Sliding-window cross-correlation and mutual information methods in the analysis of solar wind measurements
Context. When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear relationships, and non-linear relationships. We present a tool that combines these four aspects and visualizes the underlying structure where two data...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 684; p. A125 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context.
When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear relationships, and non-linear relationships. We present a tool that combines these four aspects and visualizes the underlying structure where two data sets are highly related. The basic mathematical methods used here are cross-correlation and mutual information (MI) analyses. As an example, we applied these methods to a set of two-month’s worth of solar wind density and total magnetic field strength data.
Aims.
Two neighboring solar wind parcels may have undergone different heating and acceleration processes and may even originate from different source regions. However, they may share very similar properties, which would effectively “hide” their different origins. When this hidden information is mixed with noise, describing the relationships between two solar wind parameters becomes challenging. Time lag effects and non-linear relationships between solar wind parameters are often overlooked, while simple time-lag-free linear relationships are sometimes insufficient to describe the complex processes in space physics. Thus, we propose this tool to analyze the monotonic (or linear) and non-monotonic (or non-linear) relationships between a pair of solar wind parameters within a certain time period, taking into consideration the effects of different timescales and possible time lags.
Methods.
Our tool consists of two parts: the sliding-window cross-correlation (SWCC) method and sliding-window mutual information (SWMI) method. As their names suggest, both parts involve a set of sliding windows. By independently sliding these windows along the time axis of the two time series, this technique can assess the correlation coefficient (and mutual information) between any two windowed data sets with any time lags. Visualizing the obtained results enables us to identify structures where two time series are highly correlated, while providing information on the relevant timescales and time lags.
Results.
We applied our proposed tool to solar wind density and total magnetic field strength data. Structures with distinct timescales were identified. Our tool also detected the presence of short-term anti-correlations coexisting with long-term positive correlations between solar wind density and magnetic field strength. Some non-monotonic relationships were also found.
Conclusions.
The visual products of our tool (the SWCC+SWMI maps) represent an innovative extension of traditional numerical methods, offering users a more intuitive perspective on the data. The SWCC and SWMI methods can be used to identify time periods where one parameter has a strong influence on the other. Of course, they can also be applied to other data, such as multi-wavelength photometric and spectroscopic time series, thus providing a new tool for solar physics analyses. |
---|---|
AbstractList | Context. When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear relationships, and non-linear relationships. We present a tool that combines these four aspects and visualizes the underlying structure where two data sets are highly related. The basic mathematical methods used here are cross-correlation and mutual information (MI) analyses. As an example, we applied these methods to a set of two-month’s worth of solar wind density and total magnetic field strength data. Aims. Two neighboring solar wind parcels may have undergone different heating and acceleration processes and may even originate from different source regions. However, they may share very similar properties, which would effectively “hide” their different origins. When this hidden information is mixed with noise, describing the relationships between two solar wind parameters becomes challenging. Time lag effects and non-linear relationships between solar wind parameters are often overlooked, while simple time-lag-free linear relationships are sometimes insufficient to describe the complex processes in space physics. Thus, we propose this tool to analyze the monotonic (or linear) and non-monotonic (or non-linear) relationships between a pair of solar wind parameters within a certain time period, taking into consideration the effects of different timescales and possible time lags. Methods. Our tool consists of two parts: the sliding-window cross-correlation (SWCC) method and sliding-window mutual information (SWMI) method. As their names suggest, both parts involve a set of sliding windows. By independently sliding these windows along the time axis of the two time series, this technique can assess the correlation coefficient (and mutual information) between any two windowed data sets with any time lags. Visualizing the obtained results enables us to identify structures where two time series are highly correlated, while providing information on the relevant timescales and time lags. Results. We applied our proposed tool to solar wind density and total magnetic field strength data. Structures with distinct timescales were identified. Our tool also detected the presence of short-term anti-correlations coexisting with long-term positive correlations between solar wind density and magnetic field strength. Some non-monotonic relationships were also found. Conclusions. The visual products of our tool (the SWCC+SWMI maps) represent an innovative extension of traditional numerical methods, offering users a more intuitive perspective on the data. The SWCC and SWMI methods can be used to identify time periods where one parameter has a strong influence on the other. Of course, they can also be applied to other data, such as multi-wavelength photometric and spectroscopic time series, thus providing a new tool for solar physics analyses. Context. When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear relationships, and non-linear relationships. We present a tool that combines these four aspects and visualizes the underlying structure where two data sets are highly related. The basic mathematical methods used here are cross-correlation and mutual information (MI) analyses. As an example, we applied these methods to a set of two-month’s worth of solar wind density and total magnetic field strength data. Aims. Two neighboring solar wind parcels may have undergone different heating and acceleration processes and may even originate from different source regions. However, they may share very similar properties, which would effectively “hide” their different origins. When this hidden information is mixed with noise, describing the relationships between two solar wind parameters becomes challenging. Time lag effects and non-linear relationships between solar wind parameters are often overlooked, while simple time-lag-free linear relationships are sometimes insufficient to describe the complex processes in space physics. Thus, we propose this tool to analyze the monotonic (or linear) and non-monotonic (or non-linear) relationships between a pair of solar wind parameters within a certain time period, taking into consideration the effects of different timescales and possible time lags. Methods. Our tool consists of two parts: the sliding-window cross-correlation (SWCC) method and sliding-window mutual information (SWMI) method. As their names suggest, both parts involve a set of sliding windows. By independently sliding these windows along the time axis of the two time series, this technique can assess the correlation coefficient (and mutual information) between any two windowed data sets with any time lags. Visualizing the obtained results enables us to identify structures where two time series are highly correlated, while providing information on the relevant timescales and time lags. Results. We applied our proposed tool to solar wind density and total magnetic field strength data. Structures with distinct timescales were identified. Our tool also detected the presence of short-term anti-correlations coexisting with long-term positive correlations between solar wind density and magnetic field strength. Some non-monotonic relationships were also found. Conclusions. The visual products of our tool (the SWCC+SWMI maps) represent an innovative extension of traditional numerical methods, offering users a more intuitive perspective on the data. The SWCC and SWMI methods can be used to identify time periods where one parameter has a strong influence on the other. Of course, they can also be applied to other data, such as multi-wavelength photometric and spectroscopic time series, thus providing a new tool for solar physics analyses. |
Author | Gu, Chaoran Wimmer-Schweingruber, Robert F. Heidrich-Meisner, Verena |
Author_xml | – sequence: 1 givenname: Chaoran orcidid: 0000-0003-2429-8625 surname: Gu fullname: Gu, Chaoran – sequence: 2 givenname: Verena orcidid: 0000-0003-3502-8778 surname: Heidrich-Meisner fullname: Heidrich-Meisner, Verena – sequence: 3 givenname: Robert F. orcidid: 0000-0002-7388-173X surname: Wimmer-Schweingruber fullname: Wimmer-Schweingruber, Robert F. |
BookMark | eNo9kE1LAzEQhoNUsK3-Ai8Bz9HJxybboxS_oOBBPYfsJmu37CY12aX035u10tMww8PLO88CzXzwDqFbCvcUCvoAAIJILukDA8ZFqYBfoDkVnBFQQs7Q_ExcoUVKu7wyWvI52n10rW39Nzm03oYDrmNIidQhRteZoQ0eG29xPw6j6XDrmxD707l3wzbYlG942LpMme6Y2oRDg1PoTMRTYKZMGqPrnR_SNbpsTJfczf9coq_np8_1K9m8v7ytHzekZooNpFBVaQolAEq-qpWgBa-lEI3NjWtbgZVguJRccWeqVSGkrDm1VUkNc86WjC_R3Sl3H8PP6NKgd2GMuV_SHESWslIUMsVP1N_H0TV6H9vexKOmoCepelKmJ2X6LJX_AnbObIg |
Cites_doi | 10.1007/s11207-010-9568-6 10.1029/2000GL000111 10.1023/A:1005036131689 10.1029/JA078i001p00092 10.1029/2021JA030021 10.1051/0004-6361/201937259 10.1037/met0000079 10.1007/BF01025868 10.1029/2004GL021677 10.1029/2005JA011034 10.1137/0119020 10.1051/0004-6361/201936728 10.1007/s00585-996-0608-3 10.1016/j.asr.2010.10.026 10.1119/1.1973431 10.1002/2016JA023175 10.1038/s41592-019-0686-2 10.1007/978-3-642-00296-0_5 10.1007/BF00149472 10.1029/JA094iA06p06893 10.1029/91JA00316 10.1088/0004-637X/745/2/162 10.1016/j.asr.2007.02.091 10.1051/0004-6361/202346623 10.1029/2021JA030246 10.1088/0004-637X/760/2/105 10.1134/S0010952510060018 10.1016/0032-0633(78)90059-4 10.1029/JA081i016p02719 10.1029/2018JA026080 10.1038/s41586-019-1818-7 10.3847/1538-4357/834/2/147 10.1007/BF00768753 10.3847/1538-4357/ab7197 10.3847/1538-4357/acb341 10.1007/s41116-017-0011-z 10.1051/0004-6361/202245500 10.1029/98GL01717 10.1023/A:1005040232597 10.1016/0273-1177(95)00321-5 10.3847/1538-4365/ab61fc 10.1103/PhysRevE.69.066138 10.1029/2018EA000392 10.1029/JA087iA01p00052 10.1023/A:1005092216668 10.1126/science.7754380 10.1029/94JA00843 10.1051/0004-6361/202038467 10.1088/0004-637X/776/2/94 10.1023/A:1005082526237 10.1029/95JA00525 10.1063/1.1618603 |
ContentType | Journal Article |
Copyright | 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1051/0004-6361/202348703 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202348703 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOTM AAYXX ABDNZ ABPPZ ABTAH ABUBZ ABZDU ACACO ACGFS ACNCT ACYGS ACYRX ADCOW ADHUB ADIYS AEILP AENEX AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP G8K GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNP RNS RSV SDH SJN SOJ TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD H8D L7M |
ID | FETCH-LOGICAL-c272t-57b8a57400839c74153c644fd021cdb0d60a366373eab95466c31db81a2eed823 |
ISSN | 0004-6361 |
IngestDate | Thu Oct 10 17:05:25 EDT 2024 Thu Sep 12 17:38:49 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c272t-57b8a57400839c74153c644fd021cdb0d60a366373eab95466c31db81a2eed823 |
ORCID | 0000-0003-2429-8625 0000-0002-7388-173X 0000-0003-3502-8778 |
OpenAccessLink | https://www.aanda.org/articles/aa/pdf/2024/04/aa48703-23.pdf |
PQID | 3041439710 |
PQPubID | 1796397 |
ParticipantIDs | proquest_journals_3041439710 crossref_primary_10_1051_0004_6361_202348703 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2024 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Bracewell (R9) 1966; 34 De Winter (R15) 2016; 21 Bale (R4) 2019; 576 Yoo (R63) 2009; 28 Zhang (R64) 2007; 112 Cane (R13) 2000; 27 Shi (R50) 2023; 944 Adhikari (R1) 2018; 5 R25 Asbridge (R3) 1976; 81 Russell (R48) 1973; 78 Yermolaev (R62) 2010; 48 Duncan (R16) 1970; 19 R26 Marubashi (R39) 1995; 16 Stone (R53) 1998; 86 Virtanen (R56) 2020; 17 Kasper (R28) 2012; 745 Shannon (R49) 1948; 27 R6 R7 Richardson (R45) 2018; 15 Riley (R47) 2010; 115 R8 Georgieva (R21) 2007; 40 Lindsay (R33) 1995; 100 Marsch (R36) 1993; 11 Cameron (R11) 2019; 124 Owen (R43) 2020; 642 March (R35) 2005; 32 Maksimovic (R34) 2020; 246 Geiss (R19) 1995; 72 Wanliss (R57) 2006; 111 Gloeckler (R22) 1998; 86 D’Amicis (R14) 2019; 632 Kraskov (R30) 2004; 69 Müller (R42) 2020; 642 Fung (R18) 1998; 25 Materassi (R40) 2011; 47 Ventura (R55) 2023; 675 Marsch (R37) 1982; 87 Burlaga (R10) 1970; 15 Gosling (R23) 1991; 96 McComas (R41) 1998; 86 Freedman (R17) 1981; 57 Simms (R51) 2022; 127 Iyemori (R27) 1996; 14 Zhao (R65) 2009; 36 Gu (R24) 2023; 671 Pedregosa (R44) 2011; 12 Geiss (R20) 1995; 268 Yao (R61) 2013; 776 Barrow (R5) 1978; 26 Marsch (R38) 1989; 94 Alberti (R2) 2017; 122 Li (R32) 2020; 891 Kocher (R29) 2017; 834 Xia (R60) 2003; 679 Lepri (R31) 2012; 760 Richardson (R46) 2010; 264 Smith (R52) 1998; 86 R58 Wing (R59) 2022; 127 Tu (R54) 1994; 99 Cane (R12) 2003; 108 |
References_xml | – volume: 108 start-page: 1156 year: 2003 ident: R12 publication-title: J. Geophys. Res. Space Phys. contributor: fullname: Cane – volume: 264 start-page: 189 year: 2010 ident: R46 publication-title: Sol. Phys. doi: 10.1007/s11207-010-9568-6 contributor: fullname: Richardson – volume: 27 start-page: 3591 year: 2000 ident: R13 publication-title: Geophys. Res. Lett. doi: 10.1029/2000GL000111 contributor: fullname: Cane – volume: 86 start-page: 497 year: 1998 ident: R22 publication-title: Space Sci. Rev. doi: 10.1023/A:1005036131689 contributor: fullname: Gloeckler – volume: 78 start-page: 92 year: 1973 ident: R48 publication-title: J. Geophys. Res. doi: 10.1029/JA078i001p00092 contributor: fullname: Russell – volume: 127 start-page: e2021JA030021 year: 2022 ident: R51 publication-title: J. Geophys. Res. Space Phys. doi: 10.1029/2021JA030021 contributor: fullname: Simms – volume: 642 start-page: A16 year: 2020 ident: R43 publication-title: A&A doi: 10.1051/0004-6361/201937259 contributor: fullname: Owen – volume: 21 start-page: 273 year: 2016 ident: R15 publication-title: Psychol. Methods doi: 10.1037/met0000079 contributor: fullname: De Winter – volume: 57 start-page: 453 year: 1981 ident: R17 publication-title: Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete doi: 10.1007/BF01025868 contributor: fullname: Freedman – volume: 32 start-page: L04101 year: 2005 ident: R35 publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL021677 contributor: fullname: March – volume: 111 start-page: A02202 year: 2006 ident: R57 publication-title: J. Geophys. Res. Space Phys. doi: 10.1029/2005JA011034 contributor: fullname: Wanliss – volume: 19 start-page: 215 year: 1970 ident: R16 publication-title: SIAM J. Appl. Math. doi: 10.1137/0119020 contributor: fullname: Duncan – volume: 632 start-page: A92 year: 2019 ident: R14 publication-title: A&A doi: 10.1051/0004-6361/201936728 contributor: fullname: D’Amicis – volume: 12 start-page: 2825 year: 2011 ident: R44 publication-title: J. Mach. Learn. Res. contributor: fullname: Pedregosa – ident: R26 – volume: 14 start-page: 608 year: 1996 ident: R27 publication-title: Annales Geophysicae doi: 10.1007/s00585-996-0608-3 contributor: fullname: Iyemori – volume: 47 start-page: 877 year: 2011 ident: R40 publication-title: Adv. Space Res. doi: 10.1016/j.asr.2010.10.026 contributor: fullname: Materassi – volume: 34 start-page: 46 year: 1966 ident: R9 publication-title: Am. J. Phys. doi: 10.1119/1.1973431 contributor: fullname: Bracewell – volume: 122 start-page: 4266 year: 2017 ident: R2 publication-title: J. Geophys. Res. Space Phys. doi: 10.1002/2016JA023175 contributor: fullname: Alberti – volume: 17 start-page: 261 year: 2020 ident: R56 publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 contributor: fullname: Virtanen – volume: 115 start-page: A11104 year: 2010 ident: R47 publication-title: J. Geophys. Res. Space Phys. contributor: fullname: Riley – ident: R6 doi: 10.1007/978-3-642-00296-0_5 – volume: 15 start-page: 61 year: 1970 ident: R10 publication-title: Sol. Phys. doi: 10.1007/BF00149472 contributor: fullname: Burlaga – volume: 94 start-page: 6893 year: 1989 ident: R38 publication-title: J. Geophys. Res. doi: 10.1029/JA094iA06p06893 contributor: fullname: Marsch – volume: 96 start-page: 7831 year: 1991 ident: R23 publication-title: J. Geophys. Res. doi: 10.1029/91JA00316 contributor: fullname: Gosling – volume: 745 start-page: 162 year: 2012 ident: R28 publication-title: ApJ doi: 10.1088/0004-637X/745/2/162 contributor: fullname: Kasper – volume: 40 start-page: 1152 year: 2007 ident: R21 publication-title: Adv. Space Res. doi: 10.1016/j.asr.2007.02.091 contributor: fullname: Georgieva – volume: 675 start-page: A170 year: 2023 ident: R55 publication-title: A&A doi: 10.1051/0004-6361/202346623 contributor: fullname: Ventura – volume: 127 start-page: e30246 year: 2022 ident: R59 publication-title: J. Geophys. Res. Space Phys. doi: 10.1029/2021JA030246 contributor: fullname: Wing – volume: 760 start-page: 105 year: 2012 ident: R31 publication-title: ApJ doi: 10.1088/0004-637X/760/2/105 contributor: fullname: Lepri – volume: 48 start-page: 485 year: 2010 ident: R62 publication-title: Cosm. Res. doi: 10.1134/S0010952510060018 contributor: fullname: Yermolaev – volume: 26 start-page: 1193 year: 1978 ident: R5 publication-title: Planet. Space Sci. doi: 10.1016/0032-0633(78)90059-4 contributor: fullname: Barrow – volume: 81 start-page: 2719 year: 1976 ident: R3 publication-title: J. Geophys. Res. doi: 10.1029/JA081i016p02719 contributor: fullname: Asbridge – volume: 124 start-page: 1582 year: 2019 ident: R11 publication-title: J. Geophys. Res. Space Phys. doi: 10.1029/2018JA026080 contributor: fullname: Cameron – volume: 576 start-page: 237 year: 2019 ident: R4 publication-title: Nature doi: 10.1038/s41586-019-1818-7 contributor: fullname: Bale – volume: 834 start-page: 147 year: 2017 ident: R29 publication-title: ApJ doi: 10.3847/1538-4357/834/2/147 contributor: fullname: Kocher – volume: 72 start-page: 49 year: 1995 ident: R19 publication-title: Space Sci. Rev. doi: 10.1007/BF00768753 contributor: fullname: Geiss – volume: 11 start-page: 659 year: 1993 ident: R36 publication-title: Ann. Geophys. contributor: fullname: Marsch – volume: 36 start-page: L14104 year: 2009 ident: R65 publication-title: Geophys. Res. Lett. contributor: fullname: Zhao – volume: 891 start-page: 79 year: 2020 ident: R32 publication-title: ApJ doi: 10.3847/1538-4357/ab7197 contributor: fullname: Li – volume: 944 start-page: 82 year: 2023 ident: R50 publication-title: ApJ doi: 10.3847/1538-4357/acb341 contributor: fullname: Shi – volume: 15 start-page: 1 year: 2018 ident: R45 publication-title: Liv. Rev. Sol. Phys. doi: 10.1007/s41116-017-0011-z contributor: fullname: Richardson – volume: 671 start-page: A63 year: 2023 ident: R24 publication-title: A&A doi: 10.1051/0004-6361/202245500 contributor: fullname: Gu – volume: 25 start-page: 2361 year: 1998 ident: R18 publication-title: Geophys. Res. Lett. doi: 10.1029/98GL01717 contributor: fullname: Fung – volume: 86 start-page: 563 year: 1998 ident: R41 publication-title: Space Sci. Rev. doi: 10.1023/A:1005040232597 contributor: fullname: McComas – ident: R25 – volume: 16 start-page: 111 year: 1995 ident: R39 publication-title: Adv. Space Res. doi: 10.1016/0273-1177(95)00321-5 contributor: fullname: Marubashi – ident: R7 – volume: 246 start-page: 62 year: 2020 ident: R34 publication-title: ApJS doi: 10.3847/1538-4365/ab61fc contributor: fullname: Maksimovic – volume: 69 start-page: 066138 year: 2004 ident: R30 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.066138 contributor: fullname: Kraskov – volume: 5 start-page: 440 year: 2018 ident: R1 publication-title: Earth Space Sci. doi: 10.1029/2018EA000392 contributor: fullname: Adhikari – volume: 87 start-page: 52 year: 1982 ident: R37 publication-title: J. Geophys. Res. Space Phys. doi: 10.1029/JA087iA01p00052 contributor: fullname: Marsch – volume: 86 start-page: 613 year: 1998 ident: R52 publication-title: Space Sci. Rev. doi: 10.1023/A:1005092216668 contributor: fullname: Smith – ident: R58 – volume: 268 start-page: 1033 year: 1995 ident: R20 publication-title: Science doi: 10.1126/science.7754380 contributor: fullname: Geiss – volume: 99 start-page: 21481 year: 1994 ident: R54 publication-title: J. Geophys. Res. doi: 10.1029/94JA00843 contributor: fullname: Tu – volume: 642 start-page: A1 year: 2020 ident: R42 publication-title: A&A doi: 10.1051/0004-6361/202038467 contributor: fullname: Müller – volume: 776 start-page: 94 year: 2013 ident: R61 publication-title: ApJ doi: 10.1088/0004-637X/776/2/94 contributor: fullname: Yao – volume: 86 start-page: 1 year: 1998 ident: R53 publication-title: Space Sci. Rev. doi: 10.1023/A:1005082526237 contributor: fullname: Stone – volume: 27 start-page: 379 year: 1948 ident: R49 publication-title: BSTJ contributor: fullname: Shannon – volume: 100 start-page: 16999 year: 1995 ident: R33 publication-title: J. Geophys. Res. doi: 10.1029/95JA00525 contributor: fullname: Lindsay – volume: 28 start-page: 819 year: 2009 ident: R63 publication-title: CSSP contributor: fullname: Yoo – volume: 112 start-page: A10102 year: 2007 ident: R64 publication-title: J. Geophys. Res. Space Phys. contributor: fullname: Zhang – volume: 679 start-page: 319 year: 2003 ident: R60 publication-title: AIP Conf. Proc. doi: 10.1063/1.1618603 contributor: fullname: Xia – ident: R8 |
SSID | ssj0002183 |
Score | 2.487062 |
Snippet | Context.
When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear... Context. When describing the relationships between two data sets, four crucial aspects must be considered, namely: timescales, intrinsic lags, linear... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | A125 |
SubjectTerms | Correlation coefficients Cross correlation Datasets Density Field strength Magnetic fields Numerical methods Parameter identification Sliding Solar magnetic field Solar physics Solar wind Time lag Time series |
Title | Sliding-window cross-correlation and mutual information methods in the analysis of solar wind measurements |
URI | https://www.proquest.com/docview/3041439710 |
Volume | 684 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9nRfBFtCptrZIH8eXMNZvs5-Mh9kOoCG2lb0uSzdKKvSvdWw588A_xr3Um2d3LtSLWl2UvHHPszu9mfjOZmRDyVtXc1OBJQQM6hwCFW1ZkqmCZUNpkic7qDLuRjz-nh2fxp_PkfDT6FVQttQs9MT_-2FfyP1qFNdArdsneQ7ODUFiAe9AvXEHDcP0nHZ98v0TXw5YQWM-XY-fxmMHzNnyFm9sZuGpdi0g3IdUt-2Ojm77GUQWDSRoMdccoEL41pA-bkMNOG0yfz6_85CaFn3x-xCVw_fysIMFw0Hbb-gC2AYk4Xgss8AU7tjiO08HmK3YerrzEJabU2Ym5WFp4xptW26AUfLw_CfMVIixz6W1wzFLpR7BPrDe7scQa2C4Z2dnlNI8DyzqNfIP0HZMPVsXXSHqp2OECPATiMC5XPq7f17_l-oaCRLcVn0S4FR-XKKYchDwgDwUYMbSeB0c_By-P1NKHVv53-4lWSbQ3rO0NQtZZz7rTd0zm9Cl50oUgdOrx9IyM7GyTbA1ape_oNNDpJnn0xd89J9_WAUfvAI4CIqgHHA0ARzvAwRoFwNEecHReUwc4igJpCLgX5Gz_4-mHQ9Yd1sGMyMSCJZnOVZLFyOkLgzxVGuDadQVvylSaVylXEuhtJq3SRRKnqZFRpfNICaBpuZAvycZsPrNbhCYFN9paE6s6xxPy8qqoU1lpIYwQvMq3yfv-ZZbXfiZL-RcFbpPd_oWX3Z-3KSWPI-TiEd-5n7RX5PEK1btkY3HT2tfASxf6jQPIb6Zhi8s |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliding-window+cross-correlation+and+mutual+information+methods+in+the+analysis+of+solar+wind+measurements&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Gu%2C+Chaoran&rft.au=Heidrich-Meisner%2C+Verena&rft.au=Wimmer-Schweingruber%2C+Robert+F.&rft.date=2024-04-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=684&rft.spage=A125&rft_id=info:doi/10.1051%2F0004-6361%2F202348703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202348703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |