Dependence on Mn concentration and position on the electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals: empirical tight-binding theory
The electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals with different Mn-doped positions and concentrations are carried out by the empirical tight-binding model with the consideration of sp – d exchange interaction. Substitution of Mn ions into CdTe/CdS core/shell nanocr...
Saved in:
Published in | Journal of computational electronics Vol. 24; no. 4; p. 106 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1569-8025 1572-8137 |
DOI | 10.1007/s10825-025-02342-1 |
Cover
Loading…
Abstract | The electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals with different Mn-doped positions and concentrations are carried out by the empirical tight-binding model with the consideration of
sp
–
d
exchange interaction. Substitution of Mn ions into CdTe/CdS core/shell nanocrystal via desired sites and concentrations provides a way to manipulate the
sp
–
d
exchange interaction. With the growing Mn concentrations, the splitting energies and g-factor values are linearly increased. The splitting energies and g-factor values of CdTe:Mn/CdS core/shell nanoparticles are higher than those of CdTe/CdS:Mn core/shell nanoparticles. In the presence of Mn dopants, the optical spectra are divided into four components corresponding to the recombination paths. The increasing Mn concentrations display a progressive red-shift spectra. The introduction of Mn ions improves the optical property, thanks to oscillation strengths and radiative lifetimes. Overall, it is expected that this understanding of core/shell nanocrystals doped with magnetic ions can be utilized for spin-related applications. |
---|---|
AbstractList | The electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals with different Mn-doped positions and concentrations are carried out by the empirical tight-binding model with the consideration of sp–d exchange interaction. Substitution of Mn ions into CdTe/CdS core/shell nanocrystal via desired sites and concentrations provides a way to manipulate the sp–d exchange interaction. With the growing Mn concentrations, the splitting energies and g-factor values are linearly increased. The splitting energies and g-factor values of CdTe:Mn/CdS core/shell nanoparticles are higher than those of CdTe/CdS:Mn core/shell nanoparticles. In the presence of Mn dopants, the optical spectra are divided into four components corresponding to the recombination paths. The increasing Mn concentrations display a progressive red-shift spectra. The introduction of Mn ions improves the optical property, thanks to oscillation strengths and radiative lifetimes. Overall, it is expected that this understanding of core/shell nanocrystals doped with magnetic ions can be utilized for spin-related applications. The electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals with different Mn-doped positions and concentrations are carried out by the empirical tight-binding model with the consideration of sp – d exchange interaction. Substitution of Mn ions into CdTe/CdS core/shell nanocrystal via desired sites and concentrations provides a way to manipulate the sp – d exchange interaction. With the growing Mn concentrations, the splitting energies and g-factor values are linearly increased. The splitting energies and g-factor values of CdTe:Mn/CdS core/shell nanoparticles are higher than those of CdTe/CdS:Mn core/shell nanoparticles. In the presence of Mn dopants, the optical spectra are divided into four components corresponding to the recombination paths. The increasing Mn concentrations display a progressive red-shift spectra. The introduction of Mn ions improves the optical property, thanks to oscillation strengths and radiative lifetimes. Overall, it is expected that this understanding of core/shell nanocrystals doped with magnetic ions can be utilized for spin-related applications. |
ArticleNumber | 106 |
Author | Sukkabot, Worasak |
Author_xml | – sequence: 1 givenname: Worasak surname: Sukkabot fullname: Sukkabot, Worasak email: w.sukkabot@gmail.com organization: Department of Physics, Faculty of Science, Ubon Ratchathani University |
BookMark | eNp9UctOwzAQtBBIlMIPcLLElVCvE5OEGypPqYgDcI4ce9O6Su1gm0N_hy_FTZG4IXnlXXtmdrVzQg6ts0jIObArYKycBWAVFxkbIy94BgdkAqLkWQV5ebjLr-usSv_H5CSENWOc8QIm5PsOB7QarULqLH2xVLmU2-hlNOlBWk0HF8xYpBNXSLFHFb2zRl1SN0SjZD_iNnJpMZV08G5AHw0G6jo61-84m-u3pOxxFlbY99RK65Tfhij7cENxMxg_ykSzXMWsNVYbu9w1c357So66BMOz33tKPh7u3-dP2eL18Xl-u8gUL3nMhFCK1a3Ioa5aAS1ijVKAaCGHgnUdv2ZlobVu06qwhBp1y6DUaSVFJwF1PiUXe900_ucXhtis3Ze3qWWTcxBVXnOoEorvUcq7EDx2zeDNRvptA6zZedHsvWjYGMmLBhIp35NCAtsl-j_pf1g_hj2RPg |
Cites_doi | 10.1038/nbt920 10.1039/c2jm31476b 10.1021/ja206956t 10.1016/0038-1098(79)91211-0 10.1126/science.271.5251.933 10.1007/978-3-642-15856-8 10.1021/nl504510t 10.1103/PhysRevB.82.245304 10.1021/acs.jpcc.9b08372 10.1103/PhysRevB.1.4005 10.1103/PhysRevB.58.4713 10.1021/jp0709407 10.1021/acscentsci.5b00327 10.1002/adma.202004734 10.1063/1.1483113 10.1016/j.optmat.2017.04.058 10.1016/0022-3697(83)90064-1 10.1063/1.366631 10.1038/s41566-017-0070-7 10.1103/PhysRev.145.637 10.1016/j.commatsci.2015.09.003 10.1039/D0NA00399A 10.1116/1.574016 10.1007/s00339-023-06511-6 10.1021/jp711395f 10.1002/anie.200705111 10.1103/PhysRevB.16.790 10.1002/adma.200602642 10.1007/s12274-015-0742-x 10.1016/j.solener.2019.05.070 10.1021/nl102135k 10.1038/nature01217 10.1142/4121 10.1088/0957-4484/19/13/135604 10.1021/jp0557013 10.1016/j.physb.2019.01.006 10.1126/science.278.5346.2114 10.1126/science.1065389 10.1021/acsanm.2c04337 10.1016/j.tsf.2005.11.111 10.3390/magnetochemistry6010015 10.1021/am502151m |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s10825-025-02342-1 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1572-8137 |
ExternalDocumentID | 10_1007_s10825_025_02342_1 |
GrantInformation_xml | – fundername: National Research Council of Thailand grantid: NRCT5-RSA63023-04 |
GroupedDBID | .86 .VR 06D 0R~ 0VY 1N0 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9P PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 2P1 2VQ AARHV AAYXX ABJCF ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFGCZ AFKRA AGJBK AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- M7S N2Q O9- OVD PHGZM PHGZT PQGLB PTHSS RNI RZC RZE TEORI JQ2 |
ID | FETCH-LOGICAL-c272t-55cc09b53198b51bee9ea515b13140ff26074dddb108e719edb017d0254fa1ed3 |
IEDL.DBID | AGYKE |
ISSN | 1569-8025 |
IngestDate | Fri Aug 08 03:40:44 EDT 2025 Thu Aug 14 00:00:39 EDT 2025 Thu Aug 07 06:04:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Magnetic property Magnetic ions Core/shell nanocrystal Optical property Empirical tight-binding model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-55cc09b53198b51bee9ea515b13140ff26074dddb108e719edb017d0254fa1ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3215839218 |
PQPubID | 2043855 |
ParticipantIDs | proquest_journals_3215839218 crossref_primary_10_1007_s10825_025_02342_1 springer_journals_10_1007_s10825_025_02342_1 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Journal of computational electronics |
PublicationTitleAbbrev | J Comput Electron |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | A Almohammedi (2342_CR9) 2023; 129 H Zare (2342_CR26) 2015; 8 VA Vlaskin (2342_CR16) 2010; 10 PN Keating (2342_CR33) 1966; 145 LR Bradshaw (2342_CR10) 2015; 15 Q Zeng (2342_CR21) 2008; 112 M-Q Dai (2342_CR38) 2012; 22 H Zhong (2342_CR5) 2007; 111 M Marandi (2342_CR22) 2017; 69 V Albe (2342_CR43) 1998; 58 MRS Mir (2342_CR28) 2019; 557 JA Gaj (2342_CR31) 1979; 29 B Sreenan (2342_CR14) 2022; 5 AP Alivisatos (2342_CR2) 1996; 271 EJ McLaurin (2342_CR17) 2011; 133 JA Gaj (2342_CR32) 2010 M Korkusinski (2342_CR36) 2010; 82 WA Harrison (2342_CR39) 1999 KF Wu (2342_CR11) 2018; 12 LX Cao (2342_CR15) 2002; 80 SA Empedocles (2342_CR1) 1997; 278 P Vogl (2342_CR29) 1983; 44 J Lim (2342_CR4) 2007; 19 O Akinci (2342_CR40) 2006; 511 X Liu (2342_CR20) 2021; 33 Z Zu (2342_CR24) 2008; 19 S Lee (2342_CR41) 2004; 69 S Rudra (2342_CR19) 2019; 123 C Pu (2342_CR18) 2016; 2 S Coe (2342_CR3) 2002; 420 C Pryor (2342_CR35) 1998; 83 S Kim (2342_CR6) 2004; 22 A Gupta (2342_CR8) 2020; 6 JK Furdyna (2342_CR30) 1986; 4 M Marandi (2342_CR23) 2019; 188 RM Martin (2342_CR34) 1970; 1 W Sukkabot (2342_CR42) 2016; 111 S Irvine (2342_CR13) 2008; 47 SA Wolf (2342_CR7) 2001; 294 DJ Chadi (2342_CR37) 1977; 16 O Schöps (2342_CR25) 2006; 110 W Li (2342_CR27) 2014; 6 S Palchoudhury (2342_CR12) 2020; 2 |
References_xml | – volume: 22 start-page: 93 year: 2004 ident: 2342_CR6 publication-title: Nat. Biotechnol. doi: 10.1038/nbt920 – volume: 22 start-page: 16336 year: 2012 ident: 2342_CR38 publication-title: J. Mater. Chem. doi: 10.1039/c2jm31476b – volume: 133 start-page: 14978 year: 2011 ident: 2342_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206956t – volume: 29 start-page: 435 year: 1979 ident: 2342_CR31 publication-title: Solid State Commun. doi: 10.1016/0038-1098(79)91211-0 – volume: 271 start-page: 933 year: 1996 ident: 2342_CR2 publication-title: Science doi: 10.1126/science.271.5251.933 – start-page: 1 volume-title: Introduction to the physics of diluted magnetic semiconductors year: 2010 ident: 2342_CR32 doi: 10.1007/978-3-642-15856-8 – volume: 15 start-page: 1315 year: 2015 ident: 2342_CR10 publication-title: Nano Lett. doi: 10.1021/nl504510t – volume: 82 year: 2010 ident: 2342_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.245304 – volume: 123 start-page: 29445 issue: 48 year: 2019 ident: 2342_CR19 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b08372 – volume: 1 start-page: 4005 year: 1970 ident: 2342_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.1.4005 – volume: 58 start-page: 4713 year: 1998 ident: 2342_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.4713 – volume: 111 start-page: 6538 year: 2007 ident: 2342_CR5 publication-title: J. Phys. Chem. C doi: 10.1021/jp0709407 – volume: 2 start-page: 32 year: 2016 ident: 2342_CR18 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.5b00327 – volume: 33 start-page: 2004734 issue: 30 year: 2021 ident: 2342_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.202004734 – volume: 80 start-page: 4300 year: 2002 ident: 2342_CR15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1483113 – volume: 69 start-page: 358 year: 2017 ident: 2342_CR22 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2017.04.058 – volume: 44 start-page: 365 year: 1983 ident: 2342_CR29 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(83)90064-1 – volume: 83 start-page: 2548 year: 1998 ident: 2342_CR35 publication-title: J. Appl. Phys. doi: 10.1063/1.366631 – volume: 12 start-page: 105 year: 2018 ident: 2342_CR11 publication-title: Nat. Photon. doi: 10.1038/s41566-017-0070-7 – volume: 145 start-page: 637 year: 1966 ident: 2342_CR33 publication-title: Phys. Rev. doi: 10.1103/PhysRev.145.637 – volume: 111 start-page: 23 year: 2016 ident: 2342_CR42 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.09.003 – volume: 2 start-page: 3069 issue: 8 year: 2020 ident: 2342_CR12 publication-title: Nanoscale Adv. doi: 10.1039/D0NA00399A – volume: 4 start-page: 2002 year: 1986 ident: 2342_CR30 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.574016 – volume: 129 start-page: 221 issue: 3 year: 2023 ident: 2342_CR9 publication-title: Appl. Phys. A doi: 10.1007/s00339-023-06511-6 – volume: 112 start-page: 8587 year: 2008 ident: 2342_CR21 publication-title: J. Phys. Chem. C doi: 10.1021/jp711395f – volume: 47 start-page: 2685 year: 2008 ident: 2342_CR13 publication-title: Chem. Int. Ed. doi: 10.1002/anie.200705111 – volume: 16 start-page: 790 year: 1977 ident: 2342_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.16.790 – volume: 19 start-page: 1927 year: 2007 ident: 2342_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.200602642 – volume: 8 start-page: 2317 year: 2015 ident: 2342_CR26 publication-title: Nano Res. doi: 10.1007/s12274-015-0742-x – volume: 188 start-page: 35 year: 2019 ident: 2342_CR23 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.05.070 – volume: 10 start-page: 3670 year: 2010 ident: 2342_CR16 publication-title: Nano Lett. doi: 10.1021/nl102135k – volume: 420 start-page: 800 year: 2002 ident: 2342_CR3 publication-title: Nature doi: 10.1038/nature01217 – volume-title: Elementary Electronic Structure year: 1999 ident: 2342_CR39 doi: 10.1142/4121 – volume: 69 year: 2004 ident: 2342_CR41 publication-title: Phys. Rev. B – volume: 19 start-page: 135604 year: 2008 ident: 2342_CR24 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/13/135604 – volume: 110 start-page: 2074 issue: 5 year: 2006 ident: 2342_CR25 publication-title: J. Phys. Chem. B doi: 10.1021/jp0557013 – volume: 557 start-page: 23 year: 2019 ident: 2342_CR28 publication-title: Physica B: Condens. Matter doi: 10.1016/j.physb.2019.01.006 – volume: 278 start-page: 2114 year: 1997 ident: 2342_CR1 publication-title: Science doi: 10.1126/science.278.5346.2114 – volume: 294 start-page: 1488 year: 2001 ident: 2342_CR7 publication-title: Science doi: 10.1126/science.1065389 – volume: 5 start-page: 17413 issue: 12 year: 2022 ident: 2342_CR14 publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.2c04337 – volume: 511 start-page: 684 year: 2006 ident: 2342_CR40 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.11.111 – volume: 6 start-page: 15 issue: 1 year: 2020 ident: 2342_CR8 publication-title: Magnetochemistry doi: 10.3390/magnetochemistry6010015 – volume: 6 start-page: 12353 issue: 15 year: 2014 ident: 2342_CR27 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502151m |
SSID | ssj0020241 |
Score | 2.3493795 |
Snippet | The electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals with different Mn-doped positions and concentrations are carried out by the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 106 |
SubjectTerms | Approximation Binding Cadmium sulfide Cadmium tellurides Core-shell particles Doppler effect Electrical Engineering Electrons Engineering Lifetime Magnetic properties Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Metals Nanocrystals Nanoparticles Optical and Electronic Materials Optical properties Physical properties Red shift Spectra Splitting Theoretical |
Title | Dependence on Mn concentration and position on the electronic, optical and magnetic properties of CdTe/CdS core/shell nanocrystals: empirical tight-binding theory |
URI | https://link.springer.com/article/10.1007/s10825-025-02342-1 https://www.proquest.com/docview/3215839218 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JThwxEC2F4RIOWQgoQwiqQ27QxFtvuY0mLEoEFxiJnFrtDaEE92imOcDn5Etje7ozgODAwae2LLfLyyu73iuAL2WmrUcWKiGpLhLBqPVrjuiEUUO05CavY9aSk9PseCJ-XKQXHSls3ke790-Scae-R3bz3kxCYuGCJd7nWU1pURYDWB0d_fp58N_R8ufOQic1K_0OzNKOLPN0Kw8PpCXKfPQwGs-bw7cw6Xu6CDP5vX_Tyn1190jE8aW_8g7edAAUR4sZ8x5eGbcOa_dkCT_A3-9dZlxlsHF44lAFcqPrFHaxdhr7YK9QwWNIXKbT2cNmGi_IY73r-tIFniROw63_LMi3YmNxrM_N17E-w5iXbh6iUdHVrlGzWw9X_8y_obmeXkX5Emyj1om8ivwbjMzL2w2YHB6cj4-TLpdDoljO2iRNlSKlDCu-kCmVxpSm9lhKUu5dPGu9W5ULrbX0Q2NyWhot_V6hA1ff1tRovgkD1zjzEZAbkVHLuWJaiTq3hZVEK6UzKwgXRAxhtzdoNV1IdlRLceYw8hWJxY98RYew3du86pbvvOIeCAXkSIsh7PUmXH5-vrWtl1X_BK9ZnAUhoHAbBu3sxnz2IKeVO92c3oGVCRv9AwEx9X4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TxwxELYQKYACJTzEEQJTpAsr_NpXOnQBHY-j4U6iW61fCAm8p7tLwd_JL83Yt5sDRAoKV7ZceDz2N_Z83xDyvcyMQ2ShE5qaIpGcOfQ5ahLOLDVK2LyOVUuGN9lgLC_v0ruWFDbrst27L8l4Ur8gu2E0k9DYhOQJxjyfEAwUoW7BmJ_-C7Pw1lmopGYlnr88baky78_x-jpaYsw336Lxtjn_TDZbmAinC7t-ISvWb5GNF-KB2-TPr7Z-rbbQeBh60IGC6FsdXKi9gS4lKwxApAfLojfH0EziM3Yc91Tf-8BmhEl4m58GkVVoHPTNyJ70zS3E6nGzkDMKvvaNnj4jqHyc_QT7NHmIIiMwj4ok6iGyZCDyI593yPj8bNQfJG3FhUTznM-TNNWalir4ZaFSpqwtbY2IRzGBgZhzGPzk0hijcB1tzkprFHq0CYx6VzNrxC5Z9Y23ewSElRlzQmhutKxzVzhFjdYmc5IKSWWP_OgWvposhDWqpYRyMFNFY0MzVaxHDjrbVK2TzSqBcCXgO1b0yHFnr2X3_2fb_9jwI7I2GA2vq-uLm6uvZJ3H7RNSAA_I6nz6235DWDJXh3EX_gUPMdqH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUqkKr2gOiXuoXSOfRWorUdJ9n0hhZW9AOEVFbiFsUeGyEVJ9oNB_4Ov7Rjb9JdqvbQg0-2fPB47Df2vDeMfSxzdIQsTMIznCRKCkc-xzGRwnLUqS3qWLXk7Dw_nauvV9nVBos_ZrsPX5IrTkNQafLduEU33iC-UWST8NhSJROKf7bpOBZhp8_l0e-Qi26glWJqXtJZLLOeNvP3OR5fTWu8-ccXabx5Zrtsp4eMcLSy8Qv2xPqX7PmGkOAr9nDc17I1FhoPZx5MoCP6XhMXao8wpGeFAYT6YF0A5xCaNj5px3G39bUPzEZowzv9IgiuQuNgipd2PMUfECvJLUP-KPjaN2ZxTwDz5_Iz2Nv2JgqOQBfVSfRNZMxA5Erev2bz2cnl9DTpqy8kRhayS7LMGF7q4KMTnQltbWlrQj-alllx5ygQKhQialpHW4jSoibvxsCud7WwmL5hW77x9i2D1KpcuDQ1Eo2qCzdxmqMxmDvFU8XViH0aFr5qVyIb1VpOOZip4rGRmSoxYvuDbare4ZZVStAlYD0xGbHDwV7r7n_P9u7_hn9gTy-OZ9X3L-ff9tgzGXdPyAbcZ1vd4s6-J4TS6YO4CX8Bpiveww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependence+on+Mn+concentration+and+position+on+the+electronic%2C+optical+and+magnetic+properties+of+CdTe%2FCdS+core%2Fshell+nanocrystals%3A+empirical+tight-binding+theory&rft.jtitle=Journal+of+computational+electronics&rft.au=Sukkabot%2C+Worasak&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1569-8025&rft.eissn=1572-8137&rft.volume=24&rft.issue=4&rft.spage=106&rft_id=info:doi/10.1007%2Fs10825-025-02342-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8025&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8025&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8025&client=summon |