Dependence on Mn concentration and position on the electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals: empirical tight-binding theory

The electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals with different Mn-doped positions and concentrations are carried out by the empirical tight-binding model with the consideration of sp – d exchange interaction. Substitution of Mn ions into CdTe/CdS core/shell nanocr...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational electronics Vol. 24; no. 4; p. 106
Main Author Sukkabot, Worasak
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1569-8025
1572-8137
DOI10.1007/s10825-025-02342-1

Cover

Loading…
Abstract The electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals with different Mn-doped positions and concentrations are carried out by the empirical tight-binding model with the consideration of sp – d exchange interaction. Substitution of Mn ions into CdTe/CdS core/shell nanocrystal via desired sites and concentrations provides a way to manipulate the sp – d exchange interaction. With the growing Mn concentrations, the splitting energies and g-factor values are linearly increased. The splitting energies and g-factor values of CdTe:Mn/CdS core/shell nanoparticles are higher than those of CdTe/CdS:Mn core/shell nanoparticles. In the presence of Mn dopants, the optical spectra are divided into four components corresponding to the recombination paths. The increasing Mn concentrations display a progressive red-shift spectra. The introduction of Mn ions improves the optical property, thanks to oscillation strengths and radiative lifetimes. Overall, it is expected that this understanding of core/shell nanocrystals doped with magnetic ions can be utilized for spin-related applications.
AbstractList The electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals with different Mn-doped positions and concentrations are carried out by the empirical tight-binding model with the consideration of sp–d exchange interaction. Substitution of Mn ions into CdTe/CdS core/shell nanocrystal via desired sites and concentrations provides a way to manipulate the sp–d exchange interaction. With the growing Mn concentrations, the splitting energies and g-factor values are linearly increased. The splitting energies and g-factor values of CdTe:Mn/CdS core/shell nanoparticles are higher than those of CdTe/CdS:Mn core/shell nanoparticles. In the presence of Mn dopants, the optical spectra are divided into four components corresponding to the recombination paths. The increasing Mn concentrations display a progressive red-shift spectra. The introduction of Mn ions improves the optical property, thanks to oscillation strengths and radiative lifetimes. Overall, it is expected that this understanding of core/shell nanocrystals doped with magnetic ions can be utilized for spin-related applications.
The electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals with different Mn-doped positions and concentrations are carried out by the empirical tight-binding model with the consideration of sp – d exchange interaction. Substitution of Mn ions into CdTe/CdS core/shell nanocrystal via desired sites and concentrations provides a way to manipulate the sp – d exchange interaction. With the growing Mn concentrations, the splitting energies and g-factor values are linearly increased. The splitting energies and g-factor values of CdTe:Mn/CdS core/shell nanoparticles are higher than those of CdTe/CdS:Mn core/shell nanoparticles. In the presence of Mn dopants, the optical spectra are divided into four components corresponding to the recombination paths. The increasing Mn concentrations display a progressive red-shift spectra. The introduction of Mn ions improves the optical property, thanks to oscillation strengths and radiative lifetimes. Overall, it is expected that this understanding of core/shell nanocrystals doped with magnetic ions can be utilized for spin-related applications.
ArticleNumber 106
Author Sukkabot, Worasak
Author_xml – sequence: 1
  givenname: Worasak
  surname: Sukkabot
  fullname: Sukkabot, Worasak
  email: w.sukkabot@gmail.com
  organization: Department of Physics, Faculty of Science, Ubon Ratchathani University
BookMark eNp9UctOwzAQtBBIlMIPcLLElVCvE5OEGypPqYgDcI4ce9O6Su1gm0N_hy_FTZG4IXnlXXtmdrVzQg6ts0jIObArYKycBWAVFxkbIy94BgdkAqLkWQV5ebjLr-usSv_H5CSENWOc8QIm5PsOB7QarULqLH2xVLmU2-hlNOlBWk0HF8xYpBNXSLFHFb2zRl1SN0SjZD_iNnJpMZV08G5AHw0G6jo61-84m-u3pOxxFlbY99RK65Tfhij7cENxMxg_ykSzXMWsNVYbu9w1c357So66BMOz33tKPh7u3-dP2eL18Xl-u8gUL3nMhFCK1a3Ioa5aAS1ijVKAaCGHgnUdv2ZlobVu06qwhBp1y6DUaSVFJwF1PiUXe900_ucXhtis3Ze3qWWTcxBVXnOoEorvUcq7EDx2zeDNRvptA6zZedHsvWjYGMmLBhIp35NCAtsl-j_pf1g_hj2RPg
Cites_doi 10.1038/nbt920
10.1039/c2jm31476b
10.1021/ja206956t
10.1016/0038-1098(79)91211-0
10.1126/science.271.5251.933
10.1007/978-3-642-15856-8
10.1021/nl504510t
10.1103/PhysRevB.82.245304
10.1021/acs.jpcc.9b08372
10.1103/PhysRevB.1.4005
10.1103/PhysRevB.58.4713
10.1021/jp0709407
10.1021/acscentsci.5b00327
10.1002/adma.202004734
10.1063/1.1483113
10.1016/j.optmat.2017.04.058
10.1016/0022-3697(83)90064-1
10.1063/1.366631
10.1038/s41566-017-0070-7
10.1103/PhysRev.145.637
10.1016/j.commatsci.2015.09.003
10.1039/D0NA00399A
10.1116/1.574016
10.1007/s00339-023-06511-6
10.1021/jp711395f
10.1002/anie.200705111
10.1103/PhysRevB.16.790
10.1002/adma.200602642
10.1007/s12274-015-0742-x
10.1016/j.solener.2019.05.070
10.1021/nl102135k
10.1038/nature01217
10.1142/4121
10.1088/0957-4484/19/13/135604
10.1021/jp0557013
10.1016/j.physb.2019.01.006
10.1126/science.278.5346.2114
10.1126/science.1065389
10.1021/acsanm.2c04337
10.1016/j.tsf.2005.11.111
10.3390/magnetochemistry6010015
10.1021/am502151m
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10825-025-02342-1
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-8137
ExternalDocumentID 10_1007_s10825_025_02342_1
GrantInformation_xml – fundername: National Research Council of Thailand
  grantid: NRCT5-RSA63023-04
GroupedDBID .86
.VR
06D
0R~
0VY
1N0
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9P
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
2P1
2VQ
AARHV
AAYXX
ABJCF
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AFKRA
AGJBK
AGQPQ
AHSBF
AJBLW
ARAPS
BDATZ
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HCIFZ
HZ~
IHE
K7-
M7S
N2Q
O9-
OVD
PHGZM
PHGZT
PQGLB
PTHSS
RNI
RZC
RZE
TEORI
JQ2
ID FETCH-LOGICAL-c272t-55cc09b53198b51bee9ea515b13140ff26074dddb108e719edb017d0254fa1ed3
IEDL.DBID AGYKE
ISSN 1569-8025
IngestDate Fri Aug 08 03:40:44 EDT 2025
Thu Aug 14 00:00:39 EDT 2025
Thu Aug 07 06:04:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Magnetic property
Magnetic ions
Core/shell nanocrystal
Optical property
Empirical tight-binding model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-55cc09b53198b51bee9ea515b13140ff26074dddb108e719edb017d0254fa1ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3215839218
PQPubID 2043855
ParticipantIDs proquest_journals_3215839218
crossref_primary_10_1007_s10825_025_02342_1
springer_journals_10_1007_s10825_025_02342_1
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of computational electronics
PublicationTitleAbbrev J Comput Electron
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References A Almohammedi (2342_CR9) 2023; 129
H Zare (2342_CR26) 2015; 8
VA Vlaskin (2342_CR16) 2010; 10
PN Keating (2342_CR33) 1966; 145
LR Bradshaw (2342_CR10) 2015; 15
Q Zeng (2342_CR21) 2008; 112
M-Q Dai (2342_CR38) 2012; 22
H Zhong (2342_CR5) 2007; 111
M Marandi (2342_CR22) 2017; 69
V Albe (2342_CR43) 1998; 58
MRS Mir (2342_CR28) 2019; 557
JA Gaj (2342_CR31) 1979; 29
B Sreenan (2342_CR14) 2022; 5
AP Alivisatos (2342_CR2) 1996; 271
EJ McLaurin (2342_CR17) 2011; 133
JA Gaj (2342_CR32) 2010
M Korkusinski (2342_CR36) 2010; 82
WA Harrison (2342_CR39) 1999
KF Wu (2342_CR11) 2018; 12
LX Cao (2342_CR15) 2002; 80
SA Empedocles (2342_CR1) 1997; 278
P Vogl (2342_CR29) 1983; 44
J Lim (2342_CR4) 2007; 19
O Akinci (2342_CR40) 2006; 511
X Liu (2342_CR20) 2021; 33
Z Zu (2342_CR24) 2008; 19
S Lee (2342_CR41) 2004; 69
S Rudra (2342_CR19) 2019; 123
C Pu (2342_CR18) 2016; 2
S Coe (2342_CR3) 2002; 420
C Pryor (2342_CR35) 1998; 83
S Kim (2342_CR6) 2004; 22
A Gupta (2342_CR8) 2020; 6
JK Furdyna (2342_CR30) 1986; 4
M Marandi (2342_CR23) 2019; 188
RM Martin (2342_CR34) 1970; 1
W Sukkabot (2342_CR42) 2016; 111
S Irvine (2342_CR13) 2008; 47
SA Wolf (2342_CR7) 2001; 294
DJ Chadi (2342_CR37) 1977; 16
O Schöps (2342_CR25) 2006; 110
W Li (2342_CR27) 2014; 6
S Palchoudhury (2342_CR12) 2020; 2
References_xml – volume: 22
  start-page: 93
  year: 2004
  ident: 2342_CR6
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt920
– volume: 22
  start-page: 16336
  year: 2012
  ident: 2342_CR38
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31476b
– volume: 133
  start-page: 14978
  year: 2011
  ident: 2342_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206956t
– volume: 29
  start-page: 435
  year: 1979
  ident: 2342_CR31
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(79)91211-0
– volume: 271
  start-page: 933
  year: 1996
  ident: 2342_CR2
  publication-title: Science
  doi: 10.1126/science.271.5251.933
– start-page: 1
  volume-title: Introduction to the physics of diluted magnetic semiconductors
  year: 2010
  ident: 2342_CR32
  doi: 10.1007/978-3-642-15856-8
– volume: 15
  start-page: 1315
  year: 2015
  ident: 2342_CR10
  publication-title: Nano Lett.
  doi: 10.1021/nl504510t
– volume: 82
  year: 2010
  ident: 2342_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.245304
– volume: 123
  start-page: 29445
  issue: 48
  year: 2019
  ident: 2342_CR19
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b08372
– volume: 1
  start-page: 4005
  year: 1970
  ident: 2342_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.1.4005
– volume: 58
  start-page: 4713
  year: 1998
  ident: 2342_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.4713
– volume: 111
  start-page: 6538
  year: 2007
  ident: 2342_CR5
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0709407
– volume: 2
  start-page: 32
  year: 2016
  ident: 2342_CR18
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.5b00327
– volume: 33
  start-page: 2004734
  issue: 30
  year: 2021
  ident: 2342_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004734
– volume: 80
  start-page: 4300
  year: 2002
  ident: 2342_CR15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1483113
– volume: 69
  start-page: 358
  year: 2017
  ident: 2342_CR22
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2017.04.058
– volume: 44
  start-page: 365
  year: 1983
  ident: 2342_CR29
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(83)90064-1
– volume: 83
  start-page: 2548
  year: 1998
  ident: 2342_CR35
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.366631
– volume: 12
  start-page: 105
  year: 2018
  ident: 2342_CR11
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-017-0070-7
– volume: 145
  start-page: 637
  year: 1966
  ident: 2342_CR33
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.145.637
– volume: 111
  start-page: 23
  year: 2016
  ident: 2342_CR42
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.09.003
– volume: 2
  start-page: 3069
  issue: 8
  year: 2020
  ident: 2342_CR12
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00399A
– volume: 4
  start-page: 2002
  year: 1986
  ident: 2342_CR30
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.574016
– volume: 129
  start-page: 221
  issue: 3
  year: 2023
  ident: 2342_CR9
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-023-06511-6
– volume: 112
  start-page: 8587
  year: 2008
  ident: 2342_CR21
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp711395f
– volume: 47
  start-page: 2685
  year: 2008
  ident: 2342_CR13
  publication-title: Chem. Int. Ed.
  doi: 10.1002/anie.200705111
– volume: 16
  start-page: 790
  year: 1977
  ident: 2342_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.16.790
– volume: 19
  start-page: 1927
  year: 2007
  ident: 2342_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602642
– volume: 8
  start-page: 2317
  year: 2015
  ident: 2342_CR26
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0742-x
– volume: 188
  start-page: 35
  year: 2019
  ident: 2342_CR23
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.05.070
– volume: 10
  start-page: 3670
  year: 2010
  ident: 2342_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl102135k
– volume: 420
  start-page: 800
  year: 2002
  ident: 2342_CR3
  publication-title: Nature
  doi: 10.1038/nature01217
– volume-title: Elementary Electronic Structure
  year: 1999
  ident: 2342_CR39
  doi: 10.1142/4121
– volume: 69
  year: 2004
  ident: 2342_CR41
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 135604
  year: 2008
  ident: 2342_CR24
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/13/135604
– volume: 110
  start-page: 2074
  issue: 5
  year: 2006
  ident: 2342_CR25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0557013
– volume: 557
  start-page: 23
  year: 2019
  ident: 2342_CR28
  publication-title: Physica B: Condens. Matter
  doi: 10.1016/j.physb.2019.01.006
– volume: 278
  start-page: 2114
  year: 1997
  ident: 2342_CR1
  publication-title: Science
  doi: 10.1126/science.278.5346.2114
– volume: 294
  start-page: 1488
  year: 2001
  ident: 2342_CR7
  publication-title: Science
  doi: 10.1126/science.1065389
– volume: 5
  start-page: 17413
  issue: 12
  year: 2022
  ident: 2342_CR14
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.2c04337
– volume: 511
  start-page: 684
  year: 2006
  ident: 2342_CR40
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.11.111
– volume: 6
  start-page: 15
  issue: 1
  year: 2020
  ident: 2342_CR8
  publication-title: Magnetochemistry
  doi: 10.3390/magnetochemistry6010015
– volume: 6
  start-page: 12353
  issue: 15
  year: 2014
  ident: 2342_CR27
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502151m
SSID ssj0020241
Score 2.3493795
Snippet The electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals with different Mn-doped positions and concentrations are carried out by the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 106
SubjectTerms Approximation
Binding
Cadmium sulfide
Cadmium tellurides
Core-shell particles
Doppler effect
Electrical Engineering
Electrons
Engineering
Lifetime
Magnetic properties
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mechanical Engineering
Metals
Nanocrystals
Nanoparticles
Optical and Electronic Materials
Optical properties
Physical properties
Red shift
Spectra
Splitting
Theoretical
Title Dependence on Mn concentration and position on the electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals: empirical tight-binding theory
URI https://link.springer.com/article/10.1007/s10825-025-02342-1
https://www.proquest.com/docview/3215839218
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JThwxEC2F4RIOWQgoQwiqQ27QxFtvuY0mLEoEFxiJnFrtDaEE92imOcDn5Etje7ozgODAwae2LLfLyyu73iuAL2WmrUcWKiGpLhLBqPVrjuiEUUO05CavY9aSk9PseCJ-XKQXHSls3ke790-Scae-R3bz3kxCYuGCJd7nWU1pURYDWB0d_fp58N_R8ufOQic1K_0OzNKOLPN0Kw8PpCXKfPQwGs-bw7cw6Xu6CDP5vX_Tyn1190jE8aW_8g7edAAUR4sZ8x5eGbcOa_dkCT_A3-9dZlxlsHF44lAFcqPrFHaxdhr7YK9QwWNIXKbT2cNmGi_IY73r-tIFniROw63_LMi3YmNxrM_N17E-w5iXbh6iUdHVrlGzWw9X_8y_obmeXkX5Emyj1om8ivwbjMzL2w2YHB6cj4-TLpdDoljO2iRNlSKlDCu-kCmVxpSm9lhKUu5dPGu9W5ULrbX0Q2NyWhot_V6hA1ff1tRovgkD1zjzEZAbkVHLuWJaiTq3hZVEK6UzKwgXRAxhtzdoNV1IdlRLceYw8hWJxY98RYew3du86pbvvOIeCAXkSIsh7PUmXH5-vrWtl1X_BK9ZnAUhoHAbBu3sxnz2IKeVO92c3oGVCRv9AwEx9X4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TxwxELYQKYACJTzEEQJTpAsr_NpXOnQBHY-j4U6iW61fCAm8p7tLwd_JL83Yt5sDRAoKV7ZceDz2N_Z83xDyvcyMQ2ShE5qaIpGcOfQ5ahLOLDVK2LyOVUuGN9lgLC_v0ruWFDbrst27L8l4Ur8gu2E0k9DYhOQJxjyfEAwUoW7BmJ_-C7Pw1lmopGYlnr88baky78_x-jpaYsw336Lxtjn_TDZbmAinC7t-ISvWb5GNF-KB2-TPr7Z-rbbQeBh60IGC6FsdXKi9gS4lKwxApAfLojfH0EziM3Yc91Tf-8BmhEl4m58GkVVoHPTNyJ70zS3E6nGzkDMKvvaNnj4jqHyc_QT7NHmIIiMwj4ok6iGyZCDyI593yPj8bNQfJG3FhUTznM-TNNWalir4ZaFSpqwtbY2IRzGBgZhzGPzk0hijcB1tzkprFHq0CYx6VzNrxC5Z9Y23ewSElRlzQmhutKxzVzhFjdYmc5IKSWWP_OgWvposhDWqpYRyMFNFY0MzVaxHDjrbVK2TzSqBcCXgO1b0yHFnr2X3_2fb_9jwI7I2GA2vq-uLm6uvZJ3H7RNSAA_I6nz6235DWDJXh3EX_gUPMdqH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUqkKr2gOiXuoXSOfRWorUdJ9n0hhZW9AOEVFbiFsUeGyEVJ9oNB_4Ov7Rjb9JdqvbQg0-2fPB47Df2vDeMfSxzdIQsTMIznCRKCkc-xzGRwnLUqS3qWLXk7Dw_nauvV9nVBos_ZrsPX5IrTkNQafLduEU33iC-UWST8NhSJROKf7bpOBZhp8_l0e-Qi26glWJqXtJZLLOeNvP3OR5fTWu8-ccXabx5Zrtsp4eMcLSy8Qv2xPqX7PmGkOAr9nDc17I1FhoPZx5MoCP6XhMXao8wpGeFAYT6YF0A5xCaNj5px3G39bUPzEZowzv9IgiuQuNgipd2PMUfECvJLUP-KPjaN2ZxTwDz5_Iz2Nv2JgqOQBfVSfRNZMxA5Erev2bz2cnl9DTpqy8kRhayS7LMGF7q4KMTnQltbWlrQj-alllx5ygQKhQialpHW4jSoibvxsCud7WwmL5hW77x9i2D1KpcuDQ1Eo2qCzdxmqMxmDvFU8XViH0aFr5qVyIb1VpOOZip4rGRmSoxYvuDbare4ZZVStAlYD0xGbHDwV7r7n_P9u7_hn9gTy-OZ9X3L-ff9tgzGXdPyAbcZ1vd4s6-J4TS6YO4CX8Bpiveww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependence+on+Mn+concentration+and+position+on+the+electronic%2C+optical+and+magnetic+properties+of+CdTe%2FCdS+core%2Fshell+nanocrystals%3A+empirical+tight-binding+theory&rft.jtitle=Journal+of+computational+electronics&rft.au=Sukkabot%2C+Worasak&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1569-8025&rft.eissn=1572-8137&rft.volume=24&rft.issue=4&rft.spage=106&rft_id=info:doi/10.1007%2Fs10825-025-02342-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8025&client=summon