Thermal stability of V–W–Cr–Zr alloy after high-pressure torsion

Complex studying of thermal stability of the V–W–Cr–Zr alloy is studied after plastic deformation under torsion at high pressure. Methods of scanning and transmission electronic microscopy are used to study the influence of the temperature on the characteristics of grain, defective, and heterophase...

Full description

Saved in:
Bibliographic Details
Published inRussian physics journal Vol. 68; no. 3; pp. 376 - 382
Main Authors Smirnov, I. V., Ditenberg, I. A., Tolstikhin, V. I.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Complex studying of thermal stability of the V–W–Cr–Zr alloy is studied after plastic deformation under torsion at high pressure. Methods of scanning and transmission electronic microscopy are used to study the influence of the temperature on the characteristics of grain, defective, and heterophase structures. A comparison of the results of structural attribution with microhardness values has allowed the main temperature intervals of realization of relaxation processes to be elucidated. It has been established that under the influence of the temperature, the processes of heterophase structure transformations are the main factors determining the thermal stability of the V–W–Cr–Zr alloy. The presence of finely dispersed particles of the second phases promotes preservation of an anisotropic submicrocrystalline state and high microhardness values up to 700 °C. Beginning at 800 °C, the coagulation of particles leads to partial unblocking of dislocation substructures accompanied by the return processes and primary recrystallization gradually encompassing the entire volume of the material. Secondary recrystallization comes to the end at 1100 °C. The relaxation processes in the temperature interval from 800 to 1100 °C are accompanied by the reduction of microhardness values, the character of change of which is determined by the Hall–Petch relation taking into account the joint disperse and grain-boundary hardening.
AbstractList Complex studying of thermal stability of the V–W–Cr–Zr alloy is studied after plastic deformation under torsion at high pressure. Methods of scanning and transmission electronic microscopy are used to study the influence of the temperature on the characteristics of grain, defective, and heterophase structures. A comparison of the results of structural attribution with microhardness values has allowed the main temperature intervals of realization of relaxation processes to be elucidated. It has been established that under the influence of the temperature, the processes of heterophase structure transformations are the main factors determining the thermal stability of the V–W–Cr–Zr alloy. The presence of finely dispersed particles of the second phases promotes preservation of an anisotropic submicrocrystalline state and high microhardness values up to 700 °C. Beginning at 800 °C, the coagulation of particles leads to partial unblocking of dislocation substructures accompanied by the return processes and primary recrystallization gradually encompassing the entire volume of the material. Secondary recrystallization comes to the end at 1100 °C. The relaxation processes in the temperature interval from 800 to 1100 °C are accompanied by the reduction of microhardness values, the character of change of which is determined by the Hall–Petch relation taking into account the joint disperse and grain-boundary hardening.
Complex studying of thermal stability of the V–W–Cr–Zr alloy is studied after plastic deformation under torsion at high pressure. Methods of scanning and transmission electronic microscopy are used to study the influence of the temperature on the characteristics of grain, defective, and heterophase structures. A comparison of the results of structural attribution with microhardness values has allowed the main temperature intervals of realization of relaxation processes to be elucidated. It has been established that under the influence of the temperature, the processes of heterophase structure transformations are the main factors determining the thermal stability of the V–W–Cr–Zr alloy. The presence of finely dispersed particles of the second phases promotes preservation of an anisotropic submicrocrystalline state and high microhardness values up to 700 °C. Beginning at 800 °C, the coagulation of particles leads to partial unblocking of dislocation substructures accompanied by the return processes and primary recrystallization gradually encompassing the entire volume of the material. Secondary recrystallization comes to the end at 1100 °C. The relaxation processes in the temperature interval from 800 to 1100 °C are accompanied by the reduction of microhardness values, the character of change of which is determined by the Hall–Petch relation taking into account the joint disperse and grain-boundary hardening.
Author Tolstikhin, V. I.
Smirnov, I. V.
Ditenberg, I. A.
Author_xml – sequence: 1
  givenname: I. V.
  surname: Smirnov
  fullname: Smirnov, I. V.
  email: smirnov_iv@ispms.ru
  organization: Institute of Strength Physics and Materials Science of the Siberian Branch, Russian Academy of Sciences, National Research Tomsk State University
– sequence: 2
  givenname: I. A.
  surname: Ditenberg
  fullname: Ditenberg, I. A.
  organization: Institute of Strength Physics and Materials Science of the Siberian Branch, Russian Academy of Sciences, National Research Tomsk State University
– sequence: 3
  givenname: V. I.
  surname: Tolstikhin
  fullname: Tolstikhin, V. I.
  organization: Institute of Strength Physics and Materials Science of the Siberian Branch, Russian Academy of Sciences, National Research Tomsk State University
BookMark eNp9kMtKAzEUhoMo2FZfwFXAdfTk1mSWUqwKBTdVwU2IM0k7ZTqpyRTane_gG_okpo7gzsW5LL7_HPiG6LgNrUPogsIVBVDXiVKqGQEmCXAhONkdoQGVipOCMX2cdxgLorVWp2iY0gogx8ZqgKbzpYtr2-DU2be6qbs9Dh4_f318vuSaxNxeI7ZNE_bY-s5FvKwXS7KJLqVtdLgLMdWhPUMn3jbJnf_OEXqa3s4n92T2ePcwuZmRkinWESEoKJAl1ZYyWYJUYyo9Vdp6p2hRKFVVwjqoylL4qtBcSO4KZauKU8gMH6HL_u4mhvetS51ZhW1s80vDGQd50ACZYj1VxpBSdN5sYr22cW8omIMv0_sy2Zf58WV2OcT7UMpwu3Dx7_Q_qW-a03IO
Cites_doi 10.1134/S1029959913040061
10.1016/j.msea.2015.12.086
10.1016/j.msea.2022.143159
10.1134/S0031918X06010078
10.1007/978-1-4684-9120-3
10.1007/s11182-024-03167-4
10.1080/09506608.2016.1257536
10.22226/2410-3535-2018-3-372-381
10.1134/S1029959919060067
10.1007/s10853-013-7836-1
10.1016/s0079-6425(99)00007-9
10.1016/0022-5088(74)90141-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11182-025-03443-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1573-9228
EndPage 382
ExternalDocumentID 10_1007_s11182_025_03443_x
GroupedDBID -Y2
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VIT
W23
W48
WK8
YLTOR
ZMTXR
~8M
~A9
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c272t-4410705c18a125c057615f178afe719977dd4ae0dcc4fd983453e97add310afe3
IEDL.DBID U2A
ISSN 1064-8887
IngestDate Sat Aug 23 12:39:08 EDT 2025
Wed Jul 16 16:42:13 EDT 2025
Wed Jul 16 06:31:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Severe plastic deformation
Microstructure
Vanadium alloy
Microhardness
Thermal stability
High-pressure torsion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-4410705c18a125c057615f178afe719977dd4ae0dcc4fd983453e97add310afe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3230511180
PQPubID 2043529
PageCount 7
ParticipantIDs proquest_journals_3230511180
crossref_primary_10_1007_s11182_025_03443_x
springer_journals_10_1007_s11182_025_03443_x
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Russian physics journal
PublicationTitleAbbrev Russ Phys J
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References IA Ditenberg (3443_CR7) 2019; 22
EN Popova (3443_CR4) 2006; 101
G Nouet (3443_CR17) 1974; 35
RZ Valiev (3443_CR1) 2000; 45
HR Peng (3443_CR3) 2017; 62
JW Martin (3443_CR5) 1980
Y Huang (3443_CR16) 2016; 655
EV Kozlov (3443_CR14) 2006; 9
IA Ditenberg (3443_CR8) 2022; 843
AA Nazarov (3443_CR12) 2018; 8
IV Smirnov (3443_CR9) 2024; 67
R Abbaschian (3443_CR13) 2009
YR Kolobov (3443_CR15) 2007
I Machlin (3443_CR6) 1968
PB Hirsch (3443_CR10) 1965
RA Andrievski (3443_CR2) 2014; 49
AN Tyumentsev (3443_CR11) 2013; 16
References_xml – volume-title: Michromechanisms in particle-hardened alloys. Cambridge solid state science series
  year: 1980
  ident: 3443_CR5
– volume: 16
  start-page: 319
  year: 2013
  ident: 3443_CR11
  publication-title: Phys. Mesomech.
  doi: 10.1134/S1029959913040061
– volume: 655
  start-page: 60
  year: 2016
  ident: 3443_CR16
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.12.086
– volume: 843
  start-page: 143159
  year: 2022
  ident: 3443_CR8
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2022.143159
– volume-title: Grain boundary diffusion and properties of Nonstructured materials
  year: 2007
  ident: 3443_CR15
– volume: 101
  start-page: 52
  year: 2006
  ident: 3443_CR4
  publication-title: Phys. Met. Met.
  doi: 10.1134/S0031918X06010078
– volume-title: Electron microscopy of thin crystals
  year: 1965
  ident: 3443_CR10
– volume-title: Refractory metal alloys metallurgy and technology
  year: 1968
  ident: 3443_CR6
  doi: 10.1007/978-1-4684-9120-3
– volume: 67
  start-page: 685
  year: 2024
  ident: 3443_CR9
  publication-title: Russ. Phys. J.
  doi: 10.1007/s11182-024-03167-4
– volume: 62
  start-page: 303
  year: 2017
  ident: 3443_CR3
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2016.1257536
– volume: 8
  start-page: 372
  year: 2018
  ident: 3443_CR12
  publication-title: Lett. Mater.
  doi: 10.22226/2410-3535-2018-3-372-381
– volume: 22
  start-page: 496
  year: 2019
  ident: 3443_CR7
  publication-title: Phys. Mesomech.
  doi: 10.1134/S1029959919060067
– volume: 49
  start-page: 1449
  year: 2014
  ident: 3443_CR2
  publication-title: J Mater Sci
  doi: 10.1007/s10853-013-7836-1
– volume: 9
  start-page: 75
  issue: 3–4
  year: 2006
  ident: 3443_CR14
  publication-title: Hall–petch Probl. Phys. Mesomech.
– volume-title: Physical metallurgy principles
  year: 2009
  ident: 3443_CR13
– volume: 45
  start-page: 103
  year: 2000
  ident: 3443_CR1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/s0079-6425(99)00007-9
– volume: 35
  start-page: 17
  year: 1974
  ident: 3443_CR17
  publication-title: J. Less-common Met.
  doi: 10.1016/0022-5088(74)90141-6
SSID ssj0010067
Score 2.2985215
Snippet Complex studying of thermal stability of the V–W–Cr–Zr alloy is studied after plastic deformation under torsion at high pressure. Methods of scanning and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 376
SubjectTerms Chromium
Coagulation
Condensed Matter Physics
Dispersion hardening alloys
Hadrons
Heavy Ions
High pressure
Lasers
Mathematical and Computational Physics
Microhardness
Nuclear Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Plastic deformation
Secondary recrystallization
Theoretical
Thermal stability
Tungsten
Zirconium base alloys
Title Thermal stability of V–W–Cr–Zr alloy after high-pressure torsion
URI https://link.springer.com/article/10.1007/s11182-025-03443-x
https://www.proquest.com/docview/3230511180
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ29TsMwEIBPqBUSC-JXFErlgQ0sObFTJ2NUtVQgmCgUFitxnAm1KG0luvEOvCFPwtlJiEAwMCRSFMvDXe78OXe-AzhD5LCq9WnS9yMqJE9paNCuWJpHaZTlLHI_3G5u--OJuJoG0-pQ2KLOdq9Dks5TN4fdLAtT237VlqnjFMmxHeDe3SZyTfz4K3ZgHbCLcfYFxf2drI7K_D7H9-WoYcwfYVG32ox2YLvCRBKXet2FDTPbg02XrqkX-zBC7aJHfSbIdi67dU3mObn_eHt_wGtQ4O2pIDamviauCzixZYmpS3pdFYbYFjuokAOYjIZ3gzGtOiJQ7Ut_SZFd0EQD7YUJgolG1kIgyT0ZJrmRNmVEZplIDMu0FnkWhVwE3EQSfRhSHI7hh9CazWfmCIhE2_a0CWTCUoSyMMEnwYXUhqUZcmAHzmvBqJey8IVqShxbMSoUo3JiVK8d6NayU5URLBTH7U1gh7IOXNTybF7_Pdvx_4afwJZfqpQyrwutZbEyp4gKy7QH7fjy8XrYc1_IJ2aat7o
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ29TsMwEIBPqAjBgvgVhQIe2MCSEzt1MlYVVYG2UwsVi5U4zoTaKm0luvEOvCFPwtlNiEAwMCRSFMvDne_8JXe-A7hC5LCq9Wnc9CMqJE9oaNCuWJJFSZRmLHI_3PqDZnck7sfBuDgUNi-z3cuQpPPU1WE3y8LUtl-1Zeo4RXLcRBgI7Voe-a2v2IF1wC7G2RQUv-9kcVTm9zm-b0cVY_4Ii7rdprMHuwUmktZar_uwYSYHsOXSNfX8EDqoXfSoLwTZzmW3rsg0I48fb-9PeLVzvD3nxMbUV8R1ASe2LDF1Sa_L3BDbYgcVcgSjzu2w3aVFRwSqfekvKLILmmigvTBGMNHIWggkmSfDODPSpozINBWxYanWIkujkIuAm0iiD0OKwzH8GGqT6cScAJFo2542gYxZglAWxvgkuJDasCRFDqzDdSkYNVsXvlBViWMrRoViVE6M6rUOjVJ2qjCCueL4eRPYoawON6U8q9d_z3b6v-GXsN0d9nuqdzd4OIMdf61eyrwG1Bb50pwjNiySC7dKPgFtXbkZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIBPqAjEgniKQgEPbGA1D6dOxqoQlVfFQKFisRLHmVBatalEN_4D_5BfwtlJCCAYGBIpiuXhzmd_yb0AThA5tGodGnWcgDLuxtRXaFdWnAZxkKRWYH643Q46_SG7GnmjL1n8Jtq9ckkWOQ26SlOWtydJ2q4T3zQXU92KVZescylS5DLT2cC4oodO99OPoDdj4-_sMIrferxMm_l9ju9HU82bP1yk5uQJN2C9REbSLXS8CUsq24IVE7opZ9sQoqZxd30myHkm0nVBxil5eH99e8SrN8Xb05Ro__qCmI7gRJcopiYAdj5VRLfbQeXswDC8uO_1adkdgUqHOzlFjkFz9aTtRwgpErkL4SS1uR-liuvwEZ4kLFJWIiVLk8B3meeqgON-hkSHY9xdaGTjTO0B4WjntlQej6wYAc2P8Im5jEtlxQkyYRNOK8GISVEEQ9TljrUYBYpRGDGKlya0KtmJ0iBmwsVPHU8PtZpwVsmzfv33bPv_G34Mq3fnobi5HFwfwJpTaJdadgsa-XSuDpEg8vjILJIPU7a9TA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+stability+of+V%E2%80%93W%E2%80%93Cr%E2%80%93Zr+alloy+after+high-pressure+torsion&rft.jtitle=Russian+physics+journal&rft.au=Smirnov%2C+I+V&rft.au=Ditenberg%2C+I+A&rft.au=Tolstikhin%2C+V+I&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1064-8887&rft.eissn=1573-9228&rft.volume=68&rft.issue=3&rft.spage=376&rft.epage=382&rft_id=info:doi/10.1007%2Fs11182-025-03443-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8887&client=summon