 2020
  ident: 10132_CR15
  publication-title: Acta Mech.
  doi: 10.1007/s00707-020-02721-8
– volume: 36
  start-page: 143
  issue: 1
  year: 2022
  ident: 10132_CR16
  publication-title: Acta Mech. Solida Sin.
  doi: 10.1007/s10338-022-00360-1
– volume: 37
  start-page: 189
  issue: 1
  year: 2005
  ident: 10132_CR11
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2004.01.003
– volume: 57
  start-page: 647
  issue: 3
  year: 1990
  ident: 10132_CR18
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2897071
– volume: 53
  start-page: 973
  issue: 4–5
  year: 2017
  ident: 10132_CR30
  publication-title: Meccanica
– volume: 57
  start-page: 863
  issue: 4
  year: 1990
  ident: 10132_CR19
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2897653
– volume-title: Course of Theoretical Physics. Vol. 5: Statistical Physics
  year: 1958
  ident: 10132_CR9
– volume: 68
  start-page: 481
  issue: 3
  year: 2007
  ident: 10132_CR23
  publication-title: Pramana
  doi: 10.1007/s12043-007-0051-3
– volume: 49
  start-page: 3255
  issue: 23–24
  year: 2012
  ident: 10132_CR1
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.06.016
– volume: 38
  start-page: 269
  issue: 4
  year: 2006
  ident: 10132_CR29
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2005.06.008
– volume: 7
  start-page: 499
  issue: 39
  year: 1995
  ident: 10132_CR33
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/7/39/001
– volume: 215
  start-page: 1062
  issue: 3
  year: 2009
  ident: 10132_CR25
  publication-title: Appl. Math. Comput.
– volume: 41
  start-page: 339
  issue: 1–3
  year: 2004
  ident: 10132_CR36
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2003.11.019
– volume: 91
  start-page: 743
  issue: 9
  year: 2011
  ident: 10132_CR12
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.201000053
– volume: 108
  year: 2024
  ident: 10132_CR14
  publication-title: Eur. J. Mech. A, Solids
– volume: 81
  start-page: 7471
  issue: 11
  year: 1997
  ident: 10132_CR31
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.365290
– volume: 108
  start-page: 175
  year: 2017
  ident: 10132_CR34
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.12.012
– volume: 41
  start-page: 899
  issue: 6
  year: 2020
  ident: 10132_CR13
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-020-2615-6
– volume: 17
  start-page: 59
  issue: 1
  year: 2001
  ident: 10132_CR22
  publication-title: Acta Mech. Sin.
  doi: 10.1007/BF02487770
– volume: 71
  start-page: 5865
  issue: 12
  year: 1992
  ident: 10132_CR37
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.350483
– volume: 35
  start-page: 173
  issue: 1
  year: 1977
  ident: 10132_CR28
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/445873
– volume-title: Some Basic Problems of the Mathematical Theory of Elasticity
  year: 1977
  ident: 10132_CR17
  doi: 10.1007/978-94-017-3034-1
– volume: 156
  start-page: 203
  issue: 2
  year: 2009
  ident: 10132_CR2
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-009-9360-5
– volume: 104
  issue: 2
  year: 2023
  ident: 10132_CR20
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.202300393
– volume: 25
  start-page: 65
  issue: 1
  year: 1996
  ident: 10132_CR26
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/0167-8442(96)00008-0
– volume: 76
  start-page: 224
  year: 2019
  ident: 10132_CR42
  publication-title: Eur. J. Mech. A, Solids
  doi: 10.1016/j.euromechsol.2019.04.011
– volume: 13
  year: 2019
  ident: 10132_CR44
  publication-title: Results Phys.
– volume: 70
  start-page: 203
  issue: 3
  year: 1993
  ident: 10132_CR21
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00012935
– volume: 360
  start-page: 306
  issue: 1–2
  year: 2003
  ident: 10132_CR27
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/S0921-5093(03)00475-1
– volume: 33
  start-page: 143
  issue: 1
  year: 1992
  ident: 10132_CR3
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620330110
– volume: 17
  start-page: 71
  issue: 145
  year: 1968
  ident: 10132_CR10
  publication-title: Philos. Mag.: J. Theoret. Exp. Appl. Phys.
  doi: 10.1080/14786436808218181
– volume: 86
  year: 2021
  ident: 10132_CR43
  publication-title: Eur. J. Mech. A, Solids
– volume: 53
  start-page: 1951
  issue: 20
  year: 1984
  ident: 10132_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.53.1951
– volume: 26
  start-page: 544
  issue: 12
  year: 1975
  ident: 10132_CR4
  publication-title: Phys. Bull.
  doi: 10.1088/0031-9112/26/12/035
– volume: 189
  start-page: 133
  year: 2018
  ident: 10132_CR41
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.10.030
SSID ssj0009840
Score 2.38603
Snippet The electroelastic problems of one-dimensional hexagonal piezoelectric quasicrystal materials with a periodic distribution of slant mode-III cracks under...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Biomechanics
Boundary conditions
Classical and Continuum Physics
Classical Mechanics
Closed form solutions
Crack tips
Cracks
Dimensional analysis
Electric fields
Engineering
Integral equations
Materials Science
Mathematical Applications in the Physical Sciences
Permeability
Piezoelectricity
Quasicrystals
Screw dislocations
Singular integral equations
Singularity (mathematics)
Strain energy release rate
Stress distribution
Theoretical and Applied Mechanics
Title Analysis of One-Dimensional Hexagonal Piezoelectric Quasicrystal with a Periodic Distribution of Slant Mode-III Cracks
URI https://link.springer.com/article/10.1007/s10659-025-10132-w
https://www.proquest.com/docview/3201702160
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXvTgAzWiSHrwpk12-1r2SHgImihGSfC06XZbQ0LA8BD119suuwGNHrxt0s0c-nXar52ZbwAuwkQb5ssEx16sMAuYwLFRBhNlHcuJpYQqTZC9E-0eu-nzflYUNs2z3fOQZLpTrxW7CR5i137VdwECvNiELW7v7s4de6S2ktqtpmWQTlgFU055Virzu43vx9GKY_4Ii6anTWsfdjOaiGpLXA9gQ4-KsJdRRpQ55LQIO2t6gofwlkuMoLFB9yONG067f6m7gdr6Xb6kX92B_hwv-98MFHqYS4vU5MPSxCFyz7JIoq41OE7sYMPp6mYtsZzRx6FFArkGarjT6aD6xJXoH0Gv1Xyqt3HWWAErEpAZ5kZYmsqZ9LWmKhBaSntL5jxhHkv8oEp9Y5mHMEJRRhUnLLDzrCk1zDMyYSE9hsJoPNIngGgivapisQoCjxmpwsQoIkJivFgHhMYluMznN3pd6mdEK6Vkh0Zk0YhSNKJFCco5BFHmS9OIEqfxQ3zhleAqh2U1_Le10__9fgbbxK2MNJuxDIXZZK7PLeOYxRXYql0_3zYr6UL7Arowz5c
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAHdkShgA_cwFLiLcmxAqoWSgFBJW6R49ioUtWitqxfj51FAQQHbpEczSHPE79kZt4DOIpSbZgvU5x4icIsYAInRhlMlE0sJ5YSqaxBtifafXbxwB-KobBp2e1eliSzN_WXYTfBI-zsV31XIMCv87BgyUDofAv6pFlJ7YbZGKQTVsGUU16Myvwe4_txVHHMH2XR7LRprcFKQRNRM8d1Heb0aANWC8qIioScbsDyFz3BTXgpJUbQ2KDrkcZnTrs_191Abf0mH7Orm4H-GOf-NwOFbp-lRWrybmniELnfskiiGxtwnNrFM6erW1hiuaB3Q4sEcgZquNPpoNOJG9Hfgn7r_P60jQtjBaxIQGaYG2FpKmfS15qqQGgp7Vcy5ynzWOoHIfWNZR7CCEUZVZywgBNPU2qYZ2TKIroNtdF4pHcA0VR6oWKJCgKPGami1CgiImK8RAeEJnU4Lp9v_JTrZ8SVUrJDI7ZoxBka8WsdGiUEcZFL05gSp_FDfOHV4aSEpVr-O9ru_24_hMX2_VU37nZ6l3uwRNwuyTobG1CbTZ71vmUfs-Qg22yfIt3Q9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH64gOjBXazrHLzpYDJbmqNYS6uiFS14C5NZpCCpdHH79c5koVX04C0w4R3yzct8yXvf9wCOYm0sC6XGaZAqzCImcGqVxUS5xPJmKbHKG2RvRKvLLh_545SKP-92r0qShabBuzRlo9MXbU-nhG-Cx9iPYg19sQC_zcK8ex2Hfqd3ydnEdreeSyK9yQqmnPJSNvN7jO9H04Rv_iiR5idPcxWWS8qIzgqM12DGZOuwUtJHVCbncB2WprwFN-C1shtBfYtuM4Mb3se_8OBALfMun_KrTs989otZOD2F7sbSoTb4cJTxGflftEiijgvY126x4T12y_FYPuj9s0MF-WFquN1uo_OBl-tvQrd58XDewuWQBaxIREaYW-EoK2cyNIaqSBgp3Rcz55oFTIdRnYbWsRBhhaKMKk5YxElgKLUssFKzmG7BXNbPzDYgqmVQVyxVURQwK1WsrSIiJjZITURoWoPj6vkmL4WXRjJxTfZoJA6NJEcjeavBXgVBUubVMKHE-_2QUAQ1OKlgmSz_HW3nf7cfwkKn0Uyu2zdXu7BI_CbJmxz3YG40GJt9R0RG6UG-174AV6HVMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+One-Dimensional+Hexagonal+Piezoelectric+Quasicrystal+with+a+Periodic+Distribution+of+Slant+Mode-III+Cracks&rft.jtitle=Journal+of+elasticity&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=157&rft.issue=2&rft_id=info:doi/10.1007%2Fs10659-025-10132-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon