Single-Loop Projection-Free and Projected Gradient-Based Algorithms for Nonconvex-Concave Saddle Point Problems with Bilevel Structure
In this paper, we explore a broad class of constrained saddle point problems with a bilevel structure, wherein the upper-level objective function is nonconvex-concave and smooth over compact and convex constraint sets, subject to a strongly convex lower-level objective function. This class of proble...
Saved in:
Published in | Journal of scientific computing Vol. 103; no. 2; p. 52 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0885-7474 1573-7691 |
DOI | 10.1007/s10915-025-02864-7 |
Cover
Loading…
Abstract | In this paper, we explore a broad class of constrained saddle point problems with a bilevel structure, wherein the upper-level objective function is nonconvex-concave and smooth over compact and convex constraint sets, subject to a strongly convex lower-level objective function. This class of problems finds wide applicability in machine learning, encompassing robust multi-task learning, adversarial learning, and robust meta-learning. Our study extends the current literature in two main directions: (i) We consider a more general setting where the upper-level function is not necessarily strongly concave or linear in the maximization variable. (ii) While existing methods for solving saddle point problems with a bilevel structure are projected-based algorithms, we propose a one-sided projection-free method employing a linear minimization oracle. Specifically, by utilizing regularization and nested approximation techniques, we introduce a novel single-loop one-sided projection-free algorithm, requiring
O
(
ϵ
-
4
)
iterations to attain an
ϵ
-stationary solution, moreover, when the objective function in the upper-level is linear in the maximization component, our result improve to
O
(
ϵ
-
3
)
. Subsequently, we develop an efficient single-loop fully projected gradient-based algorithm capable of achieving an
ϵ
-stationary solution within
O
(
ϵ
-
5
)
iterations. This result improves to
O
(
ϵ
-
4
)
when the upper-level objective function is strongly concave in the maximization component. Finally, we tested our proposed methods against the state-of-the-art algorithms for solving a robust multi-task regression problem to showcase the superiority of our algorithms. |
---|---|
AbstractList | In this paper, we explore a broad class of constrained saddle point problems with a bilevel structure, wherein the upper-level objective function is nonconvex-concave and smooth over compact and convex constraint sets, subject to a strongly convex lower-level objective function. This class of problems finds wide applicability in machine learning, encompassing robust multi-task learning, adversarial learning, and robust meta-learning. Our study extends the current literature in two main directions: (i) We consider a more general setting where the upper-level function is not necessarily strongly concave or linear in the maximization variable. (ii) While existing methods for solving saddle point problems with a bilevel structure are projected-based algorithms, we propose a one-sided projection-free method employing a linear minimization oracle. Specifically, by utilizing regularization and nested approximation techniques, we introduce a novel single-loop one-sided projection-free algorithm, requiring O(ϵ-4) iterations to attain an ϵ-stationary solution, moreover, when the objective function in the upper-level is linear in the maximization component, our result improve to O(ϵ-3). Subsequently, we develop an efficient single-loop fully projected gradient-based algorithm capable of achieving an ϵ-stationary solution within O(ϵ-5) iterations. This result improves to O(ϵ-4) when the upper-level objective function is strongly concave in the maximization component. Finally, we tested our proposed methods against the state-of-the-art algorithms for solving a robust multi-task regression problem to showcase the superiority of our algorithms. In this paper, we explore a broad class of constrained saddle point problems with a bilevel structure, wherein the upper-level objective function is nonconvex-concave and smooth over compact and convex constraint sets, subject to a strongly convex lower-level objective function. This class of problems finds wide applicability in machine learning, encompassing robust multi-task learning, adversarial learning, and robust meta-learning. Our study extends the current literature in two main directions: (i) We consider a more general setting where the upper-level function is not necessarily strongly concave or linear in the maximization variable. (ii) While existing methods for solving saddle point problems with a bilevel structure are projected-based algorithms, we propose a one-sided projection-free method employing a linear minimization oracle. Specifically, by utilizing regularization and nested approximation techniques, we introduce a novel single-loop one-sided projection-free algorithm, requiring O ( ϵ - 4 ) iterations to attain an ϵ -stationary solution, moreover, when the objective function in the upper-level is linear in the maximization component, our result improve to O ( ϵ - 3 ) . Subsequently, we develop an efficient single-loop fully projected gradient-based algorithm capable of achieving an ϵ -stationary solution within O ( ϵ - 5 ) iterations. This result improves to O ( ϵ - 4 ) when the upper-level objective function is strongly concave in the maximization component. Finally, we tested our proposed methods against the state-of-the-art algorithms for solving a robust multi-task regression problem to showcase the superiority of our algorithms. |
ArticleNumber | 52 |
Author | Ahmadi, Mohammad Mahdi Yazdandoost Hamedani, Erfan |
Author_xml | – sequence: 1 givenname: Mohammad Mahdi surname: Ahmadi fullname: Ahmadi, Mohammad Mahdi organization: Department of Systems and Industrial Engineering, The University of Arizona – sequence: 2 givenname: Erfan orcidid: 0000-0002-3229-3499 surname: Yazdandoost Hamedani fullname: Yazdandoost Hamedani, Erfan email: erfany@arizona.edu organization: Department of Systems and Industrial Engineering, The University of Arizona |
BookMark | eNp9kM1KAzEUhYMoWH9ewFXAdTSZZJrMshatQlGhug6ZyU2dMk1qMq36Aj63qVXcubjcH845F74jtO-DB4TOGL1glMrLxGjFSkKLbamhIHIPDVgpOZHDiu2jAVWqJFJIcYiOUlpQSitVFQP0OWv9vAMyDWGFH2NYQNO3wZObCICNt783sHgSjW3B9-TKpLyOunmIbf-yTNiFiO-Db4LfwDsZ58lsAM-MtR3gx9D6fhtTd5C1b9mCr9oONtDhWR_XTb-OcIIOnOkSnP70Y_R8c_00viXTh8ndeDQlTSGLnpTMVkwozoUVvLZ1LZyjDauaWg6NsZmEKZwqbcHBMmZc6SDvhksrnCiU4sfofJe7iuF1DanXi7COPr_UnCmhJBVyqyp2qiaGlCI4vYrt0sQPzaje8tY73jrz1t-8tcwmvjOlLPZziH_R_7i-AOpphzI |
Cites_doi | 10.1137/20M1387341 10.1007/s10107-022-01919-z 10.1137/14095697X 10.1609/aaai.v36i7.20706 10.1145/1961189.1961199 10.1287/opre.21.1.37 10.1007/s10107-015-0957-3 10.1023/A:1007379606734 10.1137/18M1213488 10.1137/S1052623403425629 10.1287/moor.2023.1387 10.1137/20M1337600 10.1016/0362-546X(94)00186-L 10.1002/nav.3800030109 10.1109/TSP.2023.3234462 10.1080/01630563.2018.1477799 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. May 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. May 2025 |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s10915-025-02864-7 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1573-7691 |
ExternalDocumentID | 10_1007_s10915_025_02864_7 |
GrantInformation_xml | – fundername: University of Arizona – fundername: Division of Electrical, Communications and Cyber Systems grantid: 2127696 funderid: http://dx.doi.org/10.13039/100000148 |
GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PHGZM PHGZT PQGLB PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ZWQNP ~A9 ~EX AAYXX CITATION JQ2 |
ID | FETCH-LOGICAL-c272t-51d9148334d43bdbb4ff0c19cb76aad007a2f85d23ed11af5fe2f8a37d4f42883 |
IEDL.DBID | U2A |
ISSN | 0885-7474 |
IngestDate | Fri Jul 25 09:40:43 EDT 2025 Sun Jul 06 05:04:20 EDT 2025 Mon Jul 21 06:06:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nonconvex-concave minimax optimization Bilevel optimization 65K15 Robust multi-task learning 90C47 90C06 Projection-free method Saddle point problem 49K35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-51d9148334d43bdbb4ff0c19cb76aad007a2f85d23ed11af5fe2f8a37d4f42883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3229-3499 |
PQID | 3184870478 |
PQPubID | 2043771 |
ParticipantIDs | proquest_journals_3184870478 crossref_primary_10_1007_s10915_025_02864_7 springer_journals_10_1007_s10915_025_02864_7 |
PublicationCentury | 2000 |
PublicationDate | 20250500 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 5 year: 2025 text: 20250500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of scientific computing |
PublicationTitleAbbrev | J Sci Comput |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | EY Hamedani (2864_CR22) 2021; 31 2864_CR26 2864_CR25 2864_CR20 J Zhang (2864_CR47) 2020; 33 2864_CR21 2864_CR28 C Chen (2864_CR10) 2020; 33 2864_CR29 J Bracken (2864_CR5) 1973; 21 A Chambolle (2864_CR7) 2016; 159 R Caruana (2864_CR6) 1997; 28 P Bernhard (2864_CR3) 1995; 24 2864_CR30 A Nemirovski (2864_CR38) 2004; 15 M Frank (2864_CR14) 1956; 3 2864_CR37 2864_CR35 M Hong (2864_CR23) 2023; 33 2864_CR36 2864_CR33 2864_CR34 2864_CR31 2864_CR32 Q Hu (2864_CR24) 2022; 35 2864_CR41 CC Chang (2864_CR8) 2011; 2 2864_CR48 DM Ostrovskii (2864_CR39) 2021; 31 2864_CR49 2864_CR46 2864_CR44 2864_CR45 2864_CR43 P Khanduri (2864_CR27) 2021; 34 Y Shehu (2864_CR42) 2018; 39 2864_CR1 2864_CR15 2864_CR9 2864_CR16 2864_CR13 2864_CR4 2864_CR11 2864_CR12 2864_CR19 2864_CR17 2864_CR18 Z Akhtar (2864_CR2) 2022; 70 Y Ouyang (2864_CR40) 2015; 8 |
References_xml | – volume: 33 start-page: 10799 year: 2020 ident: 2864_CR10 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 33 start-page: 147 issue: 1 year: 2023 ident: 2864_CR23 publication-title: SIAM J. Optim. doi: 10.1137/20M1387341 – ident: 2864_CR45 doi: 10.1007/s10107-022-01919-z – volume: 8 start-page: 644 issue: 1 year: 2015 ident: 2864_CR40 publication-title: SIAM J. Imag. Sci. doi: 10.1137/14095697X – ident: 2864_CR18 – ident: 2864_CR32 doi: 10.1609/aaai.v36i7.20706 – ident: 2864_CR33 – ident: 2864_CR37 – ident: 2864_CR4 – ident: 2864_CR20 – ident: 2864_CR28 – ident: 2864_CR43 – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 2864_CR8 publication-title: ACM Trans. Intell. Syst. Technol. (TIST) doi: 10.1145/1961189.1961199 – ident: 2864_CR11 – ident: 2864_CR36 – volume: 21 start-page: 37 issue: 1 year: 1973 ident: 2864_CR5 publication-title: Oper. Res. doi: 10.1287/opre.21.1.37 – volume: 159 start-page: 253 issue: 1–2 year: 2016 ident: 2864_CR7 publication-title: Math. Program. doi: 10.1007/s10107-015-0957-3 – volume: 35 start-page: 29552 year: 2022 ident: 2864_CR24 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 2864_CR15 – ident: 2864_CR19 – ident: 2864_CR25 – ident: 2864_CR21 – ident: 2864_CR29 – volume: 28 start-page: 41 year: 1997 ident: 2864_CR6 publication-title: Mach. Learn. doi: 10.1023/A:1007379606734 – ident: 2864_CR46 – volume: 31 start-page: 1299 issue: 2 year: 2021 ident: 2864_CR22 publication-title: SIAM J. Optim. doi: 10.1137/18M1213488 – volume: 15 start-page: 229 issue: 1 year: 2004 ident: 2864_CR38 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403425629 – ident: 2864_CR12 – ident: 2864_CR35 – ident: 2864_CR49 doi: 10.1287/moor.2023.1387 – ident: 2864_CR9 – ident: 2864_CR16 – ident: 2864_CR31 – volume: 31 start-page: 2508 issue: 4 year: 2021 ident: 2864_CR39 publication-title: SIAM J. Optim. doi: 10.1137/20M1337600 – volume: 33 start-page: 7377 year: 2020 ident: 2864_CR47 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 2864_CR41 – ident: 2864_CR26 – ident: 2864_CR13 – ident: 2864_CR34 – volume: 24 start-page: 1163 issue: 8 year: 1995 ident: 2864_CR3 publication-title: Nonlinear Anal.: Theory Methods Appl. doi: 10.1016/0362-546X(94)00186-L – ident: 2864_CR17 – ident: 2864_CR30 – volume: 34 start-page: 30271 year: 2021 ident: 2864_CR27 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 3 start-page: 95 issue: 1–2 year: 1956 ident: 2864_CR14 publication-title: Naval Res. Logist. Q. doi: 10.1002/nav.3800030109 – volume: 70 start-page: 6332 year: 2022 ident: 2864_CR2 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2023.3234462 – ident: 2864_CR1 – volume: 39 start-page: 1077 issue: 10 year: 2018 ident: 2864_CR42 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2018.1477799 – ident: 2864_CR44 – ident: 2864_CR48 |
SSID | ssj0009892 |
Score | 2.4045238 |
Snippet | In this paper, we explore a broad class of constrained saddle point problems with a bilevel structure, wherein the upper-level objective function is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 52 |
SubjectTerms | Algorithms Computational Mathematics and Numerical Analysis Linear programming Machine learning Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Maximization Methods Optimization Regularization Robustness (mathematics) Saddle points Theoretical |
Title | Single-Loop Projection-Free and Projected Gradient-Based Algorithms for Nonconvex-Concave Saddle Point Problems with Bilevel Structure |
URI | https://link.springer.com/article/10.1007/s10915-025-02864-7 https://www.proquest.com/docview/3184870478 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61cGkPqNBWXaDIhx6oWksbP_I47iIW1MIKabsSPUVOPKZI2wRtAuIX8Ls79ibdgtpDD1HiJJrDjOdhe-YbgA-WvDrGMuJpWTquXJqRzmnFTSFEgkaUFn3t8Pk0Pp2rL5f6sisKa_ps9_5IMljqP4rdsshXE_srjRVPnsOm9mt3msVzMVpD7aahFTKpj-YULKuuVObvNB67o3WM-eRYNHibySvY6sJENlrJdRueYbUDL89_Y6w2O7DdqWXDDjvs6I-v4WFG5BbIz-r6hl2sdlmI83yyRGSmsv07tOxkGbK9Wj4mR2bZaHFVL6_bHz8bRnEsm9ZVSEi_50f0ZO6QzYzfymAX9XXVejK-D03D_D4uG5NpucMFmwUw2tslvoH55Pjb0SnvWi3wUiSi5TqyGS2MpFRWycIWhXJuWEZZWSSxMZZ4Z4RLtRUSbRQZpx3S2MjEKqd8w-K3sFHVFb4DZmOJZGG1G0pUSpnMuKQYlomROhOFSwfwqed4frNC1MjX2MlePjnJJw_yyZMB7PdCyTvtanKyQ7TO8rhCA_jcC2r9-d_Udv_v9z14IcJc8fmN-7BBTMT3FIO0xQFsjibj8dTfT75_PT4IU_AXCpnXkg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5ROLQ9oEJbEQp0Dz20aleKd9evY0BNA00ipBCJm7X2zgJSaqPYoP4CfjezG7spVXvowZJfmsPMzmNnZ74B-GDIq2MkA54UheXKJinpXKi4zoWIUYvCoOsdnkyj0VydXYaXbVNY3VW7d0eS3lL_1uyWBq6b2F1JpHj8DLYoGEhcIddcDNZQu4kfhUzqE3IKllXbKvN3Gk_d0TrG_ONY1Hub4SvYbsNENljJdQc2sNyFl5NfGKv1Luy0almzjy129KfX8DAjcgvk46q6ZeerLAtxng-XiEyXpnuHhn1b-mqvhh-TIzNssLiqljfN9Y-aURzLplXpC9J_8hO60_fIZtqlMth5dVM2joybQ1Mzl8dlx2Ra7nHBZh6M9m6Jb2A-_HpxMuLtqAVeiFg0PAxMShsjKZVRMjd5rqztF0Fa5HGktSHeaWGT0AiJJgi0DS3Ss5axUVa5gcVvYbOsStwDZiKJZGFD25eolNKptnHeL2Itw1TkNunB547j2e0KUSNbYyc7-WQkn8zLJ4t7cNAJJWu1q87IDtE-y-EK9eBLJ6j1539T2_-_39_D89HFZJyNT6ff38EL4deNq3U8gE1iKB5SPNLkR375PQLW2dd1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkJwQLSA2FKKDz0UgdWN7byO25Ztoe1qpWWl3iInHkOlbbLahIpf0N_dsTfpFgSHHiLlpTn48zxsz3wDsGfIq2MkA54UheXKJinpXKi4zoWIUYvCoKsdvhhFp1P17TK8fFDF77PduyPJZU2DY2kqm4O5sQcPCt_SwFUWuyuJFI-fwAaZ48DN66kYrGh3E98WmVQp5BQ4q7Zs5t8y_nRNq3jzryNS73mGL-FFGzKywRLjTVjDcgueX9zzrdZbsNmqaM32Wx7pj6_gdkLiZsjPq2rOxssdF0KBDxeITJeme4eGnSx85lfDD8mpGTaY_agWV83P65pRTMtGVemT03_zI7rTN8gm2m1rsHF1VTZOjOtJUzO3p8sOyczc4IxNPDHtrwW-hunwy_ejU962XeCFiEXDw8CktEiSUhklc5Pnytp-EaRFHkdaGxo7LWwSGiHRBIG2oUV61jI2yirXvPgNrJdViW-BmUgiWdvQ9iUqpXSqbZz3i1jLMBW5TXrwqRvxbL5k18hWPMoOn4zwyTw-WdyDnQ6UrNW0OiObRGsuxzHUg88dUKvP_5e2_bjfP8DT8fEwO_86OnsHz4SfNi7tcQfWaTzxPYUmTb7rZ98dWJHbsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Loop+Projection-Free+and+Projected+Gradient-Based+Algorithms+for+Nonconvex-Concave+Saddle+Point+Problems+with+Bilevel+Structure&rft.jtitle=Journal+of+scientific+computing&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=103&rft.issue=2&rft.spage=52&rft_id=info:doi/10.1007%2Fs10915-025-02864-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |