Single-Loop Projection-Free and Projected Gradient-Based Algorithms for Nonconvex-Concave Saddle Point Problems with Bilevel Structure

In this paper, we explore a broad class of constrained saddle point problems with a bilevel structure, wherein the upper-level objective function is nonconvex-concave and smooth over compact and convex constraint sets, subject to a strongly convex lower-level objective function. This class of proble...

Full description

Saved in:
Bibliographic Details
Published inJournal of scientific computing Vol. 103; no. 2; p. 52
Main Authors Ahmadi, Mohammad Mahdi, Yazdandoost Hamedani, Erfan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-7474
1573-7691
DOI10.1007/s10915-025-02864-7

Cover

Loading…
Abstract In this paper, we explore a broad class of constrained saddle point problems with a bilevel structure, wherein the upper-level objective function is nonconvex-concave and smooth over compact and convex constraint sets, subject to a strongly convex lower-level objective function. This class of problems finds wide applicability in machine learning, encompassing robust multi-task learning, adversarial learning, and robust meta-learning. Our study extends the current literature in two main directions: (i) We consider a more general setting where the upper-level function is not necessarily strongly concave or linear in the maximization variable. (ii) While existing methods for solving saddle point problems with a bilevel structure are projected-based algorithms, we propose a one-sided projection-free method employing a linear minimization oracle. Specifically, by utilizing regularization and nested approximation techniques, we introduce a novel single-loop one-sided projection-free algorithm, requiring O ( ϵ - 4 ) iterations to attain an ϵ -stationary solution, moreover, when the objective function in the upper-level is linear in the maximization component, our result improve to O ( ϵ - 3 ) . Subsequently, we develop an efficient single-loop fully projected gradient-based algorithm capable of achieving an ϵ -stationary solution within O ( ϵ - 5 ) iterations. This result improves to O ( ϵ - 4 ) when the upper-level objective function is strongly concave in the maximization component. Finally, we tested our proposed methods against the state-of-the-art algorithms for solving a robust multi-task regression problem to showcase the superiority of our algorithms.
AbstractList In this paper, we explore a broad class of constrained saddle point problems with a bilevel structure, wherein the upper-level objective function is nonconvex-concave and smooth over compact and convex constraint sets, subject to a strongly convex lower-level objective function. This class of problems finds wide applicability in machine learning, encompassing robust multi-task learning, adversarial learning, and robust meta-learning. Our study extends the current literature in two main directions: (i) We consider a more general setting where the upper-level function is not necessarily strongly concave or linear in the maximization variable. (ii) While existing methods for solving saddle point problems with a bilevel structure are projected-based algorithms, we propose a one-sided projection-free method employing a linear minimization oracle. Specifically, by utilizing regularization and nested approximation techniques, we introduce a novel single-loop one-sided projection-free algorithm, requiring O(ϵ-4) iterations to attain an ϵ-stationary solution, moreover, when the objective function in the upper-level is linear in the maximization component, our result improve to O(ϵ-3). Subsequently, we develop an efficient single-loop fully projected gradient-based algorithm capable of achieving an ϵ-stationary solution within O(ϵ-5) iterations. This result improves to O(ϵ-4) when the upper-level objective function is strongly concave in the maximization component. Finally, we tested our proposed methods against the state-of-the-art algorithms for solving a robust multi-task regression problem to showcase the superiority of our algorithms.
In this paper, we explore a broad class of constrained saddle point problems with a bilevel structure, wherein the upper-level objective function is nonconvex-concave and smooth over compact and convex constraint sets, subject to a strongly convex lower-level objective function. This class of problems finds wide applicability in machine learning, encompassing robust multi-task learning, adversarial learning, and robust meta-learning. Our study extends the current literature in two main directions: (i) We consider a more general setting where the upper-level function is not necessarily strongly concave or linear in the maximization variable. (ii) While existing methods for solving saddle point problems with a bilevel structure are projected-based algorithms, we propose a one-sided projection-free method employing a linear minimization oracle. Specifically, by utilizing regularization and nested approximation techniques, we introduce a novel single-loop one-sided projection-free algorithm, requiring O ( ϵ - 4 ) iterations to attain an ϵ -stationary solution, moreover, when the objective function in the upper-level is linear in the maximization component, our result improve to O ( ϵ - 3 ) . Subsequently, we develop an efficient single-loop fully projected gradient-based algorithm capable of achieving an ϵ -stationary solution within O ( ϵ - 5 ) iterations. This result improves to O ( ϵ - 4 ) when the upper-level objective function is strongly concave in the maximization component. Finally, we tested our proposed methods against the state-of-the-art algorithms for solving a robust multi-task regression problem to showcase the superiority of our algorithms.
