Olive oil-derived degradable polyurethanes for bone tissue regeneration
Engineering biomaterials for tissue regeneration with an appropriate degradation rate that is faster than the widely-used slow degrading polyesters and rapidly degrading surface-eroding polymers is challenging. Polyurethanes exhibit the desired combination of physico-mechanical properties along with...
Saved in:
Published in | Industrial crops and products Vol. 185; p. 115136 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0926-6690 1872-633X |
DOI | 10.1016/j.indcrop.2022.115136 |
Cover
Abstract | Engineering biomaterials for tissue regeneration with an appropriate degradation rate that is faster than the widely-used slow degrading polyesters and rapidly degrading surface-eroding polymers is challenging. Polyurethanes exhibit the desired combination of physico-mechanical properties along with good biocompatibility and thus find widespread use in the clinic. Clinically, polyurethanes are used in catheters, tubing, patches, coating of pacemaker leads, and left ventricular assisted devices. In this study, two different polyurethanes were synthesized from olive oil, optionally incorporating polyethylene glycol (PEG). The presence of degradable ester groups in the monomers derived from oil imparts degradability to the synthesized polyurethanes. The hydrophilicity and thus degradability of polyurethanes were improved by incorporating PEG into the polymer network. The synthesized polymers were analyzed through physical, mechanical, and thermal characterization. The reduction in storage modulus from 38.7 to 3.7 MPa was observed after incorporating PEG. In 63 days, neat oil-based polyurethane degraded 3.3%, whereas PEG-containing polyurethane showed 10.8% mass loss. The synthesized polymers can be fabricated into a variety of two-dimensional substrates and three-dimensional scaffolds by compression molding and particulate leaching techniques. The prepared polyurethanes showed good cytocompatibility in vitro and efficiently supported the osteogenic differentiation of pre-osteoblasts. The incorporation of PEG adversely affected osteogenic differentiation. Thus, these olive oil-based polyurethanes are shown to be promising biomaterials for developing scaffolds with tunable degradation and mechanical properties for tissue regeneration.
[Display omitted]
•Degradable polyurethanes were prepared from olive oil for biomedical applications.•The physico-chemical and degradation properties could be tuned by the incorporation of poly(ethylene glycol).•The polyurethanes can be processed into 2D substrates and 3D porous scaffolds.•The polymers are cytocompatible and efficiently supported osteogenesis. |
---|---|
AbstractList | Engineering biomaterials for tissue regeneration with an appropriate degradation rate that is faster than the widely-used slow degrading polyesters and rapidly degrading surface-eroding polymers is challenging. Polyurethanes exhibit the desired combination of physico-mechanical properties along with good biocompatibility and thus find widespread use in the clinic. Clinically, polyurethanes are used in catheters, tubing, patches, coating of pacemaker leads, and left ventricular assisted devices. In this study, two different polyurethanes were synthesized from olive oil, optionally incorporating polyethylene glycol (PEG). The presence of degradable ester groups in the monomers derived from oil imparts degradability to the synthesized polyurethanes. The hydrophilicity and thus degradability of polyurethanes were improved by incorporating PEG into the polymer network. The synthesized polymers were analyzed through physical, mechanical, and thermal characterization. The reduction in storage modulus from 38.7 to 3.7 MPa was observed after incorporating PEG. In 63 days, neat oil-based polyurethane degraded 3.3%, whereas PEG-containing polyurethane showed 10.8% mass loss. The synthesized polymers can be fabricated into a variety of two-dimensional substrates and three-dimensional scaffolds by compression molding and particulate leaching techniques. The prepared polyurethanes showed good cytocompatibility in vitro and efficiently supported the osteogenic differentiation of pre-osteoblasts. The incorporation of PEG adversely affected osteogenic differentiation. Thus, these olive oil-based polyurethanes are shown to be promising biomaterials for developing scaffolds with tunable degradation and mechanical properties for tissue regeneration. Engineering biomaterials for tissue regeneration with an appropriate degradation rate that is faster than the widely-used slow degrading polyesters and rapidly degrading surface-eroding polymers is challenging. Polyurethanes exhibit the desired combination of physico-mechanical properties along with good biocompatibility and thus find widespread use in the clinic. Clinically, polyurethanes are used in catheters, tubing, patches, coating of pacemaker leads, and left ventricular assisted devices. In this study, two different polyurethanes were synthesized from olive oil, optionally incorporating polyethylene glycol (PEG). The presence of degradable ester groups in the monomers derived from oil imparts degradability to the synthesized polyurethanes. The hydrophilicity and thus degradability of polyurethanes were improved by incorporating PEG into the polymer network. The synthesized polymers were analyzed through physical, mechanical, and thermal characterization. The reduction in storage modulus from 38.7 to 3.7 MPa was observed after incorporating PEG. In 63 days, neat oil-based polyurethane degraded 3.3%, whereas PEG-containing polyurethane showed 10.8% mass loss. The synthesized polymers can be fabricated into a variety of two-dimensional substrates and three-dimensional scaffolds by compression molding and particulate leaching techniques. The prepared polyurethanes showed good cytocompatibility in vitro and efficiently supported the osteogenic differentiation of pre-osteoblasts. The incorporation of PEG adversely affected osteogenic differentiation. Thus, these olive oil-based polyurethanes are shown to be promising biomaterials for developing scaffolds with tunable degradation and mechanical properties for tissue regeneration. [Display omitted] •Degradable polyurethanes were prepared from olive oil for biomedical applications.•The physico-chemical and degradation properties could be tuned by the incorporation of poly(ethylene glycol).•The polyurethanes can be processed into 2D substrates and 3D porous scaffolds.•The polymers are cytocompatible and efficiently supported osteogenesis. |
ArticleNumber | 115136 |
Author | Nilawar, Sagar Chatterjee, Kaushik |
Author_xml | – sequence: 1 givenname: Sagar surname: Nilawar fullname: Nilawar, Sagar – sequence: 2 givenname: Kaushik surname: Chatterjee fullname: Chatterjee, Kaushik email: kchatterjee@iisc.ac.in |
BookMark | eNqFkEFLwzAUx4NMcE4_gtCjl9YkTZMGDyJDpzDYRcFbyJLXmdE1NWkH-_Z2dicvO713-P_-7_G7RpPGN4DQHcEZwYQ_bDPXWBN8m1FMaUZIQXJ-gaakFDTlef41QVMsKU85l_gKXce4xZgITMUULVa120PiXZ1aCMNqEwuboK1e15C0vj70Abpv3UBMKh-S9XA66VyMPSQBNtBA0J3zzQ26rHQd4fY0Z-jz9eVj_pYuV4v3-fMyNVTQLmWCaVmCZIwKzIERbC3LcVkQKwiWUBomtaBlbjBnZaG1tLIyApgkBc8rk8_Q_djbBv_TQ-zUzkUDdT186PuoqCAlzUsh6BB9HKODmhgDVMq47u_ZLmhXK4LVUZ_aqpM-ddSnRn0DXfyj2-B2OhzOck8jB4OFvYOgonHQGLAugOmU9e5Mwy-7cI7g |
CitedBy_id | crossref_primary_10_1016_j_polymertesting_2023_108086 crossref_primary_10_1080_01932691_2024_2444980 crossref_primary_10_1007_s10924_023_02786_1 crossref_primary_10_1021_acssuschemeng_3c03566 crossref_primary_10_1021_acssuschemeng_3c06924 crossref_primary_10_1088_1755_1315_1228_1_012031 crossref_primary_10_34256_ijceae2314 crossref_primary_10_1002_app_55703 crossref_primary_10_1039_D3QM01251D |
Cites_doi | 10.3390/polym12030717 10.1016/j.polymdegradstab.2014.03.010 10.1002/pc.24985 10.1016/j.indcrop.2013.08.003 10.1002/app.29946 10.1002/pi.2107 10.1002/btpr.246 10.1016/j.porgcoat.2012.12.011 10.1021/am5071333 10.1016/j.cell.2006.08.008 10.1016/j.msec.2017.03.160 10.1007/s00289-019-02774-3 10.1039/C0PY00235F 10.1016/j.msec.2020.111228 10.1038/s41428-018-0097-8 10.1088/1748-605X/ac0453 10.1039/D1MA00733E 10.1002/jbm.a.32052 10.1016/j.indcrop.2020.112831 10.1016/S0005-2736(97)00027-8 10.1016/j.jvs.2017.06.083 10.1039/C2PY00452F 10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO;2-F 10.1038/s41598-020-70155-2 10.3390/polym11040586 10.1021/acsami.6b09801 10.1016/j.progpolymsci.2008.07.004 10.1098/rsfs.2012.0012 10.3390/polym12081842 10.1007/s11998-021-00490-0 10.1039/c2ra21211k 10.1002/adv.21525 10.1016/j.polymdegradstab.2006.10.011 10.1016/j.progpolymsci.2016.12.009 10.1016/j.eurpolymj.2003.12.013 10.1590/S0104-14282008000300004 10.1021/acssuschemeng.5b00001 10.1007/s00586-008-0745-3 10.1371/journal.pone.0163530 10.1002/adv.22139 10.3390/ma11112244 10.2217/rme.14.4 10.1097/01.MAT.0000136511.99220.8B 10.3390/ma14030478 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.indcrop.2022.115136 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-633X |
ExternalDocumentID | 10_1016_j_indcrop_2022_115136 S0926669022006197 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPCBC SSA SSZ T5K UNMZH ~G- ~KM 29I AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HVGLF HZ~ R2- RIG SEW SSH WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c272t-474a98e9442706e410dd430851d7109e8c49a7283c06485aa9d9fc7e491563fc3 |
IEDL.DBID | AIKHN |
ISSN | 0926-6690 |
IngestDate | Fri Sep 05 11:54:15 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Tue Jul 01 04:16:43 EDT 2025 Fri Feb 23 02:42:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bone tissue engineering Olive oil Polyurethanes Renewable resources Degradable |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-474a98e9442706e410dd430851d7109e8c49a7283c06485aa9d9fc7e491563fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2718238772 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2718238772 crossref_citationtrail_10_1016_j_indcrop_2022_115136 crossref_primary_10_1016_j_indcrop_2022_115136 elsevier_sciencedirect_doi_10_1016_j_indcrop_2022_115136 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Industrial crops and products |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tajau, Rohani, Wan Isahak, Salleh, Ghazali (bib39) 2018; 37 Porter, Ruckh, Popat (bib34) 2009; 25 Hazmi, Aung, Abdullah, Salleh, Mahmood (bib19) 2013; 50 Bhattacharyya, Mukhopadhyay, Pramanik, Kundu (bib7) 2016; 35 Mizera, Ryszkowska, Kurańska, Prociak (bib28) 2020; 77 Malani, Malshe, Thorat (bib27) 2022; 19 Zieleniewska, Auguścik, Prociak, Rojek, Ryszkowska (bib51) 2014; 108 Alkaade, Vareedayah (bib2) 2017; 23 Bat, Zhang, Feijen, Grijpma, Poot (bib4) 2014; 9 Cauich-Rodríguez, Chan-Chan, Hernandez-Sánchez, Cervantes-Uc (bib11) 2013 Yeganeh, Mehdizadeh (bib46) 2004; 40 Natarajan, Movva, Madras, Chatterjee (bib30) 2017; 77 Gunatillake, Adhikari, Felton (bib18) 2011 Kumar, Chatterjee (bib25) 2016; 8 Boskou, Blekas, Tsimidou (bib9) 2006 Chen, Ushida, Tateishi (bib13) 2002; 2 Wang, Zhou, Hong, Zhang (bib43) 2012; 2 Pujari-Palmer, Pujari-Palmer, Lu, Lind, Melhus, Engstrand, Karlsson-Ott, Engqvist (bib36) 2016; 11 Naureen, Haseeb, Basirun, Muhamad (bib31) 2021; 118 Jaganathan, Mani, Ismail, Prabhakaran, Nageswaran (bib22) 2019; 40 Yeoh, Lee, Kang, Wong, Cheng, Ng (bib48) 2020; 12 Sharma, Kundu (bib38) 2008; 33 Tschan, Brulé, Haquette, Thomas (bib40) 2012; 3 Kolanthai, Sarkar, Meka, Madras, Chatterjee (bib24) 2015; 3 Mohanty, Mohanty, Nayak, Samal (bib29) 2021; 27 Jaganathan, Mani, Khudzari (bib21) 2019; 11 Behera, Rajput, Acharya, Nadammal, Suwas, Chatterjee (bib5) 2021 Pramanik, Konwarh, Sagar, Konwar, Karak (bib35) 2013; 76 Wang, Yu, Ding, Tan, Li, Fu (bib44) 2011; 2 Borowicz, Paciorek-Sadowska, Isbrandt (bib8) 2020; 155 Even-Ram, Artym, Yamada (bib15) 2006; 126 Nilawar, Dasgupta, Madras, Chatterjee (bib32) 2019; 2 Nilawar, Uddin, Chatterjee (bib33) 2021; 2 Gong, Fu, Gu, Liu, Kan, Deng, Luo, Qian (bib17) 2009; 113 Hoti, Caldera, Cecone, Pedrazzo, Anceschi, Appleton, Monfared, Trotta (bib20) 2021; 14 Zhang, Madbouly, Kessler (bib49) 2015; 7 Cangemi, Santos, Neto, Chierice (bib10) 2008; 18 Zhang, Garrison, Madbouly, Kessler (bib50) 2017; 71 Chan, Leong (bib12) 2008; Suppl 4 Abril-Milán, Valdés, Mirabal-Gallardo, de la Torre, Bustamante, Contreras (bib1) 2018; 11 Kakisis, Antonopoulos, Mantas, Alexiou, Katseni, Sfyroeras, Moulakakis, Geroulakos (bib23) 2017; 66 Bhatt, Pulpytel, Mirshahi, Arefi-Khonsari (bib6) 2012; 2 Uyama (bib41) 2018; 50 Babu, Gill, Farrar (bib3) 2004; 50 Du, Chandaroy, Hui (bib14) 1997; 1326 Ganji, Kasra, Kordestani (bib16) 2015; 4 Lam, Hutmacher, Schantz, Woodruff, Teoh (bib26) 2009; 90 Yeganeh, Jamshidi, Jamshidi (bib47) 2007; 56 Samadian, Farzamfar, Vaez, Ehterami, Bit, Alam, Goodarzi, Darya, Salehi (bib37) 2020; 10 Visan, Popescu-Pelin, Gherasim, Mihailescu, Socol, Zgura, Chiritoiu, Elena Sima, Antohe, Ivan (bib42) 2020; 12 Yeganeh, Hojati-Talemi (bib45) 2007; 92 Boskou (10.1016/j.indcrop.2022.115136_bib9) 2006 Chen (10.1016/j.indcrop.2022.115136_bib13) 2002; 2 Porter (10.1016/j.indcrop.2022.115136_bib34) 2009; 25 Mohanty (10.1016/j.indcrop.2022.115136_bib29) 2021; 27 Lam (10.1016/j.indcrop.2022.115136_bib26) 2009; 90 Zhang (10.1016/j.indcrop.2022.115136_bib50) 2017; 71 Behera (10.1016/j.indcrop.2022.115136_bib5) 2021 Du (10.1016/j.indcrop.2022.115136_bib14) 1997; 1326 Bhatt (10.1016/j.indcrop.2022.115136_bib6) 2012; 2 Gunatillake (10.1016/j.indcrop.2022.115136_bib18) 2011 Uyama (10.1016/j.indcrop.2022.115136_bib41) 2018; 50 Yeganeh (10.1016/j.indcrop.2022.115136_bib46) 2004; 40 Zhang (10.1016/j.indcrop.2022.115136_bib49) 2015; 7 Visan (10.1016/j.indcrop.2022.115136_bib42) 2020; 12 Hoti (10.1016/j.indcrop.2022.115136_bib20) 2021; 14 Bat (10.1016/j.indcrop.2022.115136_bib4) 2014; 9 Zieleniewska (10.1016/j.indcrop.2022.115136_bib51) 2014; 108 Yeganeh (10.1016/j.indcrop.2022.115136_bib45) 2007; 92 Jaganathan (10.1016/j.indcrop.2022.115136_bib21) 2019; 11 Kakisis (10.1016/j.indcrop.2022.115136_bib23) 2017; 66 Babu (10.1016/j.indcrop.2022.115136_bib3) 2004; 50 Malani (10.1016/j.indcrop.2022.115136_bib27) 2022; 19 Naureen (10.1016/j.indcrop.2022.115136_bib31) 2021; 118 Chan (10.1016/j.indcrop.2022.115136_bib12) 2008; Suppl 4 Tajau (10.1016/j.indcrop.2022.115136_bib39) 2018; 37 Wang (10.1016/j.indcrop.2022.115136_bib43) 2012; 2 Cangemi (10.1016/j.indcrop.2022.115136_bib10) 2008; 18 Wang (10.1016/j.indcrop.2022.115136_bib44) 2011; 2 Natarajan (10.1016/j.indcrop.2022.115136_bib30) 2017; 77 Hazmi (10.1016/j.indcrop.2022.115136_bib19) 2013; 50 Yeoh (10.1016/j.indcrop.2022.115136_bib48) 2020; 12 Alkaade (10.1016/j.indcrop.2022.115136_bib2) 2017; 23 Nilawar (10.1016/j.indcrop.2022.115136_bib32) 2019; 2 Tschan (10.1016/j.indcrop.2022.115136_bib40) 2012; 3 Pujari-Palmer (10.1016/j.indcrop.2022.115136_bib36) 2016; 11 Jaganathan (10.1016/j.indcrop.2022.115136_bib22) 2019; 40 Bhattacharyya (10.1016/j.indcrop.2022.115136_bib7) 2016; 35 Mizera (10.1016/j.indcrop.2022.115136_bib28) 2020; 77 Samadian (10.1016/j.indcrop.2022.115136_bib37) 2020; 10 Gong (10.1016/j.indcrop.2022.115136_bib17) 2009; 113 Kolanthai (10.1016/j.indcrop.2022.115136_bib24) 2015; 3 Yeganeh (10.1016/j.indcrop.2022.115136_bib47) 2007; 56 Ganji (10.1016/j.indcrop.2022.115136_bib16) 2015; 4 Borowicz (10.1016/j.indcrop.2022.115136_bib8) 2020; 155 Kumar (10.1016/j.indcrop.2022.115136_bib25) 2016; 8 Nilawar (10.1016/j.indcrop.2022.115136_bib33) 2021; 2 Pramanik (10.1016/j.indcrop.2022.115136_bib35) 2013; 76 Abril-Milán (10.1016/j.indcrop.2022.115136_bib1) 2018; 11 Cauich-Rodríguez (10.1016/j.indcrop.2022.115136_bib11) 2013 Even-Ram (10.1016/j.indcrop.2022.115136_bib15) 2006; 126 Sharma (10.1016/j.indcrop.2022.115136_bib38) 2008; 33 |
References_xml | – volume: 40 start-page: 2039 year: 2019 end-page: 2050 ident: bib22 article-title: Tailor‐made multicomponent electrospun polyurethane nanofibrous composite scaffold comprising olive oil, honey, and propolis for bone tissue engineering publication-title: Polym. Compos. – volume: 9 start-page: 385 year: 2014 end-page: 398 ident: bib4 article-title: Biodegradable elastomers for biomedical applications and regenerative medicine publication-title: Regen. Med. – volume: 40 start-page: 1233 year: 2004 end-page: 1238 ident: bib46 article-title: Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resource polyol publication-title: Eur. Polym. J. – year: 2021 ident: bib5 article-title: Zinc and cerium synergistically enhance the mechanical properties, corrosion resistance, and osteogenic activity of magnesium as resorbable biomaterials publication-title: Biomed. Mater. – volume: 12 start-page: 1842 year: 2020 ident: bib48 article-title: Production of biodegradable palm oil-based polyurethane as potential biomaterial for biomedical applications publication-title: Polymers – volume: 50 start-page: 1003 year: 2018 end-page: 1011 ident: bib41 article-title: Functional polymers from renewable plant oils publication-title: Polym. J. – volume: 33 start-page: 1199 year: 2008 end-page: 1215 ident: bib38 article-title: Condensation polymers from natural oils publication-title: Prog. Polym. Sci. – volume: 2 start-page: 9114 year: 2012 end-page: 9123 ident: bib6 article-title: Nano thick poly (ε-caprolactone)-poly (ethylene glycol) coatings developed by catalyst-free plasma assisted copolymerization process for biomedical applications publication-title: RSC Adv. – start-page: 51 year: 2013 end-page: 82 ident: bib11 article-title: Degradation of polyurethanes for cardiovascular applications publication-title: Adv. Biomater. Sci. Biomed. Appl. – volume: 77 start-page: 823 year: 2020 end-page: 846 ident: bib28 article-title: The effect of rapeseed oil-based polyols on the thermal and mechanical properties of ureaurethane elastomers publication-title: Polym. Bull. – volume: 7 start-page: 1226 year: 2015 end-page: 1233 ident: bib49 article-title: Biobased polyurethanes prepared from different vegetable oils publication-title: ACS Appl. Mater. Interfaces – volume: 1326 start-page: 236 year: 1997 end-page: 248 ident: bib14 article-title: Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion publication-title: Biochim. Et. Biophys. Acta BBA Biomembr. – volume: 66 start-page: 1792 year: 2017 end-page: 1797 ident: bib23 article-title: Safety and efficacy of polyurethane vascular grafts for early hemodialysis access publication-title: J. Vasc. Surg. – volume: 2 start-page: 7820 year: 2021 end-page: 7841 ident: bib33 article-title: Surface engineering of biodegradable implants: emerging trends in bioactive ceramic coatings and mechanical treatments publication-title: Mater. Adv. – volume: 71 start-page: 91 year: 2017 end-page: 143 ident: bib50 article-title: Recent advances in vegetable oil-based polymers and their composites publication-title: Prog. Polym. Sci. – volume: 108 start-page: 241 year: 2014 end-page: 249 ident: bib51 article-title: Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering publication-title: Polym. Degrad. Stab. – volume: 14 start-page: 478 year: 2021 ident: bib20 article-title: Effect of the cross-linking density on the swelling and rheological behavior of ester-bridged β-cyclodextrin nanosponges publication-title: Materials – volume: 155 year: 2020 ident: bib8 article-title: Synthesis and application of new bio-polyols based on mustard oil for the production of selected polyurethane materials publication-title: Ind. Crops Prod. – volume: 11 year: 2016 ident: bib36 article-title: Pyrophosphate stimulates differentiation, matrix gene expression and alkaline phosphatase activity in osteoblasts publication-title: PLoS One – volume: 90 start-page: 906 year: 2009 end-page: 919 ident: bib26 article-title: Evaluation of polycaprolactone scaffold degradation for 6 months publication-title: J. Biomed. Mater. Res A – start-page: 431 year: 2011 end-page: 470 ident: bib18 article-title: Biodegradable polyurethanes: design, synthesis, properties and potential applications, Biodegradable publication-title: Polymers: Processing, Degradation and Applications – volume: 3 start-page: 880 year: 2015 end-page: 891 ident: bib24 article-title: Copolyesters from soybean oil for use as resorbable biomaterials publication-title: ACS Sustain. Chem. Eng. – volume: 18 start-page: 201 year: 2008 end-page: 206 ident: bib10 article-title: Biodegradation of polyurethane derived from castor oil publication-title: Polímeros – volume: 50 start-page: 563 year: 2013 end-page: 567 ident: bib19 article-title: Producing Jatropha oil-based polyol via epoxidation and ring opening publication-title: Ind. Crops Prod. – volume: 3 start-page: 836 year: 2012 end-page: 851 ident: bib40 article-title: Synthesis of biodegradable polymers from renewable resources publication-title: Polym. Chem. – volume: 2 start-page: 67 year: 2002 end-page: 77 ident: bib13 article-title: Scaffold design for tissue engineering publication-title: Macromol. Biosci. – volume: 92 start-page: 480 year: 2007 end-page: 489 ident: bib45 article-title: Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly (ethylene glycol) publication-title: Polym. Degrad. Stab. – volume: 76 start-page: 689 year: 2013 end-page: 697 ident: bib35 article-title: Bio-degradable vegetable oil based hyperbranched poly (ester amide) as an advanced surface coating material publication-title: Prog. Org. Coat. – volume: 11 start-page: 2244 year: 2018 ident: bib1 article-title: Preparation of renewable bio-polyols from two species of Colliguaja for rigid polyurethane foams publication-title: Materials – volume: Suppl 4 start-page: 467 year: 2008 end-page: 479 ident: bib12 article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations publication-title: Eur. Spine J. 17 – volume: 77 start-page: 534 year: 2017 end-page: 547 ident: bib30 article-title: Biodegradable galactitol based crosslinked polyesters for controlled release and bone tissue engineering publication-title: Mater. Sci. Eng.: C. – volume: 37 start-page: 3552 year: 2018 end-page: 3560 ident: bib39 article-title: Development of new bio‐based polyol ester from palm oil for potential polymeric drug carrier publication-title: Adv. Polym. Technol. – volume: 2 start-page: 153 year: 2019 end-page: 168 ident: bib32 article-title: Degradable poly (ester amide) s from olive oil for biomedical applications, Emergent publication-title: Materials – volume: 126 start-page: 645 year: 2006 end-page: 647 ident: bib15 article-title: Matrix control of stem cell fate publication-title: Cell – volume: 2 start-page: 259 year: 2012 end-page: 277 ident: bib43 article-title: A review of protein adsorption on bioceramics publication-title: Interface Focus – volume: 4 start-page: 207 year: 2015 end-page: 213 ident: bib16 article-title: Mechanical and degradation properties of castor oil-based polyurethane publication-title: Int J. Eng. Adv. Technol. – volume: 19 start-page: 201 year: 2022 end-page: 222 ident: bib27 article-title: Polyols and polyurethanes from renewable sources: past, present and future—part 1: vegetable oils and lignocellulosic biomass publication-title: J. Coat. Technol. Res. – volume: 27 year: 2021 ident: bib29 article-title: Synthesis and evaluation of novel acrylic and ester-based polyols for transparent polyurethane coating applications, Materials Today publication-title: Communications – volume: 118 year: 2021 ident: bib31 article-title: Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane publication-title: Mater. Sci. Eng.: C. – volume: 10 start-page: 1 year: 2020 end-page: 12 ident: bib37 article-title: A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration publication-title: Sci. Rep. – start-page: 41 year: 2006 end-page: 72 ident: bib9 article-title: Olive oil composition publication-title: Olive oil – volume: 113 start-page: 1111 year: 2009 end-page: 1119 ident: bib17 article-title: Synthesis, characterization, and hydrolytic degradation of biodegradable poly (ether ester)‐urethane copolymers based on ε‐caprolactone and poly (ethylene glycol) publication-title: J. Appl. Polym. Sci. – volume: 11 start-page: 586 year: 2019 ident: bib21 article-title: Electrospun combination of peppermint oil and copper sulphate with conducive physico-chemical properties for wound dressing applications publication-title: Polymers – volume: 2 start-page: 601 year: 2011 end-page: 607 ident: bib44 article-title: Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly (lactic acid)-poly (ethylene glycol)-poly (lactic acid) and l-lysine diisocyanate publication-title: Polym. Chem. – volume: 23 start-page: S203 year: 2017 end-page: S209 ident: bib2 article-title: A primer on exocrine pancreatic insufficiency, fat malabsorption, and fatty acid abnormalities publication-title: Am. J. Manag Care – volume: 56 start-page: 41 year: 2007 end-page: 49 ident: bib47 article-title: Synthesis and properties of novel biodegradable poly (ε‐caprolactone)/poly (ethylene glycol)‐based polyurethane elastomers publication-title: Polym. Int. – volume: 8 start-page: 26431 year: 2016 end-page: 26457 ident: bib25 article-title: Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 1539 year: 2009 end-page: 1560 ident: bib34 article-title: Bone tissue engineering: a review in bone biomimetics and drug delivery strategies publication-title: Biotechnol. Prog. – volume: 50 start-page: 479 year: 2004 end-page: 484 ident: bib3 article-title: Biostability of Thoralon left ventricular assist device blood pumping sacs after long-term clinical use publication-title: ASAIO J. – volume: 35 year: 2016 ident: bib7 article-title: Effect of polyethylene glycol on bis (2–hydroxyethyl) terephthalate‐based polyurethane/alginate ph‐sensitive blend for oral protein delivery publication-title: Adv. Polym. Technol. – volume: 12 start-page: 717 year: 2020 ident: bib42 article-title: Long-term evaluation of dip-coated pcl-blend-peg coatings in simulated conditions publication-title: Polymers – start-page: 431 year: 2011 ident: 10.1016/j.indcrop.2022.115136_bib18 article-title: Biodegradable polyurethanes: design, synthesis, properties and potential applications, Biodegradable – volume: 12 start-page: 717 issue: 3 year: 2020 ident: 10.1016/j.indcrop.2022.115136_bib42 article-title: Long-term evaluation of dip-coated pcl-blend-peg coatings in simulated conditions publication-title: Polymers doi: 10.3390/polym12030717 – volume: 108 start-page: 241 year: 2014 ident: 10.1016/j.indcrop.2022.115136_bib51 article-title: Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2014.03.010 – volume: 40 start-page: 2039 issue: 5 year: 2019 ident: 10.1016/j.indcrop.2022.115136_bib22 article-title: Tailor‐made multicomponent electrospun polyurethane nanofibrous composite scaffold comprising olive oil, honey, and propolis for bone tissue engineering publication-title: Polym. Compos. doi: 10.1002/pc.24985 – volume: 50 start-page: 563 year: 2013 ident: 10.1016/j.indcrop.2022.115136_bib19 article-title: Producing Jatropha oil-based polyol via epoxidation and ring opening publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2013.08.003 – volume: 113 start-page: 1111 issue: 2 year: 2009 ident: 10.1016/j.indcrop.2022.115136_bib17 article-title: Synthesis, characterization, and hydrolytic degradation of biodegradable poly (ether ester)‐urethane copolymers based on ε‐caprolactone and poly (ethylene glycol) publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.29946 – volume: 4 start-page: 207 year: 2015 ident: 10.1016/j.indcrop.2022.115136_bib16 article-title: Mechanical and degradation properties of castor oil-based polyurethane publication-title: Int J. Eng. Adv. Technol. – start-page: 41 year: 2006 ident: 10.1016/j.indcrop.2022.115136_bib9 article-title: Olive oil composition – volume: 56 start-page: 41 issue: 1 year: 2007 ident: 10.1016/j.indcrop.2022.115136_bib47 article-title: Synthesis and properties of novel biodegradable poly (ε‐caprolactone)/poly (ethylene glycol)‐based polyurethane elastomers publication-title: Polym. Int. doi: 10.1002/pi.2107 – volume: 25 start-page: 1539 issue: 6 year: 2009 ident: 10.1016/j.indcrop.2022.115136_bib34 article-title: Bone tissue engineering: a review in bone biomimetics and drug delivery strategies publication-title: Biotechnol. Prog. doi: 10.1002/btpr.246 – volume: 76 start-page: 689 issue: 4 year: 2013 ident: 10.1016/j.indcrop.2022.115136_bib35 article-title: Bio-degradable vegetable oil based hyperbranched poly (ester amide) as an advanced surface coating material publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2012.12.011 – volume: 7 start-page: 1226 issue: 2 year: 2015 ident: 10.1016/j.indcrop.2022.115136_bib49 article-title: Biobased polyurethanes prepared from different vegetable oils publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5071333 – volume: 126 start-page: 645 issue: 4 year: 2006 ident: 10.1016/j.indcrop.2022.115136_bib15 article-title: Matrix control of stem cell fate publication-title: Cell doi: 10.1016/j.cell.2006.08.008 – volume: 2 start-page: 153 issue: 2 year: 2019 ident: 10.1016/j.indcrop.2022.115136_bib32 article-title: Degradable poly (ester amide) s from olive oil for biomedical applications, Emergent publication-title: Materials – start-page: 51 year: 2013 ident: 10.1016/j.indcrop.2022.115136_bib11 article-title: Degradation of polyurethanes for cardiovascular applications publication-title: Adv. Biomater. Sci. Biomed. Appl. – volume: 27 year: 2021 ident: 10.1016/j.indcrop.2022.115136_bib29 article-title: Synthesis and evaluation of novel acrylic and ester-based polyols for transparent polyurethane coating applications, Materials Today publication-title: Communications – volume: 77 start-page: 534 year: 2017 ident: 10.1016/j.indcrop.2022.115136_bib30 article-title: Biodegradable galactitol based crosslinked polyesters for controlled release and bone tissue engineering publication-title: Mater. Sci. Eng.: C. doi: 10.1016/j.msec.2017.03.160 – volume: 77 start-page: 823 issue: 2 year: 2020 ident: 10.1016/j.indcrop.2022.115136_bib28 article-title: The effect of rapeseed oil-based polyols on the thermal and mechanical properties of ureaurethane elastomers publication-title: Polym. Bull. doi: 10.1007/s00289-019-02774-3 – volume: 2 start-page: 601 issue: 3 year: 2011 ident: 10.1016/j.indcrop.2022.115136_bib44 article-title: Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly (lactic acid)-poly (ethylene glycol)-poly (lactic acid) and l-lysine diisocyanate publication-title: Polym. Chem. doi: 10.1039/C0PY00235F – volume: 118 year: 2021 ident: 10.1016/j.indcrop.2022.115136_bib31 article-title: Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane publication-title: Mater. Sci. Eng.: C. doi: 10.1016/j.msec.2020.111228 – volume: 50 start-page: 1003 issue: 11 year: 2018 ident: 10.1016/j.indcrop.2022.115136_bib41 article-title: Functional polymers from renewable plant oils publication-title: Polym. J. doi: 10.1038/s41428-018-0097-8 – year: 2021 ident: 10.1016/j.indcrop.2022.115136_bib5 article-title: Zinc and cerium synergistically enhance the mechanical properties, corrosion resistance, and osteogenic activity of magnesium as resorbable biomaterials publication-title: Biomed. Mater. doi: 10.1088/1748-605X/ac0453 – volume: 2 start-page: 7820 issue: 24 year: 2021 ident: 10.1016/j.indcrop.2022.115136_bib33 article-title: Surface engineering of biodegradable implants: emerging trends in bioactive ceramic coatings and mechanical treatments publication-title: Mater. Adv. doi: 10.1039/D1MA00733E – volume: 23 start-page: S203 issue: 12 suppl year: 2017 ident: 10.1016/j.indcrop.2022.115136_bib2 article-title: A primer on exocrine pancreatic insufficiency, fat malabsorption, and fatty acid abnormalities publication-title: Am. J. Manag Care – volume: 90 start-page: 906 issue: 3 year: 2009 ident: 10.1016/j.indcrop.2022.115136_bib26 article-title: Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo publication-title: J. Biomed. Mater. Res A doi: 10.1002/jbm.a.32052 – volume: 155 year: 2020 ident: 10.1016/j.indcrop.2022.115136_bib8 article-title: Synthesis and application of new bio-polyols based on mustard oil for the production of selected polyurethane materials publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2020.112831 – volume: 1326 start-page: 236 issue: 2 year: 1997 ident: 10.1016/j.indcrop.2022.115136_bib14 article-title: Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion publication-title: Biochim. Et. Biophys. Acta BBA Biomembr. doi: 10.1016/S0005-2736(97)00027-8 – volume: 66 start-page: 1792 issue: 6 year: 2017 ident: 10.1016/j.indcrop.2022.115136_bib23 article-title: Safety and efficacy of polyurethane vascular grafts for early hemodialysis access publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2017.06.083 – volume: 3 start-page: 836 issue: 4 year: 2012 ident: 10.1016/j.indcrop.2022.115136_bib40 article-title: Synthesis of biodegradable polymers from renewable resources publication-title: Polym. Chem. doi: 10.1039/C2PY00452F – volume: 2 start-page: 67 issue: 2 year: 2002 ident: 10.1016/j.indcrop.2022.115136_bib13 article-title: Scaffold design for tissue engineering publication-title: Macromol. Biosci. doi: 10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO;2-F – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.indcrop.2022.115136_bib37 article-title: A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration publication-title: Sci. Rep. doi: 10.1038/s41598-020-70155-2 – volume: 11 start-page: 586 issue: 4 year: 2019 ident: 10.1016/j.indcrop.2022.115136_bib21 article-title: Electrospun combination of peppermint oil and copper sulphate with conducive physico-chemical properties for wound dressing applications publication-title: Polymers doi: 10.3390/polym11040586 – volume: 8 start-page: 26431 issue: 40 year: 2016 ident: 10.1016/j.indcrop.2022.115136_bib25 article-title: Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09801 – volume: 33 start-page: 1199 issue: 12 year: 2008 ident: 10.1016/j.indcrop.2022.115136_bib38 article-title: Condensation polymers from natural oils publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2008.07.004 – volume: 2 start-page: 259 issue: 3 year: 2012 ident: 10.1016/j.indcrop.2022.115136_bib43 article-title: A review of protein adsorption on bioceramics publication-title: Interface Focus doi: 10.1098/rsfs.2012.0012 – volume: 12 start-page: 1842 issue: 8 year: 2020 ident: 10.1016/j.indcrop.2022.115136_bib48 article-title: Production of biodegradable palm oil-based polyurethane as potential biomaterial for biomedical applications publication-title: Polymers doi: 10.3390/polym12081842 – volume: 19 start-page: 201 issue: 1 year: 2022 ident: 10.1016/j.indcrop.2022.115136_bib27 article-title: Polyols and polyurethanes from renewable sources: past, present and future—part 1: vegetable oils and lignocellulosic biomass publication-title: J. Coat. Technol. Res. doi: 10.1007/s11998-021-00490-0 – volume: 2 start-page: 9114 issue: 24 year: 2012 ident: 10.1016/j.indcrop.2022.115136_bib6 article-title: Nano thick poly (ε-caprolactone)-poly (ethylene glycol) coatings developed by catalyst-free plasma assisted copolymerization process for biomedical applications publication-title: RSC Adv. doi: 10.1039/c2ra21211k – volume: 35 issue: 1 year: 2016 ident: 10.1016/j.indcrop.2022.115136_bib7 article-title: Effect of polyethylene glycol on bis (2–hydroxyethyl) terephthalate‐based polyurethane/alginate ph‐sensitive blend for oral protein delivery publication-title: Adv. Polym. Technol. doi: 10.1002/adv.21525 – volume: 92 start-page: 480 issue: 3 year: 2007 ident: 10.1016/j.indcrop.2022.115136_bib45 article-title: Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly (ethylene glycol) publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2006.10.011 – volume: 71 start-page: 91 year: 2017 ident: 10.1016/j.indcrop.2022.115136_bib50 article-title: Recent advances in vegetable oil-based polymers and their composites publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2016.12.009 – volume: 40 start-page: 1233 issue: 6 year: 2004 ident: 10.1016/j.indcrop.2022.115136_bib46 article-title: Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resource polyol publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2003.12.013 – volume: 18 start-page: 201 issue: 3 year: 2008 ident: 10.1016/j.indcrop.2022.115136_bib10 article-title: Biodegradation of polyurethane derived from castor oil publication-title: Polímeros doi: 10.1590/S0104-14282008000300004 – volume: 3 start-page: 880 issue: 5 year: 2015 ident: 10.1016/j.indcrop.2022.115136_bib24 article-title: Copolyesters from soybean oil for use as resorbable biomaterials publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00001 – volume: Suppl 4 start-page: 467 issue: 4 year: 2008 ident: 10.1016/j.indcrop.2022.115136_bib12 article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations publication-title: Eur. Spine J. 17 doi: 10.1007/s00586-008-0745-3 – volume: 11 issue: 10 year: 2016 ident: 10.1016/j.indcrop.2022.115136_bib36 article-title: Pyrophosphate stimulates differentiation, matrix gene expression and alkaline phosphatase activity in osteoblasts publication-title: PLoS One doi: 10.1371/journal.pone.0163530 – volume: 37 start-page: 3552 issue: 8 year: 2018 ident: 10.1016/j.indcrop.2022.115136_bib39 article-title: Development of new bio‐based polyol ester from palm oil for potential polymeric drug carrier publication-title: Adv. Polym. Technol. doi: 10.1002/adv.22139 – volume: 11 start-page: 2244 issue: 11 year: 2018 ident: 10.1016/j.indcrop.2022.115136_bib1 article-title: Preparation of renewable bio-polyols from two species of Colliguaja for rigid polyurethane foams publication-title: Materials doi: 10.3390/ma11112244 – volume: 9 start-page: 385 issue: 3 year: 2014 ident: 10.1016/j.indcrop.2022.115136_bib4 article-title: Biodegradable elastomers for biomedical applications and regenerative medicine publication-title: Regen. Med. doi: 10.2217/rme.14.4 – volume: 50 start-page: 479 issue: 5 year: 2004 ident: 10.1016/j.indcrop.2022.115136_bib3 article-title: Biostability of Thoralon left ventricular assist device blood pumping sacs after long-term clinical use publication-title: ASAIO J. doi: 10.1097/01.MAT.0000136511.99220.8B – volume: 14 start-page: 478 issue: 3 year: 2021 ident: 10.1016/j.indcrop.2022.115136_bib20 article-title: Effect of the cross-linking density on the swelling and rheological behavior of ester-bridged β-cyclodextrin nanosponges publication-title: Materials doi: 10.3390/ma14030478 |
SSID | ssj0017027 |
Score | 2.4052916 |
Snippet | Engineering biomaterials for tissue regeneration with an appropriate degradation rate that is faster than the widely-used slow degrading polyesters and rapidly... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115136 |
SubjectTerms | biocompatibility biocompatible materials bone formation Bone tissue engineering bones compression molding Degradable hydrophilicity Olive oil olives polyethylene glycol Polyurethanes Renewable resources storage modulus thermal properties tissue repair |
Title | Olive oil-derived degradable polyurethanes for bone tissue regeneration |
URI | https://dx.doi.org/10.1016/j.indcrop.2022.115136 https://www.proquest.com/docview/2718238772 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7ofNEH8YrzRgRf49o0XZLHIepUnA8q-Ba6JpPJ2MYugi_-ds9p04kiCD62NG35kn7nO825AJxqJbUTznCjhOcyUzHXOM1cqK5OeyhBeillI991mu0nefOcPi_BeZULQ2GVgftLTi_YOpxpBDQb436_8RAZNC7o3AnyimOjlmFFJKaZ1mCldX3b7iw2E1RUdm7F6zkN-ErkabyivHXUKws9RSGQP9K4KNb8q4n6QdaFBbrcgPUgHVmrfLtNWPLDLVhrvUxC-Qy_DVf3A2QvNuoPuMOl9eYdc1QNwlGCFBuPBu94Gf0s91OGapV1R0PPZgX2bOJfihLUNFM78HR58Xje5qFVAs-FEjMulcyM9kZKoaKml3HknExITjkKtvQ6lyZTKCVylCA6zTLjTC9XXhr035JenuxCbYiP3AOmXWy8SHLyRGQWNZENtZEoLNO4S2quDrJCx-ahjji1sxjYKmDs1QZQLYFqS1DrcLYYNi4Lafw1QFfQ228rwiLZ_zX0pJoqi18LbYEgsKP51Ao0xShS0KXY___tD2CVjsqQvkOozSZzf4TSZNY9huWzj_g4LMBPDuLg0A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HtSD-MS3EbzGtmm6SY4i6vrY9aCCt9A2WVlZtsvaFbz4251pU0URBK9t0pYv6TfftPMg5EhJoSy3mmnJHROpjJiCZWZcZirpgwTpJ5iN3O21Ow_i6jF5nCGnTS4MhlV67q85vWJrfyTwaAbjwSC4CzUYF3DuOHrFkZazZE4kscS4vuP3zziPSIZ131YYzXD4VxpP8Azi1mKnLPATOQf2SKKqVPOvBuoHVVf253yZLHnhSE_qZ1shM260ShZPnia-eIZbIxe3Q-AuWgyGzMLGenWWWqwFYTE9io6L4RsMw0_l7oWCVqVZMXK0rJCnE_dUFaDGdVonD-dn96cd5hslsJxLXjIhRaqV00JwGbadiEJrRYxiymKopVO50KkEIZGDAFFJmmqr-7l0QoP3FvfzeIO0RnDLTUKVjbTjcY5-iEjDNnCh0gJkZRJlqOW2iGjQMbmvIo7NLIamCRd7Nh5Ug6CaGtQtcvw5bVyX0fhrgmqgN9_2gwGq_2vqYbNUBt4V_AECwBbTF8PBEINEAYdi-_-XPyDznfvujbm57F3vkAU8Uwf37ZJWOZm6PRApZbZfbcIP8NXhmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Olive+oil-derived+degradable+polyurethanes+for+bone+tissue+regeneration&rft.jtitle=Industrial+crops+and+products&rft.au=Nilawar%2C+Sagar&rft.au=Chatterjee%2C+Kaushik&rft.date=2022-10-01&rft.issn=0926-6690&rft.volume=185+p.115136-&rft_id=info:doi/10.1016%2Fj.indcrop.2022.115136&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6690&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6690&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6690&client=summon |