Sliding-window cross-correlation and mutual information methods in the analysis of solar wind measurements

Context. When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear relationships, and non-linear relationships. We present a tool that combines these four aspects and visualizes the underlying structure where two data...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 684; p. A125
Main Authors Gu, Chaoran, Heidrich-Meisner, Verena, Wimmer-Schweingruber, Robert F.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context. When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear relationships, and non-linear relationships. We present a tool that combines these four aspects and visualizes the underlying structure where two data sets are highly related. The basic mathematical methods used here are cross-correlation and mutual information (MI) analyses. As an example, we applied these methods to a set of two-month’s worth of solar wind density and total magnetic field strength data. Aims. Two neighboring solar wind parcels may have undergone different heating and acceleration processes and may even originate from different source regions. However, they may share very similar properties, which would effectively “hide” their different origins. When this hidden information is mixed with noise, describing the relationships between two solar wind parameters becomes challenging. Time lag effects and non-linear relationships between solar wind parameters are often overlooked, while simple time-lag-free linear relationships are sometimes insufficient to describe the complex processes in space physics. Thus, we propose this tool to analyze the monotonic (or linear) and non-monotonic (or non-linear) relationships between a pair of solar wind parameters within a certain time period, taking into consideration the effects of different timescales and possible time lags. Methods. Our tool consists of two parts: the sliding-window cross-correlation (SWCC) method and sliding-window mutual information (SWMI) method. As their names suggest, both parts involve a set of sliding windows. By independently sliding these windows along the time axis of the two time series, this technique can assess the correlation coefficient (and mutual information) between any two windowed data sets with any time lags. Visualizing the obtained results enables us to identify structures where two time series are highly correlated, while providing information on the relevant timescales and time lags. Results. We applied our proposed tool to solar wind density and total magnetic field strength data. Structures with distinct timescales were identified. Our tool also detected the presence of short-term anti-correlations coexisting with long-term positive correlations between solar wind density and magnetic field strength. Some non-monotonic relationships were also found. Conclusions. The visual products of our tool (the SWCC+SWMI maps) represent an innovative extension of traditional numerical methods, offering users a more intuitive perspective on the data. The SWCC and SWMI methods can be used to identify time periods where one parameter has a strong influence on the other. Of course, they can also be applied to other data, such as multi-wavelength photometric and spectroscopic time series, thus providing a new tool for solar physics analyses.
AbstractList Context. When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear relationships, and non-linear relationships. We present a tool that combines these four aspects and visualizes the underlying structure where two data sets are highly related. The basic mathematical methods used here are cross-correlation and mutual information (MI) analyses. As an example, we applied these methods to a set of two-month’s worth of solar wind density and total magnetic field strength data. Aims. Two neighboring solar wind parcels may have undergone different heating and acceleration processes and may even originate from different source regions. However, they may share very similar properties, which would effectively “hide” their different origins. When this hidden information is mixed with noise, describing the relationships between two solar wind parameters becomes challenging. Time lag effects and non-linear relationships between solar wind parameters are often overlooked, while simple time-lag-free linear relationships are sometimes insufficient to describe the complex processes in space physics. Thus, we propose this tool to analyze the monotonic (or linear) and non-monotonic (or non-linear) relationships between a pair of solar wind parameters within a certain time period, taking into consideration the effects of different timescales and possible time lags. Methods. Our tool consists of two parts: the sliding-window cross-correlation (SWCC) method and sliding-window mutual information (SWMI) method. As their names suggest, both parts involve a set of sliding windows. By independently sliding these windows along the time axis of the two time series, this technique can assess the correlation coefficient (and mutual information) between any two windowed data sets with any time lags. Visualizing the obtained results enables us to identify structures where two time series are highly correlated, while providing information on the relevant timescales and time lags. Results. We applied our proposed tool to solar wind density and total magnetic field strength data. Structures with distinct timescales were identified. Our tool also detected the presence of short-term anti-correlations coexisting with long-term positive correlations between solar wind density and magnetic field strength. Some non-monotonic relationships were also found. Conclusions. The visual products of our tool (the SWCC+SWMI maps) represent an innovative extension of traditional numerical methods, offering users a more intuitive perspective on the data. The SWCC and SWMI methods can be used to identify time periods where one parameter has a strong influence on the other. Of course, they can also be applied to other data, such as multi-wavelength photometric and spectroscopic time series, thus providing a new tool for solar physics analyses.
Context. When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear relationships, and non-linear relationships. We present a tool that combines these four aspects and visualizes the underlying structure where two data sets are highly related. The basic mathematical methods used here are cross-correlation and mutual information (MI) analyses. As an example, we applied these methods to a set of two-month’s worth of solar wind density and total magnetic field strength data. Aims. Two neighboring solar wind parcels may have undergone different heating and acceleration processes and may even originate from different source regions. However, they may share very similar properties, which would effectively “hide” their different origins. When this hidden information is mixed with noise, describing the relationships between two solar wind parameters becomes challenging. Time lag effects and non-linear relationships between solar wind parameters are often overlooked, while simple time-lag-free linear relationships are sometimes insufficient to describe the complex processes in space physics. Thus, we propose this tool to analyze the monotonic (or linear) and non-monotonic (or non-linear) relationships between a pair of solar wind parameters within a certain time period, taking into consideration the effects of different timescales and possible time lags. Methods. Our tool consists of two parts: the sliding-window cross-correlation (SWCC) method and sliding-window mutual information (SWMI) method. As their names suggest, both parts involve a set of sliding windows. By independently sliding these windows along the time axis of the two time series, this technique can assess the correlation coefficient (and mutual information) between any two windowed data sets with any time lags. Visualizing the obtained results enables us to identify structures where two time series are highly correlated, while providing information on the relevant timescales and time lags. Results. We applied our proposed tool to solar wind density and total magnetic field strength data. Structures with distinct timescales were identified. Our tool also detected the presence of short-term anti-correlations coexisting with long-term positive correlations between solar wind density and magnetic field strength. Some non-monotonic relationships were also found. Conclusions. The visual products of our tool (the SWCC+SWMI maps) represent an innovative extension of traditional numerical methods, offering users a more intuitive perspective on the data. The SWCC and SWMI methods can be used to identify time periods where one parameter has a strong influence on the other. Of course, they can also be applied to other data, such as multi-wavelength photometric and spectroscopic time series, thus providing a new tool for solar physics analyses.
Author Gu, Chaoran
Wimmer-Schweingruber, Robert F.
Heidrich-Meisner, Verena
Author_xml – sequence: 1
  givenname: Chaoran
  orcidid: 0000-0003-2429-8625
  surname: Gu
  fullname: Gu, Chaoran
– sequence: 2
  givenname: Verena
  orcidid: 0000-0003-3502-8778
  surname: Heidrich-Meisner
  fullname: Heidrich-Meisner, Verena
– sequence: 3
  givenname: Robert F.
  orcidid: 0000-0002-7388-173X
  surname: Wimmer-Schweingruber
  fullname: Wimmer-Schweingruber, Robert F.
BookMark eNo9kE1LAzEQhoNUsK3-Ai8Bz9HJxybboxS_oOBBPYfsJmu37CY12aX035u10tMww8PLO88CzXzwDqFbCvcUCvoAAIJILukDA8ZFqYBfoDkVnBFQQs7Q_ExcoUVKu7wyWvI52n10rW39Nzm03oYDrmNIidQhRteZoQ0eG29xPw6j6XDrmxD707l3wzbYlG942LpMme6Y2oRDg1PoTMRTYKZMGqPrnR_SNbpsTJfczf9coq_np8_1K9m8v7ytHzekZooNpFBVaQolAEq-qpWgBa-lEI3NjWtbgZVguJRccWeqVSGkrDm1VUkNc86WjC_R3Sl3H8PP6NKgd2GMuV_SHESWslIUMsVP1N_H0TV6H9vexKOmoCepelKmJ2X6LJX_AnbObIg
Cites_doi 10.1007/s11207-010-9568-6
10.1029/2000GL000111
10.1023/A:1005036131689
10.1029/JA078i001p00092
10.1029/2021JA030021
10.1051/0004-6361/201937259
10.1037/met0000079
10.1007/BF01025868
10.1029/2004GL021677
10.1029/2005JA011034
10.1137/0119020
10.1051/0004-6361/201936728
10.1007/s00585-996-0608-3
10.1016/j.asr.2010.10.026
10.1119/1.1973431
10.1002/2016JA023175
10.1038/s41592-019-0686-2
10.1007/978-3-642-00296-0_5
10.1007/BF00149472
10.1029/JA094iA06p06893
10.1029/91JA00316
10.1088/0004-637X/745/2/162
10.1016/j.asr.2007.02.091
10.1051/0004-6361/202346623
10.1029/2021JA030246
10.1088/0004-637X/760/2/105
10.1134/S0010952510060018
10.1016/0032-0633(78)90059-4
10.1029/JA081i016p02719
10.1029/2018JA026080
10.1038/s41586-019-1818-7
10.3847/1538-4357/834/2/147
10.1007/BF00768753
10.3847/1538-4357/ab7197
10.3847/1538-4357/acb341
10.1007/s41116-017-0011-z
10.1051/0004-6361/202245500
10.1029/98GL01717
10.1023/A:1005040232597
10.1016/0273-1177(95)00321-5
10.3847/1538-4365/ab61fc
10.1103/PhysRevE.69.066138
10.1029/2018EA000392
10.1029/JA087iA01p00052
10.1023/A:1005092216668
10.1126/science.7754380
10.1029/94JA00843
10.1051/0004-6361/202038467
10.1088/0004-637X/776/2/94
10.1023/A:1005082526237
10.1029/95JA00525
10.1063/1.1618603
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1051/0004-6361/202348703
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_202348703
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOTM
AAYXX
ABDNZ
ABPPZ
ABTAH
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
AEILP
AENEX
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
G8K
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNP
RNS
RSV
SDH
SJN
SOJ
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
ID FETCH-LOGICAL-c272t-57b8a57400839c74153c644fd021cdb0d60a366373eab95466c31db81a2eed823
ISSN 0004-6361
IngestDate Thu Oct 10 17:05:25 EDT 2024
Thu Sep 12 17:38:49 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c272t-57b8a57400839c74153c644fd021cdb0d60a366373eab95466c31db81a2eed823
ORCID 0000-0003-2429-8625
0000-0002-7388-173X
0000-0003-3502-8778
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2024/04/aa48703-23.pdf
PQID 3041439710
PQPubID 1796397
ParticipantIDs proquest_journals_3041439710
crossref_primary_10_1051_0004_6361_202348703
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2024
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Bracewell (R9) 1966; 34
De Winter (R15) 2016; 21
Bale (R4) 2019; 576
Yoo (R63) 2009; 28
Zhang (R64) 2007; 112
Cane (R13) 2000; 27
Shi (R50) 2023; 944
Adhikari (R1) 2018; 5
R25
Asbridge (R3) 1976; 81
Russell (R48) 1973; 78
Yermolaev (R62) 2010; 48
Duncan (R16) 1970; 19
R26
Marubashi (R39) 1995; 16
Stone (R53) 1998; 86
Virtanen (R56) 2020; 17
Kasper (R28) 2012; 745
Shannon (R49) 1948; 27
R6
R7
Richardson (R45) 2018; 15
Riley (R47) 2010; 115
R8
Georgieva (R21) 2007; 40
Lindsay (R33) 1995; 100
Marsch (R36) 1993; 11
Cameron (R11) 2019; 124
Owen (R43) 2020; 642
March (R35) 2005; 32
Maksimovic (R34) 2020; 246
Geiss (R19) 1995; 72
Wanliss (R57) 2006; 111
Gloeckler (R22) 1998; 86
D’Amicis (R14) 2019; 632
Kraskov (R30) 2004; 69
Müller (R42) 2020; 642
Fung (R18) 1998; 25
Materassi (R40) 2011; 47
Ventura (R55) 2023; 675
Marsch (R37) 1982; 87
Burlaga (R10) 1970; 15
Gosling (R23) 1991; 96
McComas (R41) 1998; 86
Freedman (R17) 1981; 57
Simms (R51) 2022; 127
Iyemori (R27) 1996; 14
Zhao (R65) 2009; 36
Gu (R24) 2023; 671
Pedregosa (R44) 2011; 12
Geiss (R20) 1995; 268
Yao (R61) 2013; 776
Barrow (R5) 1978; 26
Marsch (R38) 1989; 94
Alberti (R2) 2017; 122
Li (R32) 2020; 891
Kocher (R29) 2017; 834
Xia (R60) 2003; 679
Lepri (R31) 2012; 760
Richardson (R46) 2010; 264
Smith (R52) 1998; 86
R58
Wing (R59) 2022; 127
Tu (R54) 1994; 99
Cane (R12) 2003; 108
References_xml – volume: 108
  start-page: 1156
  year: 2003
  ident: R12
  publication-title: J. Geophys. Res. Space Phys.
  contributor:
    fullname: Cane
– volume: 264
  start-page: 189
  year: 2010
  ident: R46
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-010-9568-6
  contributor:
    fullname: Richardson
– volume: 27
  start-page: 3591
  year: 2000
  ident: R13
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2000GL000111
  contributor:
    fullname: Cane
– volume: 86
  start-page: 497
  year: 1998
  ident: R22
  publication-title: Space Sci. Rev.
  doi: 10.1023/A:1005036131689
  contributor:
    fullname: Gloeckler
– volume: 78
  start-page: 92
  year: 1973
  ident: R48
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA078i001p00092
  contributor:
    fullname: Russell
– volume: 127
  start-page: e2021JA030021
  year: 2022
  ident: R51
  publication-title: J. Geophys. Res. Space Phys.
  doi: 10.1029/2021JA030021
  contributor:
    fullname: Simms
– volume: 642
  start-page: A16
  year: 2020
  ident: R43
  publication-title: A&A
  doi: 10.1051/0004-6361/201937259
  contributor:
    fullname: Owen
– volume: 21
  start-page: 273
  year: 2016
  ident: R15
  publication-title: Psychol. Methods
  doi: 10.1037/met0000079
  contributor:
    fullname: De Winter
– volume: 57
  start-page: 453
  year: 1981
  ident: R17
  publication-title: Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete
  doi: 10.1007/BF01025868
  contributor:
    fullname: Freedman
– volume: 32
  start-page: L04101
  year: 2005
  ident: R35
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL021677
  contributor:
    fullname: March
– volume: 111
  start-page: A02202
  year: 2006
  ident: R57
  publication-title: J. Geophys. Res. Space Phys.
  doi: 10.1029/2005JA011034
  contributor:
    fullname: Wanliss
– volume: 19
  start-page: 215
  year: 1970
  ident: R16
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0119020
  contributor:
    fullname: Duncan
– volume: 632
  start-page: A92
  year: 2019
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361/201936728
  contributor:
    fullname: D’Amicis
– volume: 12
  start-page: 2825
  year: 2011
  ident: R44
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
– ident: R26
– volume: 14
  start-page: 608
  year: 1996
  ident: R27
  publication-title: Annales Geophysicae
  doi: 10.1007/s00585-996-0608-3
  contributor:
    fullname: Iyemori
– volume: 47
  start-page: 877
  year: 2011
  ident: R40
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2010.10.026
  contributor:
    fullname: Materassi
– volume: 34
  start-page: 46
  year: 1966
  ident: R9
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1973431
  contributor:
    fullname: Bracewell
– volume: 122
  start-page: 4266
  year: 2017
  ident: R2
  publication-title: J. Geophys. Res. Space Phys.
  doi: 10.1002/2016JA023175
  contributor:
    fullname: Alberti
– volume: 17
  start-page: 261
  year: 2020
  ident: R56
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
  contributor:
    fullname: Virtanen
– volume: 115
  start-page: A11104
  year: 2010
  ident: R47
  publication-title: J. Geophys. Res. Space Phys.
  contributor:
    fullname: Riley
– ident: R6
  doi: 10.1007/978-3-642-00296-0_5
– volume: 15
  start-page: 61
  year: 1970
  ident: R10
  publication-title: Sol. Phys.
  doi: 10.1007/BF00149472
  contributor:
    fullname: Burlaga
– volume: 94
  start-page: 6893
  year: 1989
  ident: R38
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA094iA06p06893
  contributor:
    fullname: Marsch
– volume: 96
  start-page: 7831
  year: 1991
  ident: R23
  publication-title: J. Geophys. Res.
  doi: 10.1029/91JA00316
  contributor:
    fullname: Gosling
– volume: 745
  start-page: 162
  year: 2012
  ident: R28
  publication-title: ApJ
  doi: 10.1088/0004-637X/745/2/162
  contributor:
    fullname: Kasper
– volume: 40
  start-page: 1152
  year: 2007
  ident: R21
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2007.02.091
  contributor:
    fullname: Georgieva
– volume: 675
  start-page: A170
  year: 2023
  ident: R55
  publication-title: A&A
  doi: 10.1051/0004-6361/202346623
  contributor:
    fullname: Ventura
– volume: 127
  start-page: e30246
  year: 2022
  ident: R59
  publication-title: J. Geophys. Res. Space Phys.
  doi: 10.1029/2021JA030246
  contributor:
    fullname: Wing
– volume: 760
  start-page: 105
  year: 2012
  ident: R31
  publication-title: ApJ
  doi: 10.1088/0004-637X/760/2/105
  contributor:
    fullname: Lepri
– volume: 48
  start-page: 485
  year: 2010
  ident: R62
  publication-title: Cosm. Res.
  doi: 10.1134/S0010952510060018
  contributor:
    fullname: Yermolaev
– volume: 26
  start-page: 1193
  year: 1978
  ident: R5
  publication-title: Planet. Space Sci.
  doi: 10.1016/0032-0633(78)90059-4
  contributor:
    fullname: Barrow
– volume: 81
  start-page: 2719
  year: 1976
  ident: R3
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA081i016p02719
  contributor:
    fullname: Asbridge
– volume: 124
  start-page: 1582
  year: 2019
  ident: R11
  publication-title: J. Geophys. Res. Space Phys.
  doi: 10.1029/2018JA026080
  contributor:
    fullname: Cameron
– volume: 576
  start-page: 237
  year: 2019
  ident: R4
  publication-title: Nature
  doi: 10.1038/s41586-019-1818-7
  contributor:
    fullname: Bale
– volume: 834
  start-page: 147
  year: 2017
  ident: R29
  publication-title: ApJ
  doi: 10.3847/1538-4357/834/2/147
  contributor:
    fullname: Kocher
– volume: 72
  start-page: 49
  year: 1995
  ident: R19
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00768753
  contributor:
    fullname: Geiss
– volume: 11
  start-page: 659
  year: 1993
  ident: R36
  publication-title: Ann. Geophys.
  contributor:
    fullname: Marsch
– volume: 36
  start-page: L14104
  year: 2009
  ident: R65
  publication-title: Geophys. Res. Lett.
  contributor:
    fullname: Zhao
– volume: 891
  start-page: 79
  year: 2020
  ident: R32
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab7197
  contributor:
    fullname: Li
– volume: 944
  start-page: 82
  year: 2023
  ident: R50
  publication-title: ApJ
  doi: 10.3847/1538-4357/acb341
  contributor:
    fullname: Shi
– volume: 15
  start-page: 1
  year: 2018
  ident: R45
  publication-title: Liv. Rev. Sol. Phys.
  doi: 10.1007/s41116-017-0011-z
  contributor:
    fullname: Richardson
– volume: 671
  start-page: A63
  year: 2023
  ident: R24
  publication-title: A&A
  doi: 10.1051/0004-6361/202245500
  contributor:
    fullname: Gu
– volume: 25
  start-page: 2361
  year: 1998
  ident: R18
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/98GL01717
  contributor:
    fullname: Fung
– volume: 86
  start-page: 563
  year: 1998
  ident: R41
  publication-title: Space Sci. Rev.
  doi: 10.1023/A:1005040232597
  contributor:
    fullname: McComas
– ident: R25
– volume: 16
  start-page: 111
  year: 1995
  ident: R39
  publication-title: Adv. Space Res.
  doi: 10.1016/0273-1177(95)00321-5
  contributor:
    fullname: Marubashi
– ident: R7
– volume: 246
  start-page: 62
  year: 2020
  ident: R34
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab61fc
  contributor:
    fullname: Maksimovic
– volume: 69
  start-page: 066138
  year: 2004
  ident: R30
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.066138
  contributor:
    fullname: Kraskov
– volume: 5
  start-page: 440
  year: 2018
  ident: R1
  publication-title: Earth Space Sci.
  doi: 10.1029/2018EA000392
  contributor:
    fullname: Adhikari
– volume: 87
  start-page: 52
  year: 1982
  ident: R37
  publication-title: J. Geophys. Res. Space Phys.
  doi: 10.1029/JA087iA01p00052
  contributor:
    fullname: Marsch
– volume: 86
  start-page: 613
  year: 1998
  ident: R52
  publication-title: Space Sci. Rev.
  doi: 10.1023/A:1005092216668
  contributor:
    fullname: Smith
– ident: R58
– volume: 268
  start-page: 1033
  year: 1995
  ident: R20
  publication-title: Science
  doi: 10.1126/science.7754380
  contributor:
    fullname: Geiss
– volume: 99
  start-page: 21481
  year: 1994
  ident: R54
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JA00843
  contributor:
    fullname: Tu
– volume: 642
  start-page: A1
  year: 2020
  ident: R42
  publication-title: A&A
  doi: 10.1051/0004-6361/202038467
  contributor:
    fullname: Müller
– volume: 776
  start-page: 94
  year: 2013
  ident: R61
  publication-title: ApJ
  doi: 10.1088/0004-637X/776/2/94
  contributor:
    fullname: Yao
– volume: 86
  start-page: 1
  year: 1998
  ident: R53
  publication-title: Space Sci. Rev.
  doi: 10.1023/A:1005082526237
  contributor:
    fullname: Stone
– volume: 27
  start-page: 379
  year: 1948
  ident: R49
  publication-title: BSTJ
  contributor:
    fullname: Shannon
– volume: 100
  start-page: 16999
  year: 1995
  ident: R33
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JA00525
  contributor:
    fullname: Lindsay
– volume: 28
  start-page: 819
  year: 2009
  ident: R63
  publication-title: CSSP
  contributor:
    fullname: Yoo
– volume: 112
  start-page: A10102
  year: 2007
  ident: R64
  publication-title: J. Geophys. Res. Space Phys.
  contributor:
    fullname: Zhang
– volume: 679
  start-page: 319
  year: 2003
  ident: R60
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.1618603
  contributor:
    fullname: Xia
– ident: R8
SSID ssj0002183
Score 2.487062
Snippet Context. When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear...
Context. When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage A125
SubjectTerms Correlation coefficients
Cross correlation
Datasets
Density
Field strength
Magnetic fields
Numerical methods
Parameter identification
Sliding
Solar magnetic field
Solar physics
Solar wind
Time lag
Time series
Title Sliding-window cross-correlation and mutual information methods in the analysis of solar wind measurements
URI https://www.proquest.com/docview/3041439710
Volume 684
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9nRfBFtCptrZIH8eXMNZvs5-Mh9kOoCG2lb0uSzdKKvSvdWw588A_xr3Um2d3LtSLWl2UvHHPszu9mfjOZmRDyVtXc1OBJQQM6hwCFW1ZkqmCZUNpkic7qDLuRjz-nh2fxp_PkfDT6FVQttQs9MT_-2FfyP1qFNdArdsneQ7ODUFiAe9AvXEHDcP0nHZ98v0TXw5YQWM-XY-fxmMHzNnyFm9sZuGpdi0g3IdUt-2Ojm77GUQWDSRoMdccoEL41pA-bkMNOG0yfz6_85CaFn3x-xCVw_fysIMFw0Hbb-gC2AYk4Xgss8AU7tjiO08HmK3YerrzEJabU2Ym5WFp4xptW26AUfLw_CfMVIixz6W1wzFLpR7BPrDe7scQa2C4Z2dnlNI8DyzqNfIP0HZMPVsXXSHqp2OECPATiMC5XPq7f17_l-oaCRLcVn0S4FR-XKKYchDwgDwUYMbSeB0c_By-P1NKHVv53-4lWSbQ3rO0NQtZZz7rTd0zm9Cl50oUgdOrx9IyM7GyTbA1ape_oNNDpJnn0xd89J9_WAUfvAI4CIqgHHA0ARzvAwRoFwNEecHReUwc4igJpCLgX5Gz_4-mHQ9Yd1sGMyMSCJZnOVZLFyOkLgzxVGuDadQVvylSaVylXEuhtJq3SRRKnqZFRpfNICaBpuZAvycZsPrNbhCYFN9paE6s6xxPy8qqoU1lpIYwQvMq3yfv-ZZbXfiZL-RcFbpPd_oWX3Z-3KSWPI-TiEd-5n7RX5PEK1btkY3HT2tfASxf6jQPIb6Zhi8s
link.rule.ids 315,783,787,27936,27937
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliding-window+cross-correlation+and+mutual+information+methods+in+the+analysis+of+solar+wind+measurements&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Gu%2C+Chaoran&rft.au=Heidrich-Meisner%2C+Verena&rft.au=Wimmer-Schweingruber%2C+Robert+F.&rft.date=2024-04-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=684&rft.spage=A125&rft_id=info:doi/10.1051%2F0004-6361%2F202348703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202348703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon