A comprehensive review on coating techniques to suppress the dendrites issue and improve the performance of lithium-ion batteries
In the realm of energy storage systems, lithium-ion batteries (LIBs) have solidified their dominant role due to their high energy density, long cycle life, and excellent efficiency. As a powerhouse for an array of applications including electric vehicles, portable electronics, and grid storage, the...
Saved in:
Published in | JCT research Vol. 22; no. 4; pp. 1433 - 1450 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1547-0091 1935-3804 2168-8028 |
DOI | 10.1007/s11998-024-01050-y |
Cover
Loading…
Abstract | In the realm of energy storage systems, lithium-ion batteries (LIBs) have solidified their dominant role due to their high energy density, long cycle life, and excellent efficiency. As a powerhouse for an array of applications including electric vehicles, portable electronics, and grid storage, the optimization of LIBs is a subject of robust and ongoing scientific inquiry. One of the critical challenges faced in LIBs is the formation of lithium dendrites—a type of crystal that grows on the lithium anode during the charging process. These dendritic structures can pierce the battery's separator, leading to a short circuit, and in worst-case scenarios, fires, or explosions. A promising avenue toward this goal lies in the development and application of innovative coating techniques. These processes can provide a protective layer on the anode, curtailing the growth of dendrites, and thereby enhancing battery life and stability. Thus, this review summarizes the various coating techniques which include physical vapor deposition, atomic layer deposition, and electrochemical deposition. This comprehensive review will delve into the varied coating techniques that have been proposed and implemented to address the dendrite problem. By investigating and comparing these strategies in depth, this article aims to provide a holistic understanding of current mitigation methods and a glimpse into the future trajectory of lithium-ion battery research. The hope is that this will inspire further exploration and innovation in the pursuit of ever more efficient and safe energy storage solutions. |
---|---|
AbstractList | In the realm of energy storage systems, lithium-ion batteries (LIBs) have solidified their dominant role due to their high energy density, long cycle life, and excellent efficiency. As a powerhouse for an array of applications including electric vehicles, portable electronics, and grid storage, the optimization of LIBs is a subject of robust and ongoing scientific inquiry. One of the critical challenges faced in LIBs is the formation of lithium dendrites—a type of crystal that grows on the lithium anode during the charging process. These dendritic structures can pierce the battery's separator, leading to a short circuit, and in worst-case scenarios, fires, or explosions. A promising avenue toward this goal lies in the development and application of innovative coating techniques. These processes can provide a protective layer on the anode, curtailing the growth of dendrites, and thereby enhancing battery life and stability. Thus, this review summarizes the various coating techniques which include physical vapor deposition, atomic layer deposition, and electrochemical deposition. This comprehensive review will delve into the varied coating techniques that have been proposed and implemented to address the dendrite problem. By investigating and comparing these strategies in depth, this article aims to provide a holistic understanding of current mitigation methods and a glimpse into the future trajectory of lithium-ion battery research. The hope is that this will inspire further exploration and innovation in the pursuit of ever more efficient and safe energy storage solutions. In the realm of energy storage systems, lithium-ion batteries (LIBs) have solidified their dominant role due to their high energy density, long cycle life, and excellent efficiency. As a powerhouse for an array of applications including electric vehicles, portable electronics, and grid storage, the optimization of LIBs is a subject of robust and ongoing scientific inquiry. One of the critical challenges faced in LIBs is the formation of lithium dendrites—a type of crystal that grows on the lithium anode during the charging process. These dendritic structures can pierce the battery's separator, leading to a short circuit, and in worst-case scenarios, fires, or explosions. A promising avenue toward this goal lies in the development and application of innovative coating techniques. These processes can provide a protective layer on the anode, curtailing the growth of dendrites, and thereby enhancing battery life and stability. Thus, this review summarizes the various coating techniques which include physical vapor deposition, atomic layer deposition, and electrochemical deposition. This comprehensive review will delve into the varied coating techniques that have been proposed and implemented to address the dendrite problem. By investigating and comparing these strategies in depth, this article aims to provide a holistic understanding of current mitigation methods and a glimpse into the future trajectory of lithium-ion battery research. The hope is that this will inspire further exploration and innovation in the pursuit of ever more efficient and safe energy storage solutions. |
Author | Ahmed, Faheem Lim, Jong Hwan Ali, Wajid Choi, Kyung Hyun Ko, Ki Woong |
Author_xml | – sequence: 1 givenname: Wajid surname: Ali fullname: Ali, Wajid organization: Department of Mechatronics Engineering, Jeju National University – sequence: 2 givenname: Ki Woong surname: Ko fullname: Ko, Ki Woong organization: Department of Mechatronics Engineering, Jeju National University – sequence: 3 givenname: Faheem surname: Ahmed fullname: Ahmed, Faheem organization: Department of Mechatronics Engineering, Jeju National University – sequence: 4 givenname: Jong Hwan surname: Lim fullname: Lim, Jong Hwan organization: Department of Mechatronics Engineering, Jeju National University – sequence: 5 givenname: Kyung Hyun surname: Choi fullname: Choi, Kyung Hyun email: amm@jejunu.ac.kr organization: Department of Mechatronics Engineering, Jeju National University |
BookMark | eNp9kE9PAyEQxYmpiW31C3gi8YwOsNtdjo3xX2LiRc-E3R1ajIUKrKZHv7nUmnjzNJOZ934Db0YmPngk5JzDJQdorhLnSrUMRMWAQw1sd0SmXMmayRaqSenrqmEAip-QWUqvAKJpWzklX0vah8024hp9ch9II344_KTBl7nJzq9oxn7t3fuIieZA07gt6lT6NdIB_RBdLhuX0ojU-IG6QgsFtN9vMdoQN8b3SIOlby6v3bhhrtA7kzNGh-mUHFvzlvDst87Jy-3N8_U9e3y6e7hePrJeNCKz2pjGWqV6u1jUPdSdaLGRxvCOG2yFAoUw8B5RLTjKYeh4B9aAaGshWms7OScXB2553v4zWb-GMfpyUkshFlJUjeBFJQ6qPoaUIlq9jW5j4k5z0Puo9SFqXaLWP1HrXTHJgykVsV9h_EP_4_oGG66HlQ |
Cites_doi | 10.1002/ADMA.201506124 10.3389/FCHEM.2018.00616 10.1088/1361-665X/AC6E15 10.1039/C7RA12690E 10.1016/B978-0-8155-2037-5.00008-3 10.1039/C1CS15091J 10.3389/FPUBH.2022.902123 10.1016/J.CSBJ.2022.10.046 10.1038/s41467-023-36792-7 10.1002/ADMA.201104129 10.1016/J.SSI.2015.06.001 10.1016/J.APSUSC.2011.06.031 10.1002/PSSA.202300523 10.1002/CELC.201600139 10.1016/S1359-6454(99)00285-2 10.1149/06108.0001ECST/XML 10.1021/LA101485A 10.1039/D1RA00326G 10.1002/ADVS.202002044 10.1016/J.EGYR.2020.10.018 10.1149/2.044302JES/XML 10.5796/ELECTROCHEMISTRY.84.210 10.1002/AENM.202003154 10.3389/FENRG.2019.00115 10.1016/J.PHYSB.2017.11.079 10.1016/J.MOLCATA.2007.06.010 10.1016/J.XCRP.2020.100119 10.1088/1742-6596/2152/1/012060 10.3762/BJNANO.5.7 10.1016/J.JPOWSOUR.2020.227932 10.1021/AM100217M 10.1007/S41918-023-00192-8 10.1002/ANIE.201915440 10.1016/J.JPOWSOUR.2017.08.020 10.5012/BKCS.2003.24.11.1659 10.1016/J.SURFREP.2016.03.003 10.1021/CM0303080 10.1039/C3EE40795K 10.1039/D3QI01290E 10.1016/J.CES.2007.07.013 10.1109/ICM60448.2023.10378918 10.3390/MA17020386 10.1016/J.ELECTACTA.2005.11.015 10.1016/J.SURFCOAT.2007.04.126 10.1021/ACSCENTSCI.6B00389 10.1007/S42235-022-00208-X 10.1149/1.2041187 10.1126/SCIADV.1602427 10.1002/ANIE.202203564 10.1021/ACSNANO.6B04522 10.1038/NATURE14340 10.1016/J.CEJ.2022.135420 10.1016/J.JBI.2023.104373 10.1016/J.MATT.2020.03.015 10.1016/J.SSI.2019.115033 10.1088/0022-3727/47/3/034006 10.1016/J.JPOWSOUR.2012.01.054 10.1039/C9SE00119K 10.1116/1.3670396 10.1007/S10854-022-09324-0 10.1021/ACSENERGYLETT.2C01400 10.1007/S11030-023-10784-7 10.1016/J.TRSL.2023.07.010 10.3390/SU122410511 10.1016/J.TSF.2006.05.049 10.1016/J.BIOPHA.2022.113350 10.3390/MAGNETOCHEMISTRY8110140 10.1002/JMV.28693 10.1021/ACS.NANOLETT.5B02508 10.1016/J.ENSM.2021.02.042 10.1149/2.053304JES/XML 10.1021/CS501862H/ASSET/IMAGES/LARGE/CS-2014-01862H_0013.JPEG 10.1002/CBEN.202200066 10.1016/J.GEE.2020.12.014 10.1039/C0JM00154F 10.1088/2631-7990/ACD88E 10.1088/0957-4484/24/1/015602 10.1016/J.SNB.2011.08.024 10.1016/J.EST.2020.101652 10.1016/J.JALLCOM.2019.153048 10.1149/1.1778934/XML 10.1016/0039-6028(95)90033-0 10.1021/JA3091438/ASSET/IMAGES/MEDIUM/JA-2012-091438_0009.GIF 10.1016/J.SOLIDSTATESCIENCES.2005.10.019 10.1021/ACSSUSCHEMENG.1C03519 10.1016/J.MATTOD.2020.04.002 10.3390/NANO13010132/S1 10.1016/J.JALLCOM.2021.158748 10.3390/MEMBRANES13030259 10.1002/CEY2.256 10.1038/NMAT1000 10.1063/1.2338776 10.1080/14686996.2019.1599694 10.1002/BATT.202200359 10.1021/ACSOMEGA.3C07296 10.1016/J.NANOEN.2021.105928 10.1016/J.RINENG.2023.101520 10.1111/J.1551-2916.2008.02707.X 10.1021/ACSOMEGA.2C07243/ASSET/IMAGES/LARGE/AO2C07243_0006.JPEG 10.1016/J.MEMSCI.2014.02.004 10.1002/ER.7941 10.1016/J.CSBJ.2023.10.038 10.1021/ACSAMI.6B16155 10.1016/J.SSI.2018.02.027 10.3390/MEMBRANES9070078 10.1016/J.ELECOM.2004.02.010 10.1021/JA1110464/SUPPL_FILE/JA1110464_SI_001.PDF 10.1016/J.BIOPHA.2023.114408 10.1016/J.JPOWSOUR.2010.01.076 10.1063/5.0048337 10.1039/D0NA01072C 10.1088/0268-1242/29/4/043001 10.1002/AENM.201900260 10.1016/J.CEJ.2011.03.097 10.1002/ADVS.202303055 10.1016/J.JPOWSOUR.2014.11.033 10.1201/9781315274126/CERAMIC-PROCESSING-SINTERING-MOHAMED-RAHAMAN 10.1039/C9SE00549H 10.1038/s41524-022-00788-6 10.1016/J.JALLCOM.2017.02.230 10.1021/JP804296A 10.1016/J.CAP.2021.02.010 10.1007/978-3-030-94896-2_10/FIGURES/25 10.1002/ANIE.201901582 10.1166/JNN.2009.NS64 10.3390/BATTERIES8100184 |
ContentType | Journal Article |
Copyright | American Coatings Association 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: American Coatings Association 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11998-024-01050-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1935-3804 2168-8028 |
EndPage | 1450 |
ExternalDocumentID | 10_1007_s11998_024_01050_y |
GrantInformation_xml | – fundername: National Research Foundation (NRF) of Korea grant funded by the Korea government grantid: 2018R1A5A1024127 |
GroupedDBID | .4S .86 .VR 06C 203 29K 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 406 408 40D 40E 5GY 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AATVU AAUYE AAWCG AAYTO ABFTD ABFTV ABHQN ABJOX ABKCH ABTMW ABWNU ACBXY ACGFO ACMFV ACOMO ADKNI ADKPE ADURQ ADYFF ADYOE AEGAL AEGNC AENEX AEXYK AFGCZ AFOHR AFQWF AFYQB AGAYW AGDGC AHBYD AHYZX AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMYLF ARCSS ATHPR B-. BA0 BAAKF CAG CSCUP D-I DPUIP EBS EDO EJD FNLPD G-Y G-Z GGCAI GQ7 HG5 HG6 I-F IAO IJ- IOF ITC ITM IXC I~Z KOV MA- ML~ N95 NQJWS O93 O9J OAM P9N PF0 PT4 PV9 QF4 QM1 QN7 QO4 QOR QOS R89 RPX RSV RWL RZL S16 S3B SAP SCM SDH SHX SNE SNX SOJ SZN TSG TSK TSV TUC TUS U2A VC2 W48 Z45 AAYXX CITATION 06D 0VY 1N0 4.4 5VS AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AAYIU AAYQN AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABJNI ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABXPI ACAOD ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACSNA ACSTC ACZOJ ADHIR ADRFC ADTPH ADZKW AEFQL AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEZWR AFBBN AFDZB AFHIU AFLOW AFWTZ AFZKB AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHKAY AHPBZ AHWEU AIAKS AIGIU AIIXL AILAN AITGF AIXLP ALWAN AMXSW AOCGG ARMRJ AXYYD AYFIA AYJHY BGNMA CS3 DDRTE DNIVK DU5 EBLON EIOEI ESBYG FERAY FFXSO FIGPU FRRFC FWDCC GGRSB GJIRD GNWQR HF~ HLICF HMJXF HRMNR IKXTQ IWAJR IXE IZQ I~X J-C J0Z JBSCW JZLTJ KDC LLZTM M4Y NPVJJ NU0 R9I RNS ROL RXW S1Z S27 SISQX SJYHP SNPRN SOHCF SRMVM SSLCW STPWE T13 U5U UG4 UOJIU UTJUX UZXMN VFIZW WH7 WK8 YLTOR ZMTXR ZRH |
ID | FETCH-LOGICAL-c272t-5aa7ff99cf665c05b28e73aa1b1ae82909e0d1cee961e3ddb1b0fa0285228ffb3 |
IEDL.DBID | U2A |
ISSN | 1547-0091 |
IngestDate | Thu Jul 17 05:37:10 EDT 2025 Thu Jul 03 08:43:10 EDT 2025 Wed Jul 02 02:43:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Coating techniques Anode material Dendrites suppression Solid state electrolyte Energy storage |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-5aa7ff99cf665c05b28e73aa1b1ae82909e0d1cee961e3ddb1b0fa0285228ffb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3226324721 |
PQPubID | 2043846 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3226324721 crossref_primary_10_1007_s11998_024_01050_y springer_journals_10_1007_s11998_024_01050_y |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | JCT research |
PublicationTitleAbbrev | J Coat Technol Res |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | J Liang (1050_CR26) 2020; 59 C Sun (1050_CR11) 2011; 133 LJ Fu (1050_CR43) 2006; 8 C Li (1050_CR34) 2006; 51 T Tynell (1050_CR88) 2014; 29 WY Liu (1050_CR54) 2004; 7 DHA Blank (1050_CR53) 2013; 47 LF Hakim (1050_CR79) 2007; 62 N Labchir (1050_CR123) 2021; 25 P Barai (1050_CR28) 2022; 2152 C Yuan (1050_CR9) 2021; 84 H Tiznado (1050_CR77) 2008; 281 R Mücke (1050_CR46) 2009; 92 R Carter (1050_CR99) 2017; 9 LA Selis (1050_CR42) 2018; 8 N Kuwata (1050_CR55) 2004; 6 Y Koshtyal (1050_CR110) 2022; 8 VR Rai (1050_CR69) 2010; 26 M Wu (1050_CR122) 2024; 17 Y Jin (1050_CR10) 2021; 8 Y Chen (1050_CR126) 2022; 7 MZ Ansari (1050_CR74) 2024; 11 F Ahmed (1050_CR129) 2024 AC Dillon (1050_CR8) 1995; 322 J Lu (1050_CR72) 2016; 71 C Detavernier (1050_CR89) 2011; 40 F Ahmed (1050_CR116) 2023; 21 C Zhu (1050_CR39) 2023; 14 F Ahmed (1050_CR96) 2022 D Janwery (1050_CR15) 2023; 8 L Han (1050_CR108) 2021; 3 E Prada (1050_CR31) 2013; 160 PO Oviroh (1050_CR73) 2019; 20 Y Cao (1050_CR71) 2016; 3 PS Maydannik (1050_CR61) 2011; 171 A-L Daltin (1050_CR117) 2022; 8 JA Jeevarajan (1050_CR13) 2022; 7 1050_CR57 J Zhu (1050_CR104) 2016; 10 J Dong (1050_CR118) 2019; 341 A Gurung (1050_CR19) 2019; 3 D Zhou (1050_CR22) 2019; 58 TK Minton (1050_CR68) 2010; 2 S Wenzel (1050_CR21) 2015; 278 ZE Yu (1050_CR51) 2021; 9 Y Su (1050_CR66) 2023; 6 A Samantasinghar (1050_CR107) 2023 T Hirvikorpi (1050_CR78) 2011; 257 A Yanguas-Gil (1050_CR93) 2011; 30 X Zhang (1050_CR25) 2021; 37 1050_CR48 1050_CR45 F Ahmed (1050_CR119) 2023 W Yan (1050_CR33) 2020; 819 Z Chen (1050_CR36) 2010; 20 S Lobe (1050_CR52) 2021; 8 X Jiang (1050_CR75) 2007; 201 H Chen (1050_CR97) 2014; 458 DN Goldstein (1050_CR76) 2008; 112 M Tallarida (1050_CR84) 2014; 5 Y Jin (1050_CR105) 2021; 8 E Langereis (1050_CR64) 2006; 89 F Ahmed (1050_CR111) 2022; 20 W Liu (1050_CR24) 2017; 3 M Saccoccio (1050_CR56) 2017; 365 JB Goodenough (1050_CR1) 2013; 135 JW Elam (1050_CR80) 2006; 515 NK Grigoras (1050_CR81) 2009; 9 H-W Zhang (1050_CR37) 2014; 61 HA Behabtu (1050_CR4) 2020; 12 KS An (1050_CR65) 2003; 24 K Ise (1050_CR85) 2018; 320 H Zhang (1050_CR112) 2017 MR Asghar (1050_CR2) 2019 D Zuo (1050_CR32) 2017; 706 G Pardon (1050_CR90) 2013 W Bao (1050_CR20) 2022; 437 Z Huang (1050_CR59) 2022; 4 K Nie (1050_CR35) 2018; 6 H Li (1050_CR101) 2015; 15 F Hussain Memon (1050_CR17) 2023; 10 L Bruder (1050_CR49) 2022; 145 BJ O'Neill (1050_CR62) 2015; 5 W Xu (1050_CR12) 2014; 7 H Shen (1050_CR14) 2019; 3 Y Hu (1050_CR67) 2021; 11 Z Yu (1050_CR113) 2020; 1 L Mo (1050_CR86) 2020; 6 EC Nwanna (1050_CR109) 2022; 46 C Marichy (1050_CR87) 2012; 24 SB Xiang (1050_CR115) 2023; 10 E Kartini (1050_CR29) 2018; 551 IA Soomro (1050_CR16) 2023; 13 BS Lim (1050_CR103) 2003; 2 Y Takeda (1050_CR40) 2016; 84 CW Ahn (1050_CR102) 2015; 275 AM Soomro (1050_CR127) 2023 MB Pinson (1050_CR30) 2013; 160 J Li (1050_CR63) 2023; 5 S Luo (1050_CR124) 2022; 61 D Cao (1050_CR27) 2020; 3 JW Fergus (1050_CR23) 2010; 195 1050_CR95 F Ahmed (1050_CR120) 2023 XB Cheng (1050_CR44) 2016; 28 JW Elam (1050_CR82) 2003; 15 1050_CR92 MK Shabbir (1050_CR18) 2023; 20 T Matsushita (1050_CR114) 2005; 152 S Karimzadeh (1050_CR106) 2023; 6 HG Lee (1050_CR41) 2022; 8 KVG Raghavendra (1050_CR3) 2020; 31 Z Fang (1050_CR5) 2020; 454 SE Wang (1050_CR60) 2023 L Frenck (1050_CR38) 2019; 7 MC Lin (1050_CR7) 2015; 520 R Nédélec (1050_CR47) 2012; 205 F Ahmed (1050_CR91) 2022 F Ahmed (1050_CR98) 2022 F Ahmed (1050_CR100) 2022; 33 L Li (1050_CR6) 2021; 11 H Gleiter (1050_CR50) 2000; 48 MT Taschuk (1050_CR83) 2012; 162 K Shen (1050_CR121) 2019; 9 A Samantasinghar (1050_CR125) 2023; 262 F Ahmed (1050_CR94) 2022; 19 M Wang (1050_CR70) 2021; 865 N Sunildutt (1050_CR128) 2023 MC Stan (1050_CR58) 2020; 39 |
References_xml | – volume: 28 start-page: 2888 issue: 15 year: 2016 ident: 1050_CR44 publication-title: Adv. Mater. doi: 10.1002/ADMA.201506124 – volume: 6 start-page: 422093 year: 2018 ident: 1050_CR35 publication-title: Front. Chem. doi: 10.3389/FCHEM.2018.00616 – year: 2022 ident: 1050_CR91 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/AC6E15 – volume: 8 start-page: 5255 issue: 10 year: 2018 ident: 1050_CR42 publication-title: RSC Adv. doi: 10.1039/C7RA12690E – ident: 1050_CR48 doi: 10.1016/B978-0-8155-2037-5.00008-3 – volume: 40 start-page: 5242 issue: 11 year: 2011 ident: 1050_CR89 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15091J – year: 2022 ident: 1050_CR96 publication-title: Front. Public Health doi: 10.3389/FPUBH.2022.902123 – volume: 20 start-page: 6097 year: 2022 ident: 1050_CR111 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/J.CSBJ.2022.10.046 – volume: 14 start-page: 1 issue: 1 year: 2023 ident: 1050_CR39 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36792-7 – ident: 1050_CR57 – volume: 24 start-page: 1017 issue: 8 year: 2012 ident: 1050_CR87 publication-title: Adv. Mater. doi: 10.1002/ADMA.201104129 – volume: 278 start-page: 98 year: 2015 ident: 1050_CR21 publication-title: Solid State Ion. doi: 10.1016/J.SSI.2015.06.001 – volume: 257 start-page: 9451 issue: 22 year: 2011 ident: 1050_CR78 publication-title: Appl. Surf. Sci. doi: 10.1016/J.APSUSC.2011.06.031 – year: 2023 ident: 1050_CR127 publication-title: Phys. Status Solidi A doi: 10.1002/PSSA.202300523 – volume: 3 start-page: 858 issue: 6 year: 2016 ident: 1050_CR71 publication-title: ChemElectroChem doi: 10.1002/CELC.201600139 – volume: 48 start-page: 1 issue: 1 year: 2000 ident: 1050_CR50 publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00285-2 – volume: 61 start-page: 1 issue: 8 year: 2014 ident: 1050_CR37 publication-title: ECS Trans. doi: 10.1149/06108.0001ECST/XML – volume: 26 start-page: 13732 issue: 17 year: 2010 ident: 1050_CR69 publication-title: Langmuir doi: 10.1021/LA101485A – volume: 11 start-page: 11918 issue: 20 year: 2021 ident: 1050_CR67 publication-title: RSC Adv. doi: 10.1039/D1RA00326G – volume: 8 start-page: 2002044 issue: 11 year: 2021 ident: 1050_CR52 publication-title: Adv. Sci. doi: 10.1002/ADVS.202002044 – volume: 6 start-page: 2913 year: 2020 ident: 1050_CR86 publication-title: Energy Rep. doi: 10.1016/J.EGYR.2020.10.018 – volume: 160 start-page: A243 issue: 2 year: 2013 ident: 1050_CR30 publication-title: J. Electrochem. Soc. doi: 10.1149/2.044302JES/XML – volume: 84 start-page: 210 issue: 4 year: 2016 ident: 1050_CR40 publication-title: Electrochem. doi: 10.5796/ELECTROCHEMISTRY.84.210 – volume: 11 start-page: 2003154 issue: 28 year: 2021 ident: 1050_CR6 publication-title: Adv. Energy Mater. doi: 10.1002/AENM.202003154 – volume: 7 year: 2019 ident: 1050_CR38 publication-title: Front. Energy Res. doi: 10.3389/FENRG.2019.00115 – volume: 551 start-page: 320 year: 2018 ident: 1050_CR29 publication-title: Physica B Condens. Matter doi: 10.1016/J.PHYSB.2017.11.079 – volume: 281 start-page: 35 issue: 1–2 year: 2008 ident: 1050_CR77 publication-title: J. Mol. Catal. A Chem. doi: 10.1016/J.MOLCATA.2007.06.010 – volume: 1 issue: 7 year: 2020 ident: 1050_CR113 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/J.XCRP.2020.100119 – volume: 2152 issue: 1 year: 2022 ident: 1050_CR28 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2152/1/012060 – volume: 5 start-page: 77 issue: 1 year: 2014 ident: 1050_CR84 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/BJNANO.5.7 – volume: 454 year: 2020 ident: 1050_CR5 publication-title: J. Power Sources doi: 10.1016/J.JPOWSOUR.2020.227932 – volume: 2 start-page: 2515 issue: 9 year: 2010 ident: 1050_CR68 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/AM100217M – volume: 6 start-page: 1 issue: 1 year: 2023 ident: 1050_CR106 publication-title: Electrochem. Energy Rev. doi: 10.1007/S41918-023-00192-8 – volume: 59 start-page: 6561 issue: 16 year: 2020 ident: 1050_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ANIE.201915440 – volume: 365 start-page: 43 year: 2017 ident: 1050_CR56 publication-title: J. Power Sources doi: 10.1016/J.JPOWSOUR.2017.08.020 – volume: 24 start-page: 1659 issue: 11 year: 2003 ident: 1050_CR65 publication-title: Bull. Korean Chem. Soc. doi: 10.5012/BKCS.2003.24.11.1659 – volume: 71 start-page: 410 issue: 2 year: 2016 ident: 1050_CR72 publication-title: Surf. Sci. Rep. doi: 10.1016/J.SURFREP.2016.03.003 – volume: 15 start-page: 3507 issue: 18 year: 2003 ident: 1050_CR82 publication-title: Chem. Mater. doi: 10.1021/CM0303080 – volume: 7 start-page: 513 issue: 2 year: 2014 ident: 1050_CR12 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE40795K – volume: 10 start-page: 6767 issue: 23 year: 2023 ident: 1050_CR115 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI01290E – volume: 62 start-page: 6199 issue: 22 year: 2007 ident: 1050_CR79 publication-title: Chem. Eng. Sci. doi: 10.1016/J.CES.2007.07.013 – ident: 1050_CR92 doi: 10.1109/ICM60448.2023.10378918 – volume: 17 start-page: 386 issue: 2 year: 2024 ident: 1050_CR122 publication-title: Materials doi: 10.3390/MA17020386 – volume: 51 start-page: 3872 issue: 19 year: 2006 ident: 1050_CR34 publication-title: Electrochim. Acta doi: 10.1016/J.ELECTACTA.2005.11.015 – volume: 201 start-page: 8799 issue: 22–23 year: 2007 ident: 1050_CR75 publication-title: Surf. Coat. Technol. doi: 10.1016/J.SURFCOAT.2007.04.126 – volume: 3 start-page: 135 issue: 2 year: 2017 ident: 1050_CR24 publication-title: ACS Cent. Sci. doi: 10.1021/ACSCENTSCI.6B00389 – volume: 19 start-page: 1229 issue: 5 year: 2022 ident: 1050_CR94 publication-title: J. Bionic Eng. doi: 10.1007/S42235-022-00208-X – volume: 152 start-page: A2229 issue: 11 year: 2005 ident: 1050_CR114 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2041187 – year: 2017 ident: 1050_CR112 publication-title: Sci. Adv. doi: 10.1126/SCIADV.1602427 – volume: 61 start-page: 202203564 issue: 27 year: 2022 ident: 1050_CR124 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/ANIE.202203564 – volume: 10 start-page: 8243 issue: 9 year: 2016 ident: 1050_CR104 publication-title: ACS Nano doi: 10.1021/ACSNANO.6B04522 – volume: 520 start-page: 325 issue: 7547 year: 2015 ident: 1050_CR7 publication-title: Nature doi: 10.1038/NATURE14340 – volume: 437 year: 2022 ident: 1050_CR20 publication-title: Chem. Eng. J. doi: 10.1016/J.CEJ.2022.135420 – year: 2023 ident: 1050_CR120 publication-title: J. Biomed. Inform. doi: 10.1016/J.JBI.2023.104373 – volume: 3 start-page: 57 issue: 1 year: 2020 ident: 1050_CR27 publication-title: Matter doi: 10.1016/J.MATT.2020.03.015 – volume: 341 year: 2019 ident: 1050_CR118 publication-title: Solid State Ion. doi: 10.1016/J.SSI.2019.115033 – volume: 47 issue: 3 year: 2013 ident: 1050_CR53 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/47/3/034006 – volume: 205 start-page: 157 year: 2012 ident: 1050_CR47 publication-title: J. Power Sources doi: 10.1016/J.JPOWSOUR.2012.01.054 – volume: 3 start-page: 1647 issue: 7 year: 2019 ident: 1050_CR14 publication-title: Sustain. Energy Fuels doi: 10.1039/C9SE00119K – volume: 30 start-page: 01A159 issue: 1 year: 2011 ident: 1050_CR93 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.3670396 – volume: 33 start-page: 26447 issue: 35 year: 2022 ident: 1050_CR100 publication-title: J. Mater. Sci.: Mater. Electron. doi: 10.1007/S10854-022-09324-0 – volume: 7 start-page: 2725 issue: 8 year: 2022 ident: 1050_CR13 publication-title: ACS Energy Lett. doi: 10.1021/ACSENERGYLETT.2C01400 – year: 2024 ident: 1050_CR129 publication-title: Mol. Divers. doi: 10.1007/S11030-023-10784-7 – volume: 262 start-page: 75 year: 2023 ident: 1050_CR125 publication-title: Transl. Res. doi: 10.1016/J.TRSL.2023.07.010 – volume: 12 start-page: 10511 issue: 24 year: 2020 ident: 1050_CR4 publication-title: Sustainability doi: 10.3390/SU122410511 – volume: 515 start-page: 1664 issue: 4 year: 2006 ident: 1050_CR80 publication-title: Thin Solid Films doi: 10.1016/J.TSF.2006.05.049 – year: 2022 ident: 1050_CR98 publication-title: Biomed. Pharmacother. doi: 10.1016/J.BIOPHA.2022.113350 – volume: 8 start-page: 140 issue: 11 year: 2022 ident: 1050_CR117 publication-title: Magnetochemistry doi: 10.3390/MAGNETOCHEMISTRY8110140 – year: 2023 ident: 1050_CR119 publication-title: J. Med. Virol. doi: 10.1002/JMV.28693 – volume: 15 start-page: 6689 issue: 10 year: 2015 ident: 1050_CR101 publication-title: Nano Lett. doi: 10.1021/ACS.NANOLETT.5B02508 – volume: 37 start-page: 628 year: 2021 ident: 1050_CR25 publication-title: Energy Storage Mater. doi: 10.1016/J.ENSM.2021.02.042 – volume: 160 start-page: A616 issue: 4 year: 2013 ident: 1050_CR31 publication-title: J. Electrochem. Soc. doi: 10.1149/2.053304JES/XML – volume: 5 start-page: 1804 issue: 3 year: 2015 ident: 1050_CR62 publication-title: ACS Catal. doi: 10.1021/CS501862H/ASSET/IMAGES/LARGE/CS-2014-01862H_0013.JPEG – volume: 10 start-page: 817 issue: 5 year: 2023 ident: 1050_CR17 publication-title: ChemBioEng Rev. doi: 10.1002/CBEN.202200066 – volume: 7 start-page: 965 issue: 5 year: 2022 ident: 1050_CR126 publication-title: Green Energy Environ. doi: 10.1016/J.GEE.2020.12.014 – volume: 20 start-page: 7606 issue: 36 year: 2010 ident: 1050_CR36 publication-title: J. Mater. Chem. doi: 10.1039/C0JM00154F – volume: 5 issue: 3 year: 2023 ident: 1050_CR63 publication-title: Int. J. Extreme Manuf. doi: 10.1088/2631-7990/ACD88E – year: 2013 ident: 1050_CR90 publication-title: Nanotechnol. doi: 10.1088/0957-4484/24/1/015602 – volume: 162 start-page: 1 issue: 1 year: 2012 ident: 1050_CR83 publication-title: Sens. Actuators B Chem. doi: 10.1016/J.SNB.2011.08.024 – volume: 31 year: 2020 ident: 1050_CR3 publication-title: J. Energy Storage doi: 10.1016/J.EST.2020.101652 – volume: 819 year: 2020 ident: 1050_CR33 publication-title: J. Alloys Compd. doi: 10.1016/J.JALLCOM.2019.153048 – volume: 7 start-page: J36 issue: 9 year: 2004 ident: 1050_CR54 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1778934/XML – volume: 322 start-page: 230 issue: 1–3 year: 1995 ident: 1050_CR8 publication-title: Surf. Sci. doi: 10.1016/0039-6028(95)90033-0 – volume: 135 start-page: 1167 issue: 4 year: 2013 ident: 1050_CR1 publication-title: J. Am. Chem. Soc. doi: 10.1021/JA3091438/ASSET/IMAGES/MEDIUM/JA-2012-091438_0009.GIF – volume: 8 start-page: 113 issue: 2 year: 2006 ident: 1050_CR43 publication-title: Solid State Sci. doi: 10.1016/J.SOLIDSTATESCIENCES.2005.10.019 – volume: 9 start-page: 13414 issue: 40 year: 2021 ident: 1050_CR51 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/ACSSUSCHEMENG.1C03519 – volume: 39 start-page: 137 year: 2020 ident: 1050_CR58 publication-title: Mater. Today doi: 10.1016/J.MATTOD.2020.04.002 – year: 2023 ident: 1050_CR60 publication-title: Nanomaterials doi: 10.3390/NANO13010132/S1 – volume: 865 year: 2021 ident: 1050_CR70 publication-title: J. Alloys Compd. doi: 10.1016/J.JALLCOM.2021.158748 – volume: 13 start-page: 259 issue: 3 year: 2023 ident: 1050_CR16 publication-title: Membranes doi: 10.3390/MEMBRANES13030259 – volume: 4 start-page: 1107 issue: 6 year: 2022 ident: 1050_CR59 publication-title: Carbon Energy doi: 10.1002/CEY2.256 – volume: 2 start-page: 749 issue: 11 year: 2003 ident: 1050_CR103 publication-title: Nat. Mater. doi: 10.1038/NMAT1000 – volume: 89 issue: 8 year: 2006 ident: 1050_CR64 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2338776 – volume: 20 start-page: 465 issue: 1 year: 2019 ident: 1050_CR73 publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2019.1599694 – volume: 6 issue: 1 year: 2023 ident: 1050_CR66 publication-title: Batter. Supercaps doi: 10.1002/BATT.202200359 – year: 2023 ident: 1050_CR128 publication-title: ACS Omega doi: 10.1021/ACSOMEGA.3C07296 – volume: 84 year: 2021 ident: 1050_CR9 publication-title: Nano Energy doi: 10.1016/J.NANOEN.2021.105928 – volume: 20 year: 2023 ident: 1050_CR18 publication-title: Results Eng. doi: 10.1016/J.RINENG.2023.101520 – volume: 92 start-page: S95 issue: SUPPL. 1 year: 2009 ident: 1050_CR46 publication-title: J. Am. Ceram. Soc. doi: 10.1111/J.1551-2916.2008.02707.X – volume: 8 start-page: 7648 issue: 8 year: 2023 ident: 1050_CR15 publication-title: ACS Omega doi: 10.1021/ACSOMEGA.2C07243/ASSET/IMAGES/LARGE/AO2C07243_0006.JPEG – volume: 458 start-page: 217 year: 2014 ident: 1050_CR97 publication-title: J. Memb. Sci. doi: 10.1016/J.MEMSCI.2014.02.004 – volume: 46 start-page: 10499 issue: 8 year: 2022 ident: 1050_CR109 publication-title: Int. J. Energy Res. doi: 10.1002/ER.7941 – volume: 21 start-page: 5186 year: 2023 ident: 1050_CR116 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/J.CSBJ.2023.10.038 – volume: 9 start-page: 7185 issue: 8 year: 2017 ident: 1050_CR99 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/ACSAMI.6B16155 – volume: 320 start-page: 7 year: 2018 ident: 1050_CR85 publication-title: Solid State Ion. doi: 10.1016/J.SSI.2018.02.027 – year: 2019 ident: 1050_CR2 publication-title: Membranes (Basel) doi: 10.3390/MEMBRANES9070078 – volume: 6 start-page: 417 issue: 4 year: 2004 ident: 1050_CR55 publication-title: Electrochem. Commun. doi: 10.1016/J.ELECOM.2004.02.010 – volume: 133 start-page: 2132 issue: 7 year: 2011 ident: 1050_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/JA1110464/SUPPL_FILE/JA1110464_SI_001.PDF – year: 2023 ident: 1050_CR107 publication-title: Biomed. Pharmacother. doi: 10.1016/J.BIOPHA.2023.114408 – volume: 195 start-page: 4554 issue: 15 year: 2010 ident: 1050_CR23 publication-title: J. Power Sources doi: 10.1016/J.JPOWSOUR.2010.01.076 – volume: 8 start-page: 31301 issue: 3 year: 2021 ident: 1050_CR105 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0048337 – volume: 3 start-page: 2728 issue: 10 year: 2021 ident: 1050_CR108 publication-title: Nanoscale Adv. doi: 10.1039/D0NA01072C – volume: 29 issue: 4 year: 2014 ident: 1050_CR88 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/29/4/043001 – volume: 9 start-page: 1900260 issue: 20 year: 2019 ident: 1050_CR121 publication-title: Adv. Energy Mater. doi: 10.1002/AENM.201900260 – volume: 171 start-page: 345 issue: 1 year: 2011 ident: 1050_CR61 publication-title: Chem. Eng. J. doi: 10.1016/J.CEJ.2011.03.097 – volume: 11 start-page: 2303055 issue: 1 year: 2024 ident: 1050_CR74 publication-title: Adv. Sci. doi: 10.1002/ADVS.202303055 – volume: 275 start-page: 336 year: 2015 ident: 1050_CR102 publication-title: J. Power Sources doi: 10.1016/J.JPOWSOUR.2014.11.033 – ident: 1050_CR45 doi: 10.1201/9781315274126/CERAMIC-PROCESSING-SINTERING-MOHAMED-RAHAMAN – volume: 3 start-page: 3279 issue: 12 year: 2019 ident: 1050_CR19 publication-title: Sustain. Energy Fuels doi: 10.1039/C9SE00549H – volume: 8 start-page: 1 issue: 1 year: 2022 ident: 1050_CR41 publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00788-6 – ident: 1050_CR95 – volume: 706 start-page: 24 year: 2017 ident: 1050_CR32 publication-title: J. Alloys Compd. doi: 10.1016/J.JALLCOM.2017.02.230 – volume: 112 start-page: 19530 issue: 49 year: 2008 ident: 1050_CR76 publication-title: J. Phys. Chem. C doi: 10.1021/JP804296A – volume: 25 start-page: 33 year: 2021 ident: 1050_CR123 publication-title: Curr. Appl. Phys. doi: 10.1016/J.CAP.2021.02.010 – volume: 8 issue: 3 year: 2021 ident: 1050_CR10 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0048337 – volume: 145 start-page: 447 year: 2022 ident: 1050_CR49 publication-title: Top. Appl. Phys. doi: 10.1007/978-3-030-94896-2_10/FIGURES/25 – volume: 58 start-page: 6001 issue: 18 year: 2019 ident: 1050_CR22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ANIE.201901582 – volume: 9 start-page: 3763 issue: 6 year: 2009 ident: 1050_CR81 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/JNN.2009.NS64 – volume: 8 start-page: 184 issue: 10 year: 2022 ident: 1050_CR110 publication-title: Batteries doi: 10.3390/BATTERIES8100184 |
SSID | ssj0027883 ssj0055659 |
Score | 2.3628483 |
SecondaryResourceType | review_article |
Snippet | In the realm of energy storage systems, lithium-ion batteries (LIBs) have solidified their dominant role due to their high energy density, long cycle life, and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1433 |
SubjectTerms | Atomic layer epitaxy Batteries Chemistry and Materials Science Coating Corrosion and Coatings Crystal growth Dendritic structure Electric vehicles Energy storage Explosions Industrial Chemistry/Chemical Engineering Lithium Lithium-ion batteries Materials Science Physical vapor deposition Polymer Sciences Review Article Short circuits Surfaces and Interfaces Thin Films Tribology |
Title | A comprehensive review on coating techniques to suppress the dendrites issue and improve the performance of lithium-ion batteries |
URI | https://link.springer.com/article/10.1007/s11998-024-01050-y https://www.proquest.com/docview/3226324721 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLSgXWBAfIpCqTywgaV82U7HFrVUIDpRqUyR7dhqB9KqaYeO_HOenaQBBANTojjy4HOe78Xvzgjdcs-e86Z8YpTkJGJMkBhYCNxxJrqaA8W34uSXMRtNoqcpnZaisLyqdq-2JF2krsVuhRwssFUTHvXIdh81qc3dYRZPgl6dZsXxLhhT4CtdZ5kacQJ0wi91M793-H1tqgnnjz1St_QMj9FRyRlxrwD5BO3p7BQdfnESPEMfPWyLw1d6VhSk40KSghcZPBe2tBnv3FpzvF7gfLN0JbAYCCCG2JOugHvm2MGARZbiufvboF37slYX4IXBwNxn8807AUixdP6ckG6fo8lw8PowIuXpCkQFPFgTKgQ3BqAwjFHlURnEmodC-NIX2m6vdrWX-rCGdpmvwzSVvvSMADoCjC02RoYXqJEtMn2JcJwqaphUOgxUZCDh1lxIplLNqJHK8Ba6q8Y1WRYmGkltl2xRSACFxKGQbFuoXQ19Un5QeQJxxxrLQ77aQvcVHHXz371d_e_1a3QQ2BN-XUFuGzXWq42-Adqxlh3U7A37_bG9Pr49Dzpu1n0C5iPU4w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCA-BSFAh7YwFI-7WSsEFWBtlMrdYtsx1Y7kFRNO3Tkn3N2kgYQDGxRHHnwS-7exe-eEbpnjjnnTbpES8FIQCknEbAQuGKUx4oBxTfNycMR7U-C12k4rZrCilrtXm9J2kjdNLuV7WCeUU04oUM2u2gPyEBkhFwTr9uUWVG0DcYh8JXYWqYGjACdcKu-md8n_J6bGsL5Y4_Upp7eMTqqOCPuliCfoB2VnaLDL06CZ-iji404fKlmpSAdly0pOM_gPjfSZrx1ay3wKsfFemElsBgIIIbYky6BexbYwoB5luK5_dug7Pii6S7AucbA3Gfz9TsBSLGw_pxQbp-jSe95_NQn1ekKRHrMW5GQc6Y1QKEpDaUTCi9SzOfcFS5XZns1Vk7qQg6Nqav8NBWucDQHOgKMLdJa-BeoleWZukQ4SmWoqZDK92SgoeBWjAsqU0VDLaRmbfRQr2uyKE00ksYu2aCQAAqJRSHZtFGnXvqk-qCKBOKOMZaHerWNHms4muG_Z7v63-N3aL8_Hg6Swcvo7RodeOa0XyvO7aDWarlWN0BBVuLWvnGfvKHUxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgSAgGxFMUCnhgA6t52ulYAVV5VQxU6hbZjq12II3adOjIn3PtJE1BMLBFceTBx74-N77nGKFr5ph73qRLtBSMBJRyEgELgSdGeUcxoPhGnPw6oP1h8DQKR2sqflvtXh1JFpoG49KU5u0s0e1a-FZIwzxTQeGEDlluoi0Ix66Z10OvW6dcUbQKzCFwl461Tw0YAWrhlhqa3zv8vk_V5PPHeandhnr7aK_kj7hbAH6ANlR6iHbXXAWP0GcXm0LxmRoXxem4kKfgaQrvuSlzxivn1jnOp3i-yGw5LAYyiCEOJTPgoXNsIcE8TfDE_nlQtj2rlQZ4qjGw-PFk8UEAXiysVyek3sdo2Ht4v-uT8qYFIj3m5STknGkNsGhKQ-mEwosU8zl3hcuVOWrtKCdxYT_tUFf5SSJc4WgO1ATYW6S18E9QI52m6hThKJGhpkIq35OBhuRbMS6oTBQNtZCaNdFNNa5xVhhqxLV1skEhBhRii0K8bKJWNfRxubjmMcQgYzIPuWsT3VZw1M1_93b2v8-v0PbbfS9-eRw8n6Mdz1z8a-t0W6iRzxbqAthILi7thPsC-MvZAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+on+coating+techniques+to+suppress+the+dendrites+issue+and+improve+the+performance+of+lithium-ion+batteries&rft.jtitle=JCT+research&rft.au=Wajid%2C+Ali&rft.au=Ko%2C+Ki+Woong&rft.au=Ahmed%2C+Faheem&rft.au=Lim%2C+Jong+Hwan&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1547-0091&rft.eissn=2168-8028&rft.volume=22&rft.issue=4&rft.spage=1433&rft.epage=1450&rft_id=info:doi/10.1007%2Fs11998-024-01050-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-0091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-0091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-0091&client=summon |