ArticleNumber 52
Author Ahmadi, Mohammad Mahdi
Yazdandoost Hamedani, Erfan
Author_xml – sequence: 1
  givenname: Mohammad Mahdi
  surname: Ahmadi
  fullname: Ahmadi, Mohammad Mahdi
  organization: Department of Systems and Industrial Engineering, The University of Arizona
– sequence: 2
  givenname: Erfan
  orcidid: 0000-0002-3229-3499
  surname: Yazdandoost Hamedani
  fullname: Yazdandoost Hamedani, Erfan
  email: erfany@arizona.edu
  organization: Department of Systems and Industrial Engineering, The University of Arizona
BookMark eNp9kM1KAzEUhYMoWH9ewFXAdTSZZJrMshatQlGhug6ZyU2dMk1qMq36Aj63qVXcubjcH845F74jtO-DB4TOGL1glMrLxGjFSkKLbamhIHIPDVgpOZHDiu2jAVWqJFJIcYiOUlpQSitVFQP0OWv9vAMyDWGFH2NYQNO3wZObCICNt783sHgSjW3B9-TKpLyOunmIbf-yTNiFiO-Db4LfwDsZ58lsAM-MtR3gx9D6fhtTd5C1b9mCr9oONtDhWR_XTb-OcIIOnOkSnP70Y_R8c_00viXTh8ndeDQlTSGLnpTMVkwozoUVvLZ1LZyjDauaWg6NsZmEKZwqbcHBMmZc6SDvhksrnCiU4sfofJe7iuF1DanXi7COPr_UnCmhJBVyqyp2qiaGlCI4vYrt0sQPzaje8tY73jrz1t-8tcwmvjOlLPZziH_R_7i-AOpphzI
Cites_doi 10.1137/20M1387341
10.1007/s10107-022-01919-z
10.1137/14095697X
10.1609/aaai.v36i7.20706
10.1145/1961189.1961199
10.1287/opre.21.1.37
10.1007/s10107-015-0957-3
10.1023/A:1007379606734
10.1137/18M1213488
10.1137/S1052623403425629
10.1287/moor.2023.1387
10.1137/20M1337600
10.1016/0362-546X(94)00186-L
10.1002/nav.3800030109
10.1109/TSP.2023.3234462
10.1080/01630563.2018.1477799
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. May 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10915-025-02864-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_025_02864_7
GrantInformation_xml – fundername: University of Arizona
– fundername: Division of Electrical, Communications and Cyber Systems
  grantid: 2127696
  funderid: http://dx.doi.org/10.13039/100000148
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PHGZM
PHGZT
PQGLB
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~A9
~EX
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c272t-51d9148334d43bdbb4ff0c19cb76aad007a2f85d23ed11af5fe2f8a37d4f42883
IEDL.DBID U2A
ISSN 0885-7474
IngestDate Fri Jul 25 09:40:43 EDT 2025
Sun Jul 06 05:04:20 EDT 2025
Mon Jul 21 06:06:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nonconvex-concave minimax optimization
Bilevel optimization
65K15
Robust multi-task learning
90C47
90C06
Projection-free method
Saddle point problem
49K35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-51d9148334d43bdbb4ff0c19cb76aad007a2f85d23ed11af5fe2f8a37d4f42883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3229-3499
PQID 3184870478
PQPubID 2043771
ParticipantIDs proquest_journals_3184870478
crossref_primary_10_1007_s10915_025_02864_7
springer_journals_10_1007_s10915_025_02864_7
PublicationCentury 2000
PublicationDate 20250500
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 5
  year: 2025
  text: 20250500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References EY Hamedani (2864_CR22) 2021; 31
2864_CR26
2864_CR25
2864_CR20
J Zhang (2864_CR47) 2020; 33
2864_CR21
2864_CR28
C Chen (2864_CR10) 2020; 33
2864_CR29
J Bracken (2864_CR5) 1973; 21
A Chambolle (2864_CR7) 2016; 159
R Caruana (2864_CR6) 1997; 28
P Bernhard (2864_CR3) 1995; 24
2864_CR30
A Nemirovski (2864_CR38) 2004; 15
M Frank (2864_CR14) 1956; 3
2864_CR37
2864_CR35
M Hong (2864_CR23) 2023; 33
2864_CR36
2864_CR33
2864_CR34
2864_CR31
2864_CR32
Q Hu (2864_CR24) 2022; 35
2864_CR41
CC Chang (2864_CR8) 2011; 2
2864_CR48
DM Ostrovskii (2864_CR39) 2021; 31
2864_CR49
2864_CR46
2864_CR44
2864_CR45
2864_CR43
P Khanduri (2864_CR27) 2021; 34
Y Shehu (2864_CR42) 2018; 39
2864_CR1
2864_CR15
2864_CR9
2864_CR16
2864_CR13
2864_CR4
2864_CR11
2864_CR12
2864_CR19
2864_CR17
2864_CR18
Z Akhtar (2864_CR2) 2022; 70
Y Ouyang (2864_CR40) 2015; 8
References_xml – volume: 33
  start-page: 10799
  year: 2020
  ident: 2864_CR10
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 33
  start-page: 147
  issue: 1
  year: 2023
  ident: 2864_CR23
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1387341
– ident: 2864_CR45
  doi: 10.1007/s10107-022-01919-z
– volume: 8
  start-page: 644
  issue: 1
  year: 2015
  ident: 2864_CR40
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/14095697X
– ident: 2864_CR18
– ident: 2864_CR32
  doi: 10.1609/aaai.v36i7.20706
– ident: 2864_CR33
– ident: 2864_CR37
– ident: 2864_CR4
– ident: 2864_CR20
– ident: 2864_CR28
– ident: 2864_CR43
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 2864_CR8
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/1961189.1961199
– ident: 2864_CR11
– ident: 2864_CR36
– volume: 21
  start-page: 37
  issue: 1
  year: 1973
  ident: 2864_CR5
  publication-title: Oper. Res.
  doi: 10.1287/opre.21.1.37
– volume: 159
  start-page: 253
  issue: 1–2
  year: 2016
  ident: 2864_CR7
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0957-3
– volume: 35
  start-page: 29552
  year: 2022
  ident: 2864_CR24
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 2864_CR15
– ident: 2864_CR19
– ident: 2864_CR25
– ident: 2864_CR21
– ident: 2864_CR29
– volume: 28
  start-page: 41
  year: 1997
  ident: 2864_CR6
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007379606734
– ident: 2864_CR46
– volume: 31
  start-page: 1299
  issue: 2
  year: 2021
  ident: 2864_CR22
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1213488
– volume: 15
  start-page: 229
  issue: 1
  year: 2004
  ident: 2864_CR38
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403425629
– ident: 2864_CR12
– ident: 2864_CR35
– ident: 2864_CR49
  doi: 10.1287/moor.2023.1387
– ident: 2864_CR9
– ident: 2864_CR16
– ident: 2864_CR31
– volume: 31
  start-page: 2508
  issue: 4
  year: 2021
  ident: 2864_CR39
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1337600
– volume: 33
  start-page: 7377
  year: 2020
  ident: 2864_CR47
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 2864_CR41
– ident: 2864_CR26
– ident: 2864_CR13
– ident: 2864_CR34
– volume: 24
  start-page: 1163
  issue: 8
  year: 1995
  ident: 2864_CR3
  publication-title: Nonlinear Anal.: Theory Methods Appl.
  doi: 10.1016/0362-546X(94)00186-L
– ident: 2864_CR17
– ident: 2864_CR30
– volume: 34
  start-page: 30271
  year: 2021
  ident: 2864_CR27
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 3
  start-page: 95
  issue: 1–2
  year: 1956
  ident: 2864_CR14
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800030109
– volume: 70
  start-page: 6332
  year: 2022
  ident: 2864_CR2
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2023.3234462
– ident: 2864_CR1
– volume: 39
  start-page: 1077
  issue: 10
  year: 2018
  ident: 2864_CR42
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2018.1477799
– ident: 2864_CR44
– ident: 2864_CR48
SSID ssj0009892
Score 2.4045238
Snippet In this paper, we explore a broad class of constrained saddle point problems with a bilevel structure, wherein the upper-level objective function is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 52
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Linear programming
Machine learning
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Maximization
Methods
Optimization
Regularization
Robustness (mathematics)
Saddle points
Theoretical
Title Single-Loop Projection-Free and Projected Gradient-Based Algorithms for Nonconvex-Concave Saddle Point Problems with Bilevel Structure
URI https://link.springer.com/article/10.1007/s10915-025-02864-7
https://www.proquest.com/docview/3184870478
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61cGkPqNBWXaDIhx6oWksbP_I47iIW1MIKabsSPUVOPKZI2wRtAuIX8Ls79ibdgtpDD1HiJJrDjOdhe-YbgA-WvDrGMuJpWTquXJqRzmnFTSFEgkaUFn3t8Pk0Pp2rL5f6sisKa_ps9_5IMljqP4rdsshXE_srjRVPnsOm9mt3msVzMVpD7aahFTKpj-YULKuuVObvNB67o3WM-eRYNHibySvY6sJENlrJdRueYbUDL89_Y6w2O7DdqWXDDjvs6I-v4WFG5BbIz-r6hl2sdlmI83yyRGSmsv07tOxkGbK9Wj4mR2bZaHFVL6_bHz8bRnEsm9ZVSEi_50f0ZO6QzYzfymAX9XXVejK-D03D_D4uG5NpucMFmwUw2tslvoH55Pjb0SnvWi3wUiSi5TqyGS2MpFRWycIWhXJuWEZZWSSxMZZ4Z4RLtRUSbRQZpx3S2MjEKqd8w-K3sFHVFb4DZmOJZGG1G0pUSpnMuKQYlomROhOFSwfwqed4frNC1MjX2MlePjnJJw_yyZMB7PdCyTvtanKyQ7TO8rhCA_jcC2r9-d_Udv_v9z14IcJc8fmN-7BBTMT3FIO0xQFsjibj8dTfT75_PT4IU_AXCpnXkg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5ROLQ9oEJbEQp0Dz20aleKd9evY0BNA00ipBCJm7X2zgJSaqPYoP4CfjezG7spVXvowZJfmsPMzmNnZ74B-GDIq2MkA54UheXKJinpXKi4zoWIUYvCoOsdnkyj0VydXYaXbVNY3VW7d0eS3lL_1uyWBq6b2F1JpHj8DLYoGEhcIddcDNZQu4kfhUzqE3IKllXbKvN3Gk_d0TrG_ONY1Hub4SvYbsNENljJdQc2sNyFl5NfGKv1Luy0almzjy129KfX8DAjcgvk46q6ZeerLAtxng-XiEyXpnuHhn1b-mqvhh-TIzNssLiqljfN9Y-aURzLplXpC9J_8hO60_fIZtqlMth5dVM2joybQ1Mzl8dlx2Ra7nHBZh6M9m6Jb2A-_HpxMuLtqAVeiFg0PAxMShsjKZVRMjd5rqztF0Fa5HGktSHeaWGT0AiJJgi0DS3Ss5axUVa5gcVvYbOsStwDZiKJZGFD25eolNKptnHeL2Itw1TkNunB547j2e0KUSNbYyc7-WQkn8zLJ4t7cNAJJWu1q87IDtE-y-EK9eBLJ6j1539T2_-_39_D89HFZJyNT6ff38EL4deNq3U8gE1iKB5SPNLkR375PQLW2dd1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkJwQLSA2FKKDz0UgdWN7byO25Ztoe1qpWWl3iInHkOlbbLahIpf0N_dsTfpFgSHHiLlpTn48zxsz3wDsGfIq2MkA54UheXKJinpXKi4zoWIUYvCoKsdvhhFp1P17TK8fFDF77PduyPJZU2DY2kqm4O5sQcPCt_SwFUWuyuJFI-fwAaZ48DN66kYrGh3E98WmVQp5BQ4q7Zs5t8y_nRNq3jzryNS73mGL-FFGzKywRLjTVjDcgueX9zzrdZbsNmqaM32Wx7pj6_gdkLiZsjPq2rOxssdF0KBDxeITJeme4eGnSx85lfDD8mpGTaY_agWV83P65pRTMtGVemT03_zI7rTN8gm2m1rsHF1VTZOjOtJUzO3p8sOyczc4IxNPDHtrwW-hunwy_ejU962XeCFiEXDw8CktEiSUhklc5Pnytp-EaRFHkdaGxo7LWwSGiHRBIG2oUV61jI2yirXvPgNrJdViW-BmUgiWdvQ9iUqpXSqbZz3i1jLMBW5TXrwqRvxbL5k18hWPMoOn4zwyTw-WdyDnQ6UrNW0OiObRGsuxzHUg88dUKvP_5e2_bjfP8DT8fEwO_86OnsHz4SfNi7tcQfWaTzxPYUmTb7rZ98dWJHbsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Loop+Projection-Free+and+Projected+Gradient-Based+Algorithms+for+Nonconvex-Concave+Saddle+Point+Problems+with+Bilevel+Structure&rft.jtitle=Journal+of+scientific+computing&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=103&rft.issue=2&rft.spage=52&rft_id=info:doi/10.1007%2Fs10915-025-02864-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon