Olive oil-derived degradable polyurethanes for bone tissue regeneration

Engineering biomaterials for tissue regeneration with an appropriate degradation rate that is faster than the widely-used slow degrading polyesters and rapidly degrading surface-eroding polymers is challenging. Polyurethanes exhibit the desired combination of physico-mechanical properties along with...

Full description

Saved in:
Bibliographic Details
Published inIndustrial crops and products Vol. 185; p. 115136
Main Authors Nilawar, Sagar, Chatterjee, Kaushik
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2022
Subjects
Online AccessGet full text
ISSN0926-6690
1872-633X
DOI10.1016/j.indcrop.2022.115136

Cover

Abstract Engineering biomaterials for tissue regeneration with an appropriate degradation rate that is faster than the widely-used slow degrading polyesters and rapidly degrading surface-eroding polymers is challenging. Polyurethanes exhibit the desired combination of physico-mechanical properties along with good biocompatibility and thus find widespread use in the clinic. Clinically, polyurethanes are used in catheters, tubing, patches, coating of pacemaker leads, and left ventricular assisted devices. In this study, two different polyurethanes were synthesized from olive oil, optionally incorporating polyethylene glycol (PEG). The presence of degradable ester groups in the monomers derived from oil imparts degradability to the synthesized polyurethanes. The hydrophilicity and thus degradability of polyurethanes were improved by incorporating PEG into the polymer network. The synthesized polymers were analyzed through physical, mechanical, and thermal characterization. The reduction in storage modulus from 38.7 to 3.7 MPa was observed after incorporating PEG. In 63 days, neat oil-based polyurethane degraded 3.3%, whereas PEG-containing polyurethane showed 10.8% mass loss. The synthesized polymers can be fabricated into a variety of two-dimensional substrates and three-dimensional scaffolds by compression molding and particulate leaching techniques. The prepared polyurethanes showed good cytocompatibility in vitro and efficiently supported the osteogenic differentiation of pre-osteoblasts. The incorporation of PEG adversely affected osteogenic differentiation. Thus, these olive oil-based polyurethanes are shown to be promising biomaterials for developing scaffolds with tunable degradation and mechanical properties for tissue regeneration. [Display omitted] •Degradable polyurethanes were prepared from olive oil for biomedical applications.•The physico-chemical and degradation properties could be tuned by the incorporation of poly(ethylene glycol).•The polyurethanes can be processed into 2D substrates and 3D porous scaffolds.•The polymers are cytocompatible and efficiently supported osteogenesis.
AbstractList Engineering biomaterials for tissue regeneration with an appropriate degradation rate that is faster than the widely-used slow degrading polyesters and rapidly degrading surface-eroding polymers is challenging. Polyurethanes exhibit the desired combination of physico-mechanical properties along with good biocompatibility and thus find widespread use in the clinic. Clinically, polyurethanes are used in catheters, tubing, patches, coating of pacemaker leads, and left ventricular assisted devices. In this study, two different polyurethanes were synthesized from olive oil, optionally incorporating polyethylene glycol (PEG). The presence of degradable ester groups in the monomers derived from oil imparts degradability to the synthesized polyurethanes. The hydrophilicity and thus degradability of polyurethanes were improved by incorporating PEG into the polymer network. The synthesized polymers were analyzed through physical, mechanical, and thermal characterization. The reduction in storage modulus from 38.7 to 3.7 MPa was observed after incorporating PEG. In 63 days, neat oil-based polyurethane degraded 3.3%, whereas PEG-containing polyurethane showed 10.8% mass loss. The synthesized polymers can be fabricated into a variety of two-dimensional substrates and three-dimensional scaffolds by compression molding and particulate leaching techniques. The prepared polyurethanes showed good cytocompatibility in vitro and efficiently supported the osteogenic differentiation of pre-osteoblasts. The incorporation of PEG adversely affected osteogenic differentiation. Thus, these olive oil-based polyurethanes are shown to be promising biomaterials for developing scaffolds with tunable degradation and mechanical properties for tissue regeneration.
Engineering biomaterials for tissue regeneration with an appropriate degradation rate that is faster than the widely-used slow degrading polyesters and rapidly degrading surface-eroding polymers is challenging. Polyurethanes exhibit the desired combination of physico-mechanical properties along with good biocompatibility and thus find widespread use in the clinic. Clinically, polyurethanes are used in catheters, tubing, patches, coating of pacemaker leads, and left ventricular assisted devices. In this study, two different polyurethanes were synthesized from olive oil, optionally incorporating polyethylene glycol (PEG). The presence of degradable ester groups in the monomers derived from oil imparts degradability to the synthesized polyurethanes. The hydrophilicity and thus degradability of polyurethanes were improved by incorporating PEG into the polymer network. The synthesized polymers were analyzed through physical, mechanical, and thermal characterization. The reduction in storage modulus from 38.7 to 3.7 MPa was observed after incorporating PEG. In 63 days, neat oil-based polyurethane degraded 3.3%, whereas PEG-containing polyurethane showed 10.8% mass loss. The synthesized polymers can be fabricated into a variety of two-dimensional substrates and three-dimensional scaffolds by compression molding and particulate leaching techniques. The prepared polyurethanes showed good cytocompatibility in vitro and efficiently supported the osteogenic differentiation of pre-osteoblasts. The incorporation of PEG adversely affected osteogenic differentiation. Thus, these olive oil-based polyurethanes are shown to be promising biomaterials for developing scaffolds with tunable degradation and mechanical properties for tissue regeneration. [Display omitted] •Degradable polyurethanes were prepared from olive oil for biomedical applications.•The physico-chemical and degradation properties could be tuned by the incorporation of poly(ethylene glycol).•The polyurethanes can be processed into 2D substrates and 3D porous scaffolds.•The polymers are cytocompatible and efficiently supported osteogenesis.
ArticleNumber 115136
Author Nilawar, Sagar
Chatterjee, Kaushik
Author_xml – sequence: 1
  givenname: Sagar
  surname: Nilawar
  fullname: Nilawar, Sagar
– sequence: 2
  givenname: Kaushik
  surname: Chatterjee
  fullname: Chatterjee, Kaushik
  email: kchatterjee@iisc.ac.in
BookMark eNqFkEFLwzAUx4NMcE4_gtCjl9YkTZMGDyJDpzDYRcFbyJLXmdE1NWkH-_Z2dicvO713-P_-7_G7RpPGN4DQHcEZwYQ_bDPXWBN8m1FMaUZIQXJ-gaakFDTlef41QVMsKU85l_gKXce4xZgITMUULVa120PiXZ1aCMNqEwuboK1e15C0vj70Abpv3UBMKh-S9XA66VyMPSQBNtBA0J3zzQ26rHQd4fY0Z-jz9eVj_pYuV4v3-fMyNVTQLmWCaVmCZIwKzIERbC3LcVkQKwiWUBomtaBlbjBnZaG1tLIyApgkBc8rk8_Q_djbBv_TQ-zUzkUDdT186PuoqCAlzUsh6BB9HKODmhgDVMq47u_ZLmhXK4LVUZ_aqpM-ddSnRn0DXfyj2-B2OhzOck8jB4OFvYOgonHQGLAugOmU9e5Mwy-7cI7g
CitedBy_id crossref_primary_10_1016_j_polymertesting_2023_108086
crossref_primary_10_1080_01932691_2024_2444980
crossref_primary_10_1007_s10924_023_02786_1
crossref_primary_10_1021_acssuschemeng_3c03566
crossref_primary_10_1021_acssuschemeng_3c06924
crossref_primary_10_1088_1755_1315_1228_1_012031
crossref_primary_10_34256_ijceae2314
crossref_primary_10_1002_app_55703
crossref_primary_10_1039_D3QM01251D
Cites_doi 10.3390/polym12030717
10.1016/j.polymdegradstab.2014.03.010
10.1002/pc.24985
10.1016/j.indcrop.2013.08.003
10.1002/app.29946
10.1002/pi.2107
10.1002/btpr.246
10.1016/j.porgcoat.2012.12.011
10.1021/am5071333
10.1016/j.cell.2006.08.008
10.1016/j.msec.2017.03.160
10.1007/s00289-019-02774-3
10.1039/C0PY00235F
10.1016/j.msec.2020.111228
10.1038/s41428-018-0097-8
10.1088/1748-605X/ac0453
10.1039/D1MA00733E
10.1002/jbm.a.32052
10.1016/j.indcrop.2020.112831
10.1016/S0005-2736(97)00027-8
10.1016/j.jvs.2017.06.083
10.1039/C2PY00452F
10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO;2-F
10.1038/s41598-020-70155-2
10.3390/polym11040586
10.1021/acsami.6b09801
10.1016/j.progpolymsci.2008.07.004
10.1098/rsfs.2012.0012
10.3390/polym12081842
10.1007/s11998-021-00490-0
10.1039/c2ra21211k
10.1002/adv.21525
10.1016/j.polymdegradstab.2006.10.011
10.1016/j.progpolymsci.2016.12.009
10.1016/j.eurpolymj.2003.12.013
10.1590/S0104-14282008000300004
10.1021/acssuschemeng.5b00001
10.1007/s00586-008-0745-3
10.1371/journal.pone.0163530
10.1002/adv.22139
10.3390/ma11112244
10.2217/rme.14.4
10.1097/01.MAT.0000136511.99220.8B
10.3390/ma14030478
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.indcrop.2022.115136
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-633X
ExternalDocumentID 10_1016_j_indcrop_2022_115136
S0926669022006197
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSZ
T5K
UNMZH
~G-
~KM
29I
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HVGLF
HZ~
R2-
RIG
SEW
SSH
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c272t-474a98e9442706e410dd430851d7109e8c49a7283c06485aa9d9fc7e491563fc3
IEDL.DBID AIKHN
ISSN 0926-6690
IngestDate Fri Sep 05 11:54:15 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Tue Jul 01 04:16:43 EDT 2025
Fri Feb 23 02:42:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bone tissue engineering
Olive oil
Polyurethanes
Renewable resources
Degradable
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-474a98e9442706e410dd430851d7109e8c49a7283c06485aa9d9fc7e491563fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718238772
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718238772
crossref_citationtrail_10_1016_j_indcrop_2022_115136
crossref_primary_10_1016_j_indcrop_2022_115136
elsevier_sciencedirect_doi_10_1016_j_indcrop_2022_115136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Industrial crops and products
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tajau, Rohani, Wan Isahak, Salleh, Ghazali (bib39) 2018; 37
Porter, Ruckh, Popat (bib34) 2009; 25
Hazmi, Aung, Abdullah, Salleh, Mahmood (bib19) 2013; 50
Bhattacharyya, Mukhopadhyay, Pramanik, Kundu (bib7) 2016; 35
Mizera, Ryszkowska, Kurańska, Prociak (bib28) 2020; 77
Malani, Malshe, Thorat (bib27) 2022; 19
Zieleniewska, Auguścik, Prociak, Rojek, Ryszkowska (bib51) 2014; 108
Alkaade, Vareedayah (bib2) 2017; 23
Bat, Zhang, Feijen, Grijpma, Poot (bib4) 2014; 9
Cauich-Rodríguez, Chan-Chan, Hernandez-Sánchez, Cervantes-Uc (bib11) 2013
Yeganeh, Mehdizadeh (bib46) 2004; 40
Natarajan, Movva, Madras, Chatterjee (bib30) 2017; 77
Gunatillake, Adhikari, Felton (bib18) 2011
Kumar, Chatterjee (bib25) 2016; 8
Boskou, Blekas, Tsimidou (bib9) 2006
Chen, Ushida, Tateishi (bib13) 2002; 2
Wang, Zhou, Hong, Zhang (bib43) 2012; 2
Pujari-Palmer, Pujari-Palmer, Lu, Lind, Melhus, Engstrand, Karlsson-Ott, Engqvist (bib36) 2016; 11
Naureen, Haseeb, Basirun, Muhamad (bib31) 2021; 118
Jaganathan, Mani, Ismail, Prabhakaran, Nageswaran (bib22) 2019; 40
Yeoh, Lee, Kang, Wong, Cheng, Ng (bib48) 2020; 12
Sharma, Kundu (bib38) 2008; 33
Tschan, Brulé, Haquette, Thomas (bib40) 2012; 3
Kolanthai, Sarkar, Meka, Madras, Chatterjee (bib24) 2015; 3
Mohanty, Mohanty, Nayak, Samal (bib29) 2021; 27
Jaganathan, Mani, Khudzari (bib21) 2019; 11
Behera, Rajput, Acharya, Nadammal, Suwas, Chatterjee (bib5) 2021
Pramanik, Konwarh, Sagar, Konwar, Karak (bib35) 2013; 76
Wang, Yu, Ding, Tan, Li, Fu (bib44) 2011; 2
Borowicz, Paciorek-Sadowska, Isbrandt (bib8) 2020; 155
Even-Ram, Artym, Yamada (bib15) 2006; 126
Nilawar, Dasgupta, Madras, Chatterjee (bib32) 2019; 2
Nilawar, Uddin, Chatterjee (bib33) 2021; 2
Gong, Fu, Gu, Liu, Kan, Deng, Luo, Qian (bib17) 2009; 113
Hoti, Caldera, Cecone, Pedrazzo, Anceschi, Appleton, Monfared, Trotta (bib20) 2021; 14
Zhang, Madbouly, Kessler (bib49) 2015; 7
Cangemi, Santos, Neto, Chierice (bib10) 2008; 18
Zhang, Garrison, Madbouly, Kessler (bib50) 2017; 71
Chan, Leong (bib12) 2008; Suppl 4
Abril-Milán, Valdés, Mirabal-Gallardo, de la Torre, Bustamante, Contreras (bib1) 2018; 11
Kakisis, Antonopoulos, Mantas, Alexiou, Katseni, Sfyroeras, Moulakakis, Geroulakos (bib23) 2017; 66
Bhatt, Pulpytel, Mirshahi, Arefi-Khonsari (bib6) 2012; 2
Uyama (bib41) 2018; 50
Babu, Gill, Farrar (bib3) 2004; 50
Du, Chandaroy, Hui (bib14) 1997; 1326
Ganji, Kasra, Kordestani (bib16) 2015; 4
Lam, Hutmacher, Schantz, Woodruff, Teoh (bib26) 2009; 90
Yeganeh, Jamshidi, Jamshidi (bib47) 2007; 56
Samadian, Farzamfar, Vaez, Ehterami, Bit, Alam, Goodarzi, Darya, Salehi (bib37) 2020; 10
Visan, Popescu-Pelin, Gherasim, Mihailescu, Socol, Zgura, Chiritoiu, Elena Sima, Antohe, Ivan (bib42) 2020; 12
Yeganeh, Hojati-Talemi (bib45) 2007; 92
Boskou (10.1016/j.indcrop.2022.115136_bib9) 2006
Chen (10.1016/j.indcrop.2022.115136_bib13) 2002; 2
Porter (10.1016/j.indcrop.2022.115136_bib34) 2009; 25
Mohanty (10.1016/j.indcrop.2022.115136_bib29) 2021; 27
Lam (10.1016/j.indcrop.2022.115136_bib26) 2009; 90
Zhang (10.1016/j.indcrop.2022.115136_bib50) 2017; 71
Behera (10.1016/j.indcrop.2022.115136_bib5) 2021
Du (10.1016/j.indcrop.2022.115136_bib14) 1997; 1326
Bhatt (10.1016/j.indcrop.2022.115136_bib6) 2012; 2
Gunatillake (10.1016/j.indcrop.2022.115136_bib18) 2011
Uyama (10.1016/j.indcrop.2022.115136_bib41) 2018; 50
Yeganeh (10.1016/j.indcrop.2022.115136_bib46) 2004; 40
Zhang (10.1016/j.indcrop.2022.115136_bib49) 2015; 7
Visan (10.1016/j.indcrop.2022.115136_bib42) 2020; 12
Hoti (10.1016/j.indcrop.2022.115136_bib20) 2021; 14
Bat (10.1016/j.indcrop.2022.115136_bib4) 2014; 9
Zieleniewska (10.1016/j.indcrop.2022.115136_bib51) 2014; 108
Yeganeh (10.1016/j.indcrop.2022.115136_bib45) 2007; 92
Jaganathan (10.1016/j.indcrop.2022.115136_bib21) 2019; 11
Kakisis (10.1016/j.indcrop.2022.115136_bib23) 2017; 66
Babu (10.1016/j.indcrop.2022.115136_bib3) 2004; 50
Malani (10.1016/j.indcrop.2022.115136_bib27) 2022; 19
Naureen (10.1016/j.indcrop.2022.115136_bib31) 2021; 118
Chan (10.1016/j.indcrop.2022.115136_bib12) 2008; Suppl 4
Tajau (10.1016/j.indcrop.2022.115136_bib39) 2018; 37
Wang (10.1016/j.indcrop.2022.115136_bib43) 2012; 2
Cangemi (10.1016/j.indcrop.2022.115136_bib10) 2008; 18
Wang (10.1016/j.indcrop.2022.115136_bib44) 2011; 2
Natarajan (10.1016/j.indcrop.2022.115136_bib30) 2017; 77
Hazmi (10.1016/j.indcrop.2022.115136_bib19) 2013; 50
Yeoh (10.1016/j.indcrop.2022.115136_bib48) 2020; 12
Alkaade (10.1016/j.indcrop.2022.115136_bib2) 2017; 23
Nilawar (10.1016/j.indcrop.2022.115136_bib32) 2019; 2
Tschan (10.1016/j.indcrop.2022.115136_bib40) 2012; 3
Pujari-Palmer (10.1016/j.indcrop.2022.115136_bib36) 2016; 11
Jaganathan (10.1016/j.indcrop.2022.115136_bib22) 2019; 40
Bhattacharyya (10.1016/j.indcrop.2022.115136_bib7) 2016; 35
Mizera (10.1016/j.indcrop.2022.115136_bib28) 2020; 77
Samadian (10.1016/j.indcrop.2022.115136_bib37) 2020; 10
Gong (10.1016/j.indcrop.2022.115136_bib17) 2009; 113
Kolanthai (10.1016/j.indcrop.2022.115136_bib24) 2015; 3
Yeganeh (10.1016/j.indcrop.2022.115136_bib47) 2007; 56
Ganji (10.1016/j.indcrop.2022.115136_bib16) 2015; 4
Borowicz (10.1016/j.indcrop.2022.115136_bib8) 2020; 155
Kumar (10.1016/j.indcrop.2022.115136_bib25) 2016; 8
Nilawar (10.1016/j.indcrop.2022.115136_bib33) 2021; 2
Pramanik (10.1016/j.indcrop.2022.115136_bib35) 2013; 76
Abril-Milán (10.1016/j.indcrop.2022.115136_bib1) 2018; 11
Cauich-Rodríguez (10.1016/j.indcrop.2022.115136_bib11) 2013
Even-Ram (10.1016/j.indcrop.2022.115136_bib15) 2006; 126
Sharma (10.1016/j.indcrop.2022.115136_bib38) 2008; 33
References_xml – volume: 40
  start-page: 2039
  year: 2019
  end-page: 2050
  ident: bib22
  article-title: Tailor‐made multicomponent electrospun polyurethane nanofibrous composite scaffold comprising olive oil, honey, and propolis for bone tissue engineering
  publication-title: Polym. Compos.
– volume: 9
  start-page: 385
  year: 2014
  end-page: 398
  ident: bib4
  article-title: Biodegradable elastomers for biomedical applications and regenerative medicine
  publication-title: Regen. Med.
– volume: 40
  start-page: 1233
  year: 2004
  end-page: 1238
  ident: bib46
  article-title: Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resource polyol
  publication-title: Eur. Polym. J.
– year: 2021
  ident: bib5
  article-title: Zinc and cerium synergistically enhance the mechanical properties, corrosion resistance, and osteogenic activity of magnesium as resorbable biomaterials
  publication-title: Biomed. Mater.
– volume: 12
  start-page: 1842
  year: 2020
  ident: bib48
  article-title: Production of biodegradable palm oil-based polyurethane as potential biomaterial for biomedical applications
  publication-title: Polymers
– volume: 50
  start-page: 1003
  year: 2018
  end-page: 1011
  ident: bib41
  article-title: Functional polymers from renewable plant oils
  publication-title: Polym. J.
– volume: 33
  start-page: 1199
  year: 2008
  end-page: 1215
  ident: bib38
  article-title: Condensation polymers from natural oils
  publication-title: Prog. Polym. Sci.
– volume: 2
  start-page: 9114
  year: 2012
  end-page: 9123
  ident: bib6
  article-title: Nano thick poly (ε-caprolactone)-poly (ethylene glycol) coatings developed by catalyst-free plasma assisted copolymerization process for biomedical applications
  publication-title: RSC Adv.
– start-page: 51
  year: 2013
  end-page: 82
  ident: bib11
  article-title: Degradation of polyurethanes for cardiovascular applications
  publication-title: Adv. Biomater. Sci. Biomed. Appl.
– volume: 77
  start-page: 823
  year: 2020
  end-page: 846
  ident: bib28
  article-title: The effect of rapeseed oil-based polyols on the thermal and mechanical properties of ureaurethane elastomers
  publication-title: Polym. Bull.
– volume: 7
  start-page: 1226
  year: 2015
  end-page: 1233
  ident: bib49
  article-title: Biobased polyurethanes prepared from different vegetable oils
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1326
  start-page: 236
  year: 1997
  end-page: 248
  ident: bib14
  article-title: Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion
  publication-title: Biochim. Et. Biophys. Acta BBA Biomembr.
– volume: 66
  start-page: 1792
  year: 2017
  end-page: 1797
  ident: bib23
  article-title: Safety and efficacy of polyurethane vascular grafts for early hemodialysis access
  publication-title: J. Vasc. Surg.
– volume: 2
  start-page: 7820
  year: 2021
  end-page: 7841
  ident: bib33
  article-title: Surface engineering of biodegradable implants: emerging trends in bioactive ceramic coatings and mechanical treatments
  publication-title: Mater. Adv.
– volume: 71
  start-page: 91
  year: 2017
  end-page: 143
  ident: bib50
  article-title: Recent advances in vegetable oil-based polymers and their composites
  publication-title: Prog. Polym. Sci.
– volume: 108
  start-page: 241
  year: 2014
  end-page: 249
  ident: bib51
  article-title: Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering
  publication-title: Polym. Degrad. Stab.
– volume: 14
  start-page: 478
  year: 2021
  ident: bib20
  article-title: Effect of the cross-linking density on the swelling and rheological behavior of ester-bridged β-cyclodextrin nanosponges
  publication-title: Materials
– volume: 155
  year: 2020
  ident: bib8
  article-title: Synthesis and application of new bio-polyols based on mustard oil for the production of selected polyurethane materials
  publication-title: Ind. Crops Prod.
– volume: 11
  year: 2016
  ident: bib36
  article-title: Pyrophosphate stimulates differentiation, matrix gene expression and alkaline phosphatase activity in osteoblasts
  publication-title: PLoS One
– volume: 90
  start-page: 906
  year: 2009
  end-page: 919
  ident: bib26
  article-title: Evaluation of polycaprolactone scaffold degradation for 6 months
  publication-title: J. Biomed. Mater. Res A
– start-page: 431
  year: 2011
  end-page: 470
  ident: bib18
  article-title: Biodegradable polyurethanes: design, synthesis, properties and potential applications, Biodegradable
  publication-title: Polymers: Processing, Degradation and Applications
– volume: 3
  start-page: 880
  year: 2015
  end-page: 891
  ident: bib24
  article-title: Copolyesters from soybean oil for use as resorbable biomaterials
  publication-title: ACS Sustain. Chem. Eng.
– volume: 18
  start-page: 201
  year: 2008
  end-page: 206
  ident: bib10
  article-title: Biodegradation of polyurethane derived from castor oil
  publication-title: Polímeros
– volume: 50
  start-page: 563
  year: 2013
  end-page: 567
  ident: bib19
  article-title: Producing Jatropha oil-based polyol via epoxidation and ring opening
  publication-title: Ind. Crops Prod.
– volume: 3
  start-page: 836
  year: 2012
  end-page: 851
  ident: bib40
  article-title: Synthesis of biodegradable polymers from renewable resources
  publication-title: Polym. Chem.
– volume: 2
  start-page: 67
  year: 2002
  end-page: 77
  ident: bib13
  article-title: Scaffold design for tissue engineering
  publication-title: Macromol. Biosci.
– volume: 92
  start-page: 480
  year: 2007
  end-page: 489
  ident: bib45
  article-title: Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly (ethylene glycol)
  publication-title: Polym. Degrad. Stab.
– volume: 76
  start-page: 689
  year: 2013
  end-page: 697
  ident: bib35
  article-title: Bio-degradable vegetable oil based hyperbranched poly (ester amide) as an advanced surface coating material
  publication-title: Prog. Org. Coat.
– volume: 11
  start-page: 2244
  year: 2018
  ident: bib1
  article-title: Preparation of renewable bio-polyols from two species of Colliguaja for rigid polyurethane foams
  publication-title: Materials
– volume: Suppl 4
  start-page: 467
  year: 2008
  end-page: 479
  ident: bib12
  article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations
  publication-title: Eur. Spine J. 17
– volume: 77
  start-page: 534
  year: 2017
  end-page: 547
  ident: bib30
  article-title: Biodegradable galactitol based crosslinked polyesters for controlled release and bone tissue engineering
  publication-title: Mater. Sci. Eng.: C.
– volume: 37
  start-page: 3552
  year: 2018
  end-page: 3560
  ident: bib39
  article-title: Development of new bio‐based polyol ester from palm oil for potential polymeric drug carrier
  publication-title: Adv. Polym. Technol.
– volume: 2
  start-page: 153
  year: 2019
  end-page: 168
  ident: bib32
  article-title: Degradable poly (ester amide) s from olive oil for biomedical applications, Emergent
  publication-title: Materials
– volume: 126
  start-page: 645
  year: 2006
  end-page: 647
  ident: bib15
  article-title: Matrix control of stem cell fate
  publication-title: Cell
– volume: 2
  start-page: 259
  year: 2012
  end-page: 277
  ident: bib43
  article-title: A review of protein adsorption on bioceramics
  publication-title: Interface Focus
– volume: 4
  start-page: 207
  year: 2015
  end-page: 213
  ident: bib16
  article-title: Mechanical and degradation properties of castor oil-based polyurethane
  publication-title: Int J. Eng. Adv. Technol.
– volume: 19
  start-page: 201
  year: 2022
  end-page: 222
  ident: bib27
  article-title: Polyols and polyurethanes from renewable sources: past, present and future—part 1: vegetable oils and lignocellulosic biomass
  publication-title: J. Coat. Technol. Res.
– volume: 27
  year: 2021
  ident: bib29
  article-title: Synthesis and evaluation of novel acrylic and ester-based polyols for transparent polyurethane coating applications, Materials Today
  publication-title: Communications
– volume: 118
  year: 2021
  ident: bib31
  article-title: Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane
  publication-title: Mater. Sci. Eng.: C.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib37
  article-title: A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration
  publication-title: Sci. Rep.
– start-page: 41
  year: 2006
  end-page: 72
  ident: bib9
  article-title: Olive oil composition
  publication-title: Olive oil
– volume: 113
  start-page: 1111
  year: 2009
  end-page: 1119
  ident: bib17
  article-title: Synthesis, characterization, and hydrolytic degradation of biodegradable poly (ether ester)‐urethane copolymers based on ε‐caprolactone and poly (ethylene glycol)
  publication-title: J. Appl. Polym. Sci.
– volume: 11
  start-page: 586
  year: 2019
  ident: bib21
  article-title: Electrospun combination of peppermint oil and copper sulphate with conducive physico-chemical properties for wound dressing applications
  publication-title: Polymers
– volume: 2
  start-page: 601
  year: 2011
  end-page: 607
  ident: bib44
  article-title: Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly (lactic acid)-poly (ethylene glycol)-poly (lactic acid) and l-lysine diisocyanate
  publication-title: Polym. Chem.
– volume: 23
  start-page: S203
  year: 2017
  end-page: S209
  ident: bib2
  article-title: A primer on exocrine pancreatic insufficiency, fat malabsorption, and fatty acid abnormalities
  publication-title: Am. J. Manag Care
– volume: 56
  start-page: 41
  year: 2007
  end-page: 49
  ident: bib47
  article-title: Synthesis and properties of novel biodegradable poly (ε‐caprolactone)/poly (ethylene glycol)‐based polyurethane elastomers
  publication-title: Polym. Int.
– volume: 8
  start-page: 26431
  year: 2016
  end-page: 26457
  ident: bib25
  article-title: Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 1539
  year: 2009
  end-page: 1560
  ident: bib34
  article-title: Bone tissue engineering: a review in bone biomimetics and drug delivery strategies
  publication-title: Biotechnol. Prog.
– volume: 50
  start-page: 479
  year: 2004
  end-page: 484
  ident: bib3
  article-title: Biostability of Thoralon left ventricular assist device blood pumping sacs after long-term clinical use
  publication-title: ASAIO J.
– volume: 35
  year: 2016
  ident: bib7
  article-title: Effect of polyethylene glycol on bis (2–hydroxyethyl) terephthalate‐based polyurethane/alginate ph‐sensitive blend for oral protein delivery
  publication-title: Adv. Polym. Technol.
– volume: 12
  start-page: 717
  year: 2020
  ident: bib42
  article-title: Long-term evaluation of dip-coated pcl-blend-peg coatings in simulated conditions
  publication-title: Polymers
– start-page: 431
  year: 2011
  ident: 10.1016/j.indcrop.2022.115136_bib18
  article-title: Biodegradable polyurethanes: design, synthesis, properties and potential applications, Biodegradable
– volume: 12
  start-page: 717
  issue: 3
  year: 2020
  ident: 10.1016/j.indcrop.2022.115136_bib42
  article-title: Long-term evaluation of dip-coated pcl-blend-peg coatings in simulated conditions
  publication-title: Polymers
  doi: 10.3390/polym12030717
– volume: 108
  start-page: 241
  year: 2014
  ident: 10.1016/j.indcrop.2022.115136_bib51
  article-title: Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2014.03.010
– volume: 40
  start-page: 2039
  issue: 5
  year: 2019
  ident: 10.1016/j.indcrop.2022.115136_bib22
  article-title: Tailor‐made multicomponent electrospun polyurethane nanofibrous composite scaffold comprising olive oil, honey, and propolis for bone tissue engineering
  publication-title: Polym. Compos.
  doi: 10.1002/pc.24985
– volume: 50
  start-page: 563
  year: 2013
  ident: 10.1016/j.indcrop.2022.115136_bib19
  article-title: Producing Jatropha oil-based polyol via epoxidation and ring opening
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2013.08.003
– volume: 113
  start-page: 1111
  issue: 2
  year: 2009
  ident: 10.1016/j.indcrop.2022.115136_bib17
  article-title: Synthesis, characterization, and hydrolytic degradation of biodegradable poly (ether ester)‐urethane copolymers based on ε‐caprolactone and poly (ethylene glycol)
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.29946
– volume: 4
  start-page: 207
  year: 2015
  ident: 10.1016/j.indcrop.2022.115136_bib16
  article-title: Mechanical and degradation properties of castor oil-based polyurethane
  publication-title: Int J. Eng. Adv. Technol.
– start-page: 41
  year: 2006
  ident: 10.1016/j.indcrop.2022.115136_bib9
  article-title: Olive oil composition
– volume: 56
  start-page: 41
  issue: 1
  year: 2007
  ident: 10.1016/j.indcrop.2022.115136_bib47
  article-title: Synthesis and properties of novel biodegradable poly (ε‐caprolactone)/poly (ethylene glycol)‐based polyurethane elastomers
  publication-title: Polym. Int.
  doi: 10.1002/pi.2107
– volume: 25
  start-page: 1539
  issue: 6
  year: 2009
  ident: 10.1016/j.indcrop.2022.115136_bib34
  article-title: Bone tissue engineering: a review in bone biomimetics and drug delivery strategies
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.246
– volume: 76
  start-page: 689
  issue: 4
  year: 2013
  ident: 10.1016/j.indcrop.2022.115136_bib35
  article-title: Bio-degradable vegetable oil based hyperbranched poly (ester amide) as an advanced surface coating material
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2012.12.011
– volume: 7
  start-page: 1226
  issue: 2
  year: 2015
  ident: 10.1016/j.indcrop.2022.115136_bib49
  article-title: Biobased polyurethanes prepared from different vegetable oils
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5071333
– volume: 126
  start-page: 645
  issue: 4
  year: 2006
  ident: 10.1016/j.indcrop.2022.115136_bib15
  article-title: Matrix control of stem cell fate
  publication-title: Cell
  doi: 10.1016/j.cell.2006.08.008
– volume: 2
  start-page: 153
  issue: 2
  year: 2019
  ident: 10.1016/j.indcrop.2022.115136_bib32
  article-title: Degradable poly (ester amide) s from olive oil for biomedical applications, Emergent
  publication-title: Materials
– start-page: 51
  year: 2013
  ident: 10.1016/j.indcrop.2022.115136_bib11
  article-title: Degradation of polyurethanes for cardiovascular applications
  publication-title: Adv. Biomater. Sci. Biomed. Appl.
– volume: 27
  year: 2021
  ident: 10.1016/j.indcrop.2022.115136_bib29
  article-title: Synthesis and evaluation of novel acrylic and ester-based polyols for transparent polyurethane coating applications, Materials Today
  publication-title: Communications
– volume: 77
  start-page: 534
  year: 2017
  ident: 10.1016/j.indcrop.2022.115136_bib30
  article-title: Biodegradable galactitol based crosslinked polyesters for controlled release and bone tissue engineering
  publication-title: Mater. Sci. Eng.: C.
  doi: 10.1016/j.msec.2017.03.160
– volume: 77
  start-page: 823
  issue: 2
  year: 2020
  ident: 10.1016/j.indcrop.2022.115136_bib28
  article-title: The effect of rapeseed oil-based polyols on the thermal and mechanical properties of ureaurethane elastomers
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-019-02774-3
– volume: 2
  start-page: 601
  issue: 3
  year: 2011
  ident: 10.1016/j.indcrop.2022.115136_bib44
  article-title: Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly (lactic acid)-poly (ethylene glycol)-poly (lactic acid) and l-lysine diisocyanate
  publication-title: Polym. Chem.
  doi: 10.1039/C0PY00235F
– volume: 118
  year: 2021
  ident: 10.1016/j.indcrop.2022.115136_bib31
  article-title: Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane
  publication-title: Mater. Sci. Eng.: C.
  doi: 10.1016/j.msec.2020.111228
– volume: 50
  start-page: 1003
  issue: 11
  year: 2018
  ident: 10.1016/j.indcrop.2022.115136_bib41
  article-title: Functional polymers from renewable plant oils
  publication-title: Polym. J.
  doi: 10.1038/s41428-018-0097-8
– year: 2021
  ident: 10.1016/j.indcrop.2022.115136_bib5
  article-title: Zinc and cerium synergistically enhance the mechanical properties, corrosion resistance, and osteogenic activity of magnesium as resorbable biomaterials
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/ac0453
– volume: 2
  start-page: 7820
  issue: 24
  year: 2021
  ident: 10.1016/j.indcrop.2022.115136_bib33
  article-title: Surface engineering of biodegradable implants: emerging trends in bioactive ceramic coatings and mechanical treatments
  publication-title: Mater. Adv.
  doi: 10.1039/D1MA00733E
– volume: 23
  start-page: S203
  issue: 12 suppl
  year: 2017
  ident: 10.1016/j.indcrop.2022.115136_bib2
  article-title: A primer on exocrine pancreatic insufficiency, fat malabsorption, and fatty acid abnormalities
  publication-title: Am. J. Manag Care
– volume: 90
  start-page: 906
  issue: 3
  year: 2009
  ident: 10.1016/j.indcrop.2022.115136_bib26
  article-title: Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo
  publication-title: J. Biomed. Mater. Res A
  doi: 10.1002/jbm.a.32052
– volume: 155
  year: 2020
  ident: 10.1016/j.indcrop.2022.115136_bib8
  article-title: Synthesis and application of new bio-polyols based on mustard oil for the production of selected polyurethane materials
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2020.112831
– volume: 1326
  start-page: 236
  issue: 2
  year: 1997
  ident: 10.1016/j.indcrop.2022.115136_bib14
  article-title: Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion
  publication-title: Biochim. Et. Biophys. Acta BBA Biomembr.
  doi: 10.1016/S0005-2736(97)00027-8
– volume: 66
  start-page: 1792
  issue: 6
  year: 2017
  ident: 10.1016/j.indcrop.2022.115136_bib23
  article-title: Safety and efficacy of polyurethane vascular grafts for early hemodialysis access
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2017.06.083
– volume: 3
  start-page: 836
  issue: 4
  year: 2012
  ident: 10.1016/j.indcrop.2022.115136_bib40
  article-title: Synthesis of biodegradable polymers from renewable resources
  publication-title: Polym. Chem.
  doi: 10.1039/C2PY00452F
– volume: 2
  start-page: 67
  issue: 2
  year: 2002
  ident: 10.1016/j.indcrop.2022.115136_bib13
  article-title: Scaffold design for tissue engineering
  publication-title: Macromol. Biosci.
  doi: 10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO;2-F
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.indcrop.2022.115136_bib37
  article-title: A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-70155-2
– volume: 11
  start-page: 586
  issue: 4
  year: 2019
  ident: 10.1016/j.indcrop.2022.115136_bib21
  article-title: Electrospun combination of peppermint oil and copper sulphate with conducive physico-chemical properties for wound dressing applications
  publication-title: Polymers
  doi: 10.3390/polym11040586
– volume: 8
  start-page: 26431
  issue: 40
  year: 2016
  ident: 10.1016/j.indcrop.2022.115136_bib25
  article-title: Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09801
– volume: 33
  start-page: 1199
  issue: 12
  year: 2008
  ident: 10.1016/j.indcrop.2022.115136_bib38
  article-title: Condensation polymers from natural oils
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2008.07.004
– volume: 2
  start-page: 259
  issue: 3
  year: 2012
  ident: 10.1016/j.indcrop.2022.115136_bib43
  article-title: A review of protein adsorption on bioceramics
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2012.0012
– volume: 12
  start-page: 1842
  issue: 8
  year: 2020
  ident: 10.1016/j.indcrop.2022.115136_bib48
  article-title: Production of biodegradable palm oil-based polyurethane as potential biomaterial for biomedical applications
  publication-title: Polymers
  doi: 10.3390/polym12081842
– volume: 19
  start-page: 201
  issue: 1
  year: 2022
  ident: 10.1016/j.indcrop.2022.115136_bib27
  article-title: Polyols and polyurethanes from renewable sources: past, present and future—part 1: vegetable oils and lignocellulosic biomass
  publication-title: J. Coat. Technol. Res.
  doi: 10.1007/s11998-021-00490-0
– volume: 2
  start-page: 9114
  issue: 24
  year: 2012
  ident: 10.1016/j.indcrop.2022.115136_bib6
  article-title: Nano thick poly (ε-caprolactone)-poly (ethylene glycol) coatings developed by catalyst-free plasma assisted copolymerization process for biomedical applications
  publication-title: RSC Adv.
  doi: 10.1039/c2ra21211k
– volume: 35
  issue: 1
  year: 2016
  ident: 10.1016/j.indcrop.2022.115136_bib7
  article-title: Effect of polyethylene glycol on bis (2–hydroxyethyl) terephthalate‐based polyurethane/alginate ph‐sensitive blend for oral protein delivery
  publication-title: Adv. Polym. Technol.
  doi: 10.1002/adv.21525
– volume: 92
  start-page: 480
  issue: 3
  year: 2007
  ident: 10.1016/j.indcrop.2022.115136_bib45
  article-title: Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly (ethylene glycol)
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2006.10.011
– volume: 71
  start-page: 91
  year: 2017
  ident: 10.1016/j.indcrop.2022.115136_bib50
  article-title: Recent advances in vegetable oil-based polymers and their composites
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2016.12.009
– volume: 40
  start-page: 1233
  issue: 6
  year: 2004
  ident: 10.1016/j.indcrop.2022.115136_bib46
  article-title: Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resource polyol
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2003.12.013
– volume: 18
  start-page: 201
  issue: 3
  year: 2008
  ident: 10.1016/j.indcrop.2022.115136_bib10
  article-title: Biodegradation of polyurethane derived from castor oil
  publication-title: Polímeros
  doi: 10.1590/S0104-14282008000300004
– volume: 3
  start-page: 880
  issue: 5
  year: 2015
  ident: 10.1016/j.indcrop.2022.115136_bib24
  article-title: Copolyesters from soybean oil for use as resorbable biomaterials
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00001
– volume: Suppl 4
  start-page: 467
  issue: 4
  year: 2008
  ident: 10.1016/j.indcrop.2022.115136_bib12
  article-title: Scaffolding in tissue engineering: general approaches and tissue-specific considerations
  publication-title: Eur. Spine J. 17
  doi: 10.1007/s00586-008-0745-3
– volume: 11
  issue: 10
  year: 2016
  ident: 10.1016/j.indcrop.2022.115136_bib36
  article-title: Pyrophosphate stimulates differentiation, matrix gene expression and alkaline phosphatase activity in osteoblasts
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0163530
– volume: 37
  start-page: 3552
  issue: 8
  year: 2018
  ident: 10.1016/j.indcrop.2022.115136_bib39
  article-title: Development of new bio‐based polyol ester from palm oil for potential polymeric drug carrier
  publication-title: Adv. Polym. Technol.
  doi: 10.1002/adv.22139
– volume: 11
  start-page: 2244
  issue: 11
  year: 2018
  ident: 10.1016/j.indcrop.2022.115136_bib1
  article-title: Preparation of renewable bio-polyols from two species of Colliguaja for rigid polyurethane foams
  publication-title: Materials
  doi: 10.3390/ma11112244
– volume: 9
  start-page: 385
  issue: 3
  year: 2014
  ident: 10.1016/j.indcrop.2022.115136_bib4
  article-title: Biodegradable elastomers for biomedical applications and regenerative medicine
  publication-title: Regen. Med.
  doi: 10.2217/rme.14.4
– volume: 50
  start-page: 479
  issue: 5
  year: 2004
  ident: 10.1016/j.indcrop.2022.115136_bib3
  article-title: Biostability of Thoralon left ventricular assist device blood pumping sacs after long-term clinical use
  publication-title: ASAIO J.
  doi: 10.1097/01.MAT.0000136511.99220.8B
– volume: 14
  start-page: 478
  issue: 3
  year: 2021
  ident: 10.1016/j.indcrop.2022.115136_bib20
  article-title: Effect of the cross-linking density on the swelling and rheological behavior of ester-bridged β-cyclodextrin nanosponges
  publication-title: Materials
  doi: 10.3390/ma14030478
SSID ssj0017027
Score 2.4052916
Snippet Engineering biomaterials for tissue regeneration with an appropriate degradation rate that is faster than the widely-used slow degrading polyesters and rapidly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115136
SubjectTerms biocompatibility
biocompatible materials
bone formation
Bone tissue engineering
bones
compression molding
Degradable
hydrophilicity
Olive oil
olives
polyethylene glycol
Polyurethanes
Renewable resources
storage modulus
thermal properties
tissue repair
Title Olive oil-derived degradable polyurethanes for bone tissue regeneration
URI https://dx.doi.org/10.1016/j.indcrop.2022.115136
https://www.proquest.com/docview/2718238772
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7ofNEH8YrzRgRf49o0XZLHIepUnA8q-Ba6JpPJ2MYugi_-ds9p04kiCD62NG35kn7nO825AJxqJbUTznCjhOcyUzHXOM1cqK5OeyhBeillI991mu0nefOcPi_BeZULQ2GVgftLTi_YOpxpBDQb436_8RAZNC7o3AnyimOjlmFFJKaZ1mCldX3b7iw2E1RUdm7F6zkN-ErkabyivHXUKws9RSGQP9K4KNb8q4n6QdaFBbrcgPUgHVmrfLtNWPLDLVhrvUxC-Qy_DVf3A2QvNuoPuMOl9eYdc1QNwlGCFBuPBu94Gf0s91OGapV1R0PPZgX2bOJfihLUNFM78HR58Xje5qFVAs-FEjMulcyM9kZKoaKml3HknExITjkKtvQ6lyZTKCVylCA6zTLjTC9XXhr035JenuxCbYiP3AOmXWy8SHLyRGQWNZENtZEoLNO4S2quDrJCx-ahjji1sxjYKmDs1QZQLYFqS1DrcLYYNi4Lafw1QFfQ228rwiLZ_zX0pJoqi18LbYEgsKP51Ao0xShS0KXY___tD2CVjsqQvkOozSZzf4TSZNY9huWzj_g4LMBPDuLg0A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HtSD-MS3EbzGtmm6SY4i6vrY9aCCt9A2WVlZtsvaFbz4251pU0URBK9t0pYv6TfftPMg5EhJoSy3mmnJHROpjJiCZWZcZirpgwTpJ5iN3O21Ow_i6jF5nCGnTS4MhlV67q85vWJrfyTwaAbjwSC4CzUYF3DuOHrFkZazZE4kscS4vuP3zziPSIZ131YYzXD4VxpP8Azi1mKnLPATOQf2SKKqVPOvBuoHVVf253yZLHnhSE_qZ1shM260ShZPnia-eIZbIxe3Q-AuWgyGzMLGenWWWqwFYTE9io6L4RsMw0_l7oWCVqVZMXK0rJCnE_dUFaDGdVonD-dn96cd5hslsJxLXjIhRaqV00JwGbadiEJrRYxiymKopVO50KkEIZGDAFFJmmqr-7l0QoP3FvfzeIO0RnDLTUKVjbTjcY5-iEjDNnCh0gJkZRJlqOW2iGjQMbmvIo7NLIamCRd7Nh5Ug6CaGtQtcvw5bVyX0fhrgmqgN9_2gwGq_2vqYbNUBt4V_AECwBbTF8PBEINEAYdi-_-XPyDznfvujbm57F3vkAU8Uwf37ZJWOZm6PRApZbZfbcIP8NXhmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Olive+oil-derived+degradable+polyurethanes+for+bone+tissue+regeneration&rft.jtitle=Industrial+crops+and+products&rft.au=Nilawar%2C+Sagar&rft.au=Chatterjee%2C+Kaushik&rft.date=2022-10-01&rft.issn=0926-6690&rft.volume=185+p.115136-&rft_id=info:doi/10.1016%2Fj.indcrop.2022.115136&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6690&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6690&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6690&client=summon