Lyolo: a lightweight object detection algorithm integrating label enhancement for high-quality prediction boxes

In the field of object detection, most researchers overlook the relationship between predicted bounding boxes and ground truth boxes. Moreover, the downsampling of conventional convolution reduces image resolution, often sacrificing some details and edge information, impacting the precise determinat...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 28; no. 3
Main Authors Gao, Ruxin, Ling, Zhiyong, Wang, Chengyang, Li, Xiang, She, Jianmin, Liu, Qunpo
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-025-01528-4

Cover

Loading…
Abstract In the field of object detection, most researchers overlook the relationship between predicted bounding boxes and ground truth boxes. Moreover, the downsampling of conventional convolution reduces image resolution, often sacrificing some details and edge information, impacting the precise determination of object positions. Meanwhile, the feature extraction capability of the backbone network in enhancement algorithms is crucial for the detection performance of the entire model. To address these issues, this paper proposes a high-quality prediction box based object detection algorithm LYOLO. It suppresses low-quality prediction boxes and enhances high-quality ones, devising a Label Enhancement (LE) strategy to effectively adjust the weights of positive and negative samples. Meanwhile, a lightweight downsampling method (Down) and a lightweight Feature Enhancement (FE) mechanism are designed. The former enlarges the receptive field to improve the model’s ability to determine object positions, and the latter further allocates feature weights to generate stronger feature representations for the backbone network. Experimental results on the VOC and COCO datasets demonstrate that LYOLO, across all sizes, performs exceptionally well. It achieves the highest accuracy with the lowest number of parameters and computational complexity while maintaining low latency. For example, LYOLOn achieves an of 82.0% on the VOC dataset with only 2.28M parameters. Compared to the baseline model YOLO11n, it reduces the number of parameters by 11.9% while improving by 3.0%. In comparison with YOLOv8n, YOLOv9t, and YOLOv10n, LYOLOn achieves improvements of 3.4%, 2.3%, and 3.1%, respectively. The code and datasets used in this article can be obtained from https://github.com/lingzhiy/LYOLO .
AbstractList In the field of object detection, most researchers overlook the relationship between predicted bounding boxes and ground truth boxes. Moreover, the downsampling of conventional convolution reduces image resolution, often sacrificing some details and edge information, impacting the precise determination of object positions. Meanwhile, the feature extraction capability of the backbone network in enhancement algorithms is crucial for the detection performance of the entire model. To address these issues, this paper proposes a high-quality prediction box based object detection algorithm LYOLO. It suppresses low-quality prediction boxes and enhances high-quality ones, devising a Label Enhancement (LE) strategy to effectively adjust the weights of positive and negative samples. Meanwhile, a lightweight downsampling method (Down) and a lightweight Feature Enhancement (FE) mechanism are designed. The former enlarges the receptive field to improve the model’s ability to determine object positions, and the latter further allocates feature weights to generate stronger feature representations for the backbone network. Experimental results on the VOC and COCO datasets demonstrate that LYOLO, across all sizes, performs exceptionally well. It achieves the highest accuracy with the lowest number of parameters and computational complexity while maintaining low latency. For example, LYOLOn achieves an of 82.0% on the VOC dataset with only 2.28M parameters. Compared to the baseline model YOLO11n, it reduces the number of parameters by 11.9% while improving by 3.0%. In comparison with YOLOv8n, YOLOv9t, and YOLOv10n, LYOLOn achieves improvements of 3.4%, 2.3%, and 3.1%, respectively. The code and datasets used in this article can be obtained from https://github.com/lingzhiy/LYOLO .
In the field of object detection, most researchers overlook the relationship between predicted bounding boxes and ground truth boxes. Moreover, the downsampling of conventional convolution reduces image resolution, often sacrificing some details and edge information, impacting the precise determination of object positions. Meanwhile, the feature extraction capability of the backbone network in enhancement algorithms is crucial for the detection performance of the entire model. To address these issues, this paper proposes a high-quality prediction box based object detection algorithm LYOLO. It suppresses low-quality prediction boxes and enhances high-quality ones, devising a Label Enhancement (LE) strategy to effectively adjust the weights of positive and negative samples. Meanwhile, a lightweight downsampling method (Down) and a lightweight Feature Enhancement (FE) mechanism are designed. The former enlarges the receptive field to improve the model’s ability to determine object positions, and the latter further allocates feature weights to generate stronger feature representations for the backbone network. Experimental results on the VOC and COCO datasets demonstrate that LYOLO, across all sizes, performs exceptionally well. It achieves the highest accuracy with the lowest number of parameters and computational complexity while maintaining low latency. For example, LYOLOn achieves an of 82.0% on the VOC dataset with only 2.28M parameters. Compared to the baseline model YOLO11n, it reduces the number of parameters by 11.9% while improving by 3.0%. In comparison with YOLOv8n, YOLOv9t, and YOLOv10n, LYOLOn achieves improvements of 3.4%, 2.3%, and 3.1%, respectively. The code and datasets used in this article can be obtained from https://github.com/lingzhiy/LYOLO.
ArticleNumber 147
Author Li, Xiang
She, Jianmin
Wang, Chengyang
Ling, Zhiyong
Gao, Ruxin
Liu, Qunpo
Author_xml – sequence: 1
  givenname: Ruxin
  surname: Gao
  fullname: Gao, Ruxin
  organization: School of Electrical Engineering and Automation, Henan Polytechnic University, Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment
– sequence: 2
  givenname: Zhiyong
  surname: Ling
  fullname: Ling, Zhiyong
  email: 212307020037@home.hpu.edu.cn
  organization: School of Electrical Engineering and Automation, Henan Polytechnic University, Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment
– sequence: 3
  givenname: Chengyang
  surname: Wang
  fullname: Wang, Chengyang
  organization: School of Electrical Engineering and Automation, Henan Polytechnic University, Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment
– sequence: 4
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: School of Electrical Engineering and Automation, Henan Polytechnic University, Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment
– sequence: 5
  givenname: Jianmin
  surname: She
  fullname: She, Jianmin
  organization: Zhuzhou Tiancheng Automation Equipment Co., Ltd
– sequence: 6
  givenname: Qunpo
  surname: Liu
  fullname: Liu, Qunpo
  organization: School of Electrical Engineering and Automation, Henan Polytechnic University, Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment
BookMark eNp9kEtLAzEUhYNUsK3-AVcB16N5TqbupPiCghsFdyEzc-dRpkmbpGj_vakjunNzzl2ccy58MzSxzgJCl5RcU0LUTUgqREaYzAiVrMjECZpSwXmmpHyf_N6CnqFZCGtCOOesmCK3OrjB3WKDh77t4gccFbtyDVXENcRkvbPYDK3zfew2uLcRWm9ib1s8mBIGDLYztoIN2Igb53GXJrLd3gx9POCth7ofN0r3CeEcnTZmCHDx43P09nD_unzKVi-Pz8u7VVYxxWImirxUkileV6YxquA1NVCJqiGUmyJneQ1qwUEa1UjSLPKyXBSGElXXhDe1VHyOrsbdrXe7PYSo127vbXqpOeNMCcJ4kVJsTFXeheCh0Vvfb4w_aEr0EaweweoEVn-D1SKV-FgKKWxb8H_T_7S-AIJyf4s
Cites_doi 10.1109/CVPR.2016.91
10.1109/CVPR.2017.690
10.1109/JSEN.2024.3418618
10.1038/s40494-025-01565-6
10.1109/TCSVT.2023.3312325
10.3389/fpls.2024.1407839
10.1016/j.knosys.2024.112204
10.1007/978-3-030-01264-9_8
10.1109/TMM.2023.3321394
10.1109/CVPR52729.2023.00721
10.1016/j.optlaseng.2024.108170
10.1007/978-3-031-73021-4_18
10.1109/CVPR.2018.00474
10.1109/ICCV.2015.169
10.1109/CVPR42600.2020.01079
10.1109/CVPR52733.2024.02617
10.1007/978-3-031-72751-1_1
10.1109/CVPR52733.2024.01605
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2018.00716
10.1109/ICCV48922.2021.00349
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10044-025-01528-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_025_01528_4
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AARHV
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AGGDS
AGJBK
AGQPQ
AHSBF
AJBLW
BDATZ
CAG
CITATION
COF
EJD
FINBP
FSGXE
H13
N2Q
O9-
RIG
RNI
RZK
ID FETCH-LOGICAL-c272t-486b75273dcafa783d1aec4cf013a8626de793e5a7f50f96bb98a107dd03fd573
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Thu Jul 24 16:10:41 EDT 2025
Thu Jul 31 00:53:40 EDT 2025
Thu Jul 24 02:02:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Feature enhancement
Downsampling
Label enhancement
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-486b75273dcafa783d1aec4cf013a8626de793e5a7f50f96bb98a107dd03fd573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3232740238
PQPubID 2043691
ParticipantIDs proquest_journals_3232740238
crossref_primary_10_1007_s10044_025_01528_4
springer_journals_10_1007_s10044_025_01528_4
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 1528_CR9
1528_CR8
1528_CR7
1528_CR6
W-L Mao (1528_CR27) 2024; 24
1528_CR5
1528_CR4
J Shen (1528_CR37) 2025; 13
X Wu (1528_CR20) 2024; 15
1528_CR15
1528_CR16
1528_CR38
1528_CR17
Y Zhang (1528_CR31) 2025; 34
1528_CR39
1528_CR18
1528_CR19
1528_CR3
MJ Karim (1528_CR21) 2024; 300
Y Zhang (1528_CR32) 2023; 34
Y Zhang (1528_CR33) 2023; 26
1528_CR2
1528_CR1
1528_CR10
1528_CR11
1528_CR12
Y Zhang (1528_CR30) 2025; 141
1528_CR34
J Shen (1528_CR36) 2021; 71
1528_CR13
1528_CR14
J Shen (1528_CR35) 2024; 73
H Zheng (1528_CR26) 2024; 178
1528_CR28
Y Zhang (1528_CR23) 2023; 61
1528_CR29
Y Zhang (1528_CR22) 2024; 22
Y Zhang (1528_CR25) 2025; 22
1528_CR40
1528_CR41
1528_CR42
Y Zhang (1528_CR24) 2024; 62
References_xml – ident: 1528_CR28
– ident: 1528_CR1
  doi: 10.1109/CVPR.2016.91
– ident: 1528_CR2
  doi: 10.1109/CVPR.2017.690
– volume: 24
  start-page: 26877
  year: 2024
  ident: 1528_CR27
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2024.3418618
– volume: 13
  start-page: 70
  year: 2025
  ident: 1528_CR37
  publication-title: NPJ Heritage Science
  doi: 10.1038/s40494-025-01565-6
– volume: 34
  start-page: 2775
  year: 2023
  ident: 1528_CR32
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2023.3312325
– volume: 15
  start-page: 1407839
  year: 2024
  ident: 1528_CR20
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2024.1407839
– volume: 300
  year: 2024
  ident: 1528_CR21
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2024.112204
– volume: 62
  start-page: 1
  year: 2024
  ident: 1528_CR24
  publication-title: IEEE Trans Geosci Remote Sens
– ident: 1528_CR19
– ident: 1528_CR15
  doi: 10.1007/978-3-030-01264-9_8
– volume: 61
  start-page: 1
  year: 2023
  ident: 1528_CR23
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 26
  start-page: 4183
  year: 2023
  ident: 1528_CR33
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2023.3321394
– ident: 1528_CR41
– ident: 1528_CR13
– ident: 1528_CR4
– volume: 34
  start-page: 013005
  year: 2025
  ident: 1528_CR31
  publication-title: J Electron Imaging
– ident: 1528_CR8
  doi: 10.1109/CVPR52729.2023.00721
– volume: 178
  year: 2024
  ident: 1528_CR26
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2024.108170
– ident: 1528_CR6
– ident: 1528_CR34
  doi: 10.1007/978-3-031-73021-4_18
– volume: 22
  start-page: 6002405
  year: 2024
  ident: 1528_CR22
  publication-title: IEEE Geosci Remote Sens Lett
– volume: 141
  year: 2025
  ident: 1528_CR30
  publication-title: Eng Appl Artif Intell
– ident: 1528_CR10
– ident: 1528_CR42
  doi: 10.1109/CVPR.2018.00474
– ident: 1528_CR12
– volume: 73
  start-page: 1
  year: 2024
  ident: 1528_CR35
  publication-title: IEEE Trans Instrum Meas
– ident: 1528_CR14
  doi: 10.1109/ICCV.2015.169
– ident: 1528_CR18
  doi: 10.1109/CVPR42600.2020.01079
– ident: 1528_CR39
  doi: 10.1109/CVPR52733.2024.02617
– ident: 1528_CR11
  doi: 10.1007/978-3-031-72751-1_1
– ident: 1528_CR29
  doi: 10.1109/CVPR52733.2024.01605
– ident: 1528_CR17
  doi: 10.1007/978-3-319-46448-0_2
– volume: 71
  start-page: 1
  year: 2021
  ident: 1528_CR36
  publication-title: IEEE Trans Instrum Meas
– ident: 1528_CR16
  doi: 10.1109/CVPR.2018.00716
– ident: 1528_CR40
– volume: 22
  start-page: 1
  year: 2025
  ident: 1528_CR25
  publication-title: IEEE Geosci Remote Sens Lett
– ident: 1528_CR5
– ident: 1528_CR38
  doi: 10.1109/ICCV48922.2021.00349
– ident: 1528_CR3
– ident: 1528_CR7
– ident: 1528_CR9
SSID ssj0033328
Score 2.3886685
Snippet In the field of object detection, most researchers overlook the relationship between predicted bounding boxes and ground truth boxes. Moreover, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Boxes
Computer Science
Datasets
Feature extraction
Image resolution
Labels
Object recognition
Original Article
Parameters
Pattern Recognition
Title Lyolo: a lightweight object detection algorithm integrating label enhancement for high-quality prediction boxes
URI https://link.springer.com/article/10.1007/s10044-025-01528-4
https://www.proquest.com/docview/3232740238
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAGlvJw4oStQi0VICYqlSmyY5silaRqgqD_nrMbq4BgYHViK8p39n13vgdC56DyBNBsSWKaxITmPidCKo9EzJc68XnAuK32-RCPxvR2Ek2apLDKRbu7K0l7Un9JdvMoJab9Kqgw4xPaRO0IbHcTyDcO-u78DcPQdlQFIhASFlG_SZX5fY3v6mjNMX9ci1ptM9xF2w1NxP0VrntoQxX7aKehjLjZkBUMua4MbuwAlfdLONCuMMczY3i_W98nLoVxuGCpaht7VWA-ey4XL_X0FbuKEfAhGGRCzbAqpkYYjOMQA6nFpqYxWaVfLvF8Ye527Bqi_FDVIRoPB4_XI9K0VSB5wIKaACiCmbprMueasySUPlc5zTWwQW4MHKlg06qIMx15Oo2FSBMOVqKUXqhlxMIj1CrKQh0jDHM0zVXCgRZSIH4i1pqKVDANPJCmuoMu3N_N5qvqGdm6TrLBIgMsMotFRjuo6wDImp1UZSFQPkYNs-igSwfK-vHfq5387_VTtBVYuTDhY13Uqhdv6gz4Ri16qN2_ebob9KyYfQKeas9E
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWChPEWhgAc2MGoaJ07ZEAIKFCYqwRTZsQ2IkqA2iMev5-zGKiAYWJ3Ecnznu-_O9wDYQZUnEWYrGrMkpiwLBJVKt2jEA2WSQLS5cNU-r-Jun53fRDdVUtjIR7v7K0knqb8ku7UYo7b9Kqow6xOahhmGNjirwczh6e3FsZfAYRi6nqoIBULKIxZUyTK_z_JdIU1Q5o-LUadvTurQ9ysdh5k87r-Ucj_7-FHE8b-_sgDzFQAlh2OOWYQpnS9BvQKjpDrqIxzy_R782DIUvXcUlQdEkIE16V-dV5UU0rpyiNKli-rKiRjcFcOH8v6J-FoUuDaC3KYHROf3ls2sS5IgXCa2WjIdJ3a-k-ehvTVyc8jiTY9WoH9yfH3UpVXDBpq1ebukSG7JbUU3lQkjeBKqQOiMZQZxprCmk9IoDnQkuIlaphNL2UkE2p9KtUKjIh6uQi0vcr0GBL8xLNOJQMDJEFLK2BgmO5IbRJisYxqw66mWPo_rcqSTCsx2e1Pc3tRtb8oa0PSETaszOkpDBJOcWczSgD1Pp8njv2db_9_r2zDbvb7spb2zq4sNmGs7stsgtSbUyuGL3kRUU8qtiok_AaLJ7Y8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5BK028bIMNrdCBH3hj7prGiVPeKmgZtKp4oFL3FNmxvSG6pGozwfbX7-zEaqnGA-I1PyzHd7n7fL77DuAdujyJMFvRmCUxZVkgqFS6SyMeKJMEoseFY_ucxhcz9nUezbeq-F22uz-SrGoaLEtTXp4vlTnfKnzrMkZtK1Z0ZzY-9BSazJKzN6A5-Hw5HnprHIah66-KsCCkPGJBXTjz-Ch_OqcN4tw5JHW-Z3QAws-6Sjn52bktZSe73yF0_J_POoT9GpiSQaVJz-GJzl_AQQ1SSW0C1njJ94Hw146gmNyhCf1ABFnYrf4vF20lhbQhHqJ06bK9ciIWV8XqR3l9QzxHBc6ToBbqBdH5tVU_G6okCKOJZVGmVcHnHVmu7GmSG0MWv_X6GGaj4fePF7Ru5ECzHu-VFNVAcsv0pjJhBE9CFQidscwg_hR2S6U0mgkdCW6irunHUvYTgftSpbqhUREPX0IjL3J9AgTfMSzTiUAgyhBqytgYJvuSG0SerG9a8N5LMF1WfB3phpnZLm-Ky5u65U1ZC9peyGn9767TEEEmZxbLtODMy2xz---jvfq3x9_C3rdPo3TyZTp-Dc96Tuo2d60NjXJ1q08R7JTyTa3PDxmq9nM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lyolo%3A+a+lightweight+object+detection+algorithm+integrating+label+enhancement+for+high-quality+prediction+boxes&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Gao%2C+Ruxin&rft.au=Ling%2C+Zhiyong&rft.au=Wang%2C+Chengyang&rft.au=Li%2C+Xiang&rft.date=2025-09-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=3&rft_id=info:doi/10.1007%2Fs10044-025-01528-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_025_01528_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon