Thermal stability of V–W–Cr–Zr alloy after high-pressure torsion
Complex studying of thermal stability of the V–W–Cr–Zr alloy is studied after plastic deformation under torsion at high pressure. Methods of scanning and transmission electronic microscopy are used to study the influence of the temperature on the characteristics of grain, defective, and heterophase...
Saved in:
Published in | Russian physics journal Vol. 68; no. 3; pp. 376 - 382 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Complex studying of thermal stability of the V–W–Cr–Zr alloy is studied after plastic deformation under torsion at high pressure. Methods of scanning and transmission electronic microscopy are used to study the influence of the temperature on the characteristics of grain, defective, and heterophase structures. A comparison of the results of structural attribution with microhardness values has allowed the main temperature intervals of realization of relaxation processes to be elucidated. It has been established that under the influence of the temperature, the processes of heterophase structure transformations are the main factors determining the thermal stability of the V–W–Cr–Zr alloy. The presence of finely dispersed particles of the second phases promotes preservation of an anisotropic submicrocrystalline state and high microhardness values up to 700 °C. Beginning at 800 °C, the coagulation of particles leads to partial unblocking of dislocation substructures accompanied by the return processes and primary recrystallization gradually encompassing the entire volume of the material. Secondary recrystallization comes to the end at 1100 °C. The relaxation processes in the temperature interval from 800 to 1100 °C are accompanied by the reduction of microhardness values, the character of change of which is determined by the Hall–Petch relation taking into account the joint disperse and grain-boundary hardening. |
---|---|
AbstractList | Complex studying of thermal stability of the V–W–Cr–Zr alloy is studied after plastic deformation under torsion at high pressure. Methods of scanning and transmission electronic microscopy are used to study the influence of the temperature on the characteristics of grain, defective, and heterophase structures. A comparison of the results of structural attribution with microhardness values has allowed the main temperature intervals of realization of relaxation processes to be elucidated. It has been established that under the influence of the temperature, the processes of heterophase structure transformations are the main factors determining the thermal stability of the V–W–Cr–Zr alloy. The presence of finely dispersed particles of the second phases promotes preservation of an anisotropic submicrocrystalline state and high microhardness values up to 700 °C. Beginning at 800 °C, the coagulation of particles leads to partial unblocking of dislocation substructures accompanied by the return processes and primary recrystallization gradually encompassing the entire volume of the material. Secondary recrystallization comes to the end at 1100 °C. The relaxation processes in the temperature interval from 800 to 1100 °C are accompanied by the reduction of microhardness values, the character of change of which is determined by the Hall–Petch relation taking into account the joint disperse and grain-boundary hardening. Complex studying of thermal stability of the V–W–Cr–Zr alloy is studied after plastic deformation under torsion at high pressure. Methods of scanning and transmission electronic microscopy are used to study the influence of the temperature on the characteristics of grain, defective, and heterophase structures. A comparison of the results of structural attribution with microhardness values has allowed the main temperature intervals of realization of relaxation processes to be elucidated. It has been established that under the influence of the temperature, the processes of heterophase structure transformations are the main factors determining the thermal stability of the V–W–Cr–Zr alloy. The presence of finely dispersed particles of the second phases promotes preservation of an anisotropic submicrocrystalline state and high microhardness values up to 700 °C. Beginning at 800 °C, the coagulation of particles leads to partial unblocking of dislocation substructures accompanied by the return processes and primary recrystallization gradually encompassing the entire volume of the material. Secondary recrystallization comes to the end at 1100 °C. The relaxation processes in the temperature interval from 800 to 1100 °C are accompanied by the reduction of microhardness values, the character of change of which is determined by the Hall–Petch relation taking into account the joint disperse and grain-boundary hardening. |
Author | Tolstikhin, V. I. Smirnov, I. V. Ditenberg, I. A. |
Author_xml | – sequence: 1 givenname: I. V. surname: Smirnov fullname: Smirnov, I. V. email: smirnov_iv@ispms.ru organization: Institute of Strength Physics and Materials Science of the Siberian Branch, Russian Academy of Sciences, National Research Tomsk State University – sequence: 2 givenname: I. A. surname: Ditenberg fullname: Ditenberg, I. A. organization: Institute of Strength Physics and Materials Science of the Siberian Branch, Russian Academy of Sciences, National Research Tomsk State University – sequence: 3 givenname: V. I. surname: Tolstikhin fullname: Tolstikhin, V. I. organization: Institute of Strength Physics and Materials Science of the Siberian Branch, Russian Academy of Sciences, National Research Tomsk State University |
BookMark | eNp9kMtKAzEUhoMo2FZfwFXAdfTk1mSWUqwKBTdVwU2IM0k7ZTqpyRTane_gG_okpo7gzsW5LL7_HPiG6LgNrUPogsIVBVDXiVKqGQEmCXAhONkdoQGVipOCMX2cdxgLorVWp2iY0gogx8ZqgKbzpYtr2-DU2be6qbs9Dh4_f318vuSaxNxeI7ZNE_bY-s5FvKwXS7KJLqVtdLgLMdWhPUMn3jbJnf_OEXqa3s4n92T2ePcwuZmRkinWESEoKJAl1ZYyWYJUYyo9Vdp6p2hRKFVVwjqoylL4qtBcSO4KZauKU8gMH6HL_u4mhvetS51ZhW1s80vDGQd50ACZYj1VxpBSdN5sYr22cW8omIMv0_sy2Zf58WV2OcT7UMpwu3Dx7_Q_qW-a03IO |
Cites_doi | 10.1134/S1029959913040061 10.1016/j.msea.2015.12.086 10.1016/j.msea.2022.143159 10.1134/S0031918X06010078 10.1007/978-1-4684-9120-3 10.1007/s11182-024-03167-4 10.1080/09506608.2016.1257536 10.22226/2410-3535-2018-3-372-381 10.1134/S1029959919060067 10.1007/s10853-013-7836-1 10.1016/s0079-6425(99)00007-9 10.1016/0022-5088(74)90141-6 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11182-025-03443-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1573-9228 |
EndPage | 382 |
ExternalDocumentID | 10_1007_s11182_025_03443_x |
GroupedDBID | -Y2 -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 28- 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IGS IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VIT W23 W48 WK8 YLTOR ZMTXR ~8M ~A9 ~EX AAYXX CITATION |
ID | FETCH-LOGICAL-c272t-4410705c18a125c057615f178afe719977dd4ae0dcc4fd983453e97add310afe3 |
IEDL.DBID | U2A |
ISSN | 1064-8887 |
IngestDate | Sat Aug 23 12:39:08 EDT 2025 Wed Jul 16 16:42:13 EDT 2025 Wed Jul 16 06:31:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Severe plastic deformation Microstructure Vanadium alloy Microhardness Thermal stability High-pressure torsion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-4410705c18a125c057615f178afe719977dd4ae0dcc4fd983453e97add310afe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3230511180 |
PQPubID | 2043529 |
PageCount | 7 |
ParticipantIDs | proquest_journals_3230511180 crossref_primary_10_1007_s11182_025_03443_x springer_journals_10_1007_s11182_025_03443_x |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Russian physics journal |
PublicationTitleAbbrev | Russ Phys J |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | IA Ditenberg (3443_CR7) 2019; 22 EN Popova (3443_CR4) 2006; 101 G Nouet (3443_CR17) 1974; 35 RZ Valiev (3443_CR1) 2000; 45 HR Peng (3443_CR3) 2017; 62 JW Martin (3443_CR5) 1980 Y Huang (3443_CR16) 2016; 655 EV Kozlov (3443_CR14) 2006; 9 IA Ditenberg (3443_CR8) 2022; 843 AA Nazarov (3443_CR12) 2018; 8 IV Smirnov (3443_CR9) 2024; 67 R Abbaschian (3443_CR13) 2009 YR Kolobov (3443_CR15) 2007 I Machlin (3443_CR6) 1968 PB Hirsch (3443_CR10) 1965 RA Andrievski (3443_CR2) 2014; 49 AN Tyumentsev (3443_CR11) 2013; 16 |
References_xml | – volume-title: Michromechanisms in particle-hardened alloys. Cambridge solid state science series year: 1980 ident: 3443_CR5 – volume: 16 start-page: 319 year: 2013 ident: 3443_CR11 publication-title: Phys. Mesomech. doi: 10.1134/S1029959913040061 – volume: 655 start-page: 60 year: 2016 ident: 3443_CR16 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.12.086 – volume: 843 start-page: 143159 year: 2022 ident: 3443_CR8 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2022.143159 – volume-title: Grain boundary diffusion and properties of Nonstructured materials year: 2007 ident: 3443_CR15 – volume: 101 start-page: 52 year: 2006 ident: 3443_CR4 publication-title: Phys. Met. Met. doi: 10.1134/S0031918X06010078 – volume-title: Electron microscopy of thin crystals year: 1965 ident: 3443_CR10 – volume-title: Refractory metal alloys metallurgy and technology year: 1968 ident: 3443_CR6 doi: 10.1007/978-1-4684-9120-3 – volume: 67 start-page: 685 year: 2024 ident: 3443_CR9 publication-title: Russ. Phys. J. doi: 10.1007/s11182-024-03167-4 – volume: 62 start-page: 303 year: 2017 ident: 3443_CR3 publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2016.1257536 – volume: 8 start-page: 372 year: 2018 ident: 3443_CR12 publication-title: Lett. Mater. doi: 10.22226/2410-3535-2018-3-372-381 – volume: 22 start-page: 496 year: 2019 ident: 3443_CR7 publication-title: Phys. Mesomech. doi: 10.1134/S1029959919060067 – volume: 49 start-page: 1449 year: 2014 ident: 3443_CR2 publication-title: J Mater Sci doi: 10.1007/s10853-013-7836-1 – volume: 9 start-page: 75 issue: 3–4 year: 2006 ident: 3443_CR14 publication-title: Hall–petch Probl. Phys. Mesomech. – volume-title: Physical metallurgy principles year: 2009 ident: 3443_CR13 – volume: 45 start-page: 103 year: 2000 ident: 3443_CR1 publication-title: Prog. Mater. Sci. doi: 10.1016/s0079-6425(99)00007-9 – volume: 35 start-page: 17 year: 1974 ident: 3443_CR17 publication-title: J. Less-common Met. doi: 10.1016/0022-5088(74)90141-6 |
SSID | ssj0010067 |
Score | 2.2985215 |
Snippet | Complex studying of thermal stability of the V–W–Cr–Zr alloy is studied after plastic deformation under torsion at high pressure. Methods of scanning and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 376 |
SubjectTerms | Chromium Coagulation Condensed Matter Physics Dispersion hardening alloys Hadrons Heavy Ions High pressure Lasers Mathematical and Computational Physics Microhardness Nuclear Physics Optical Devices Optics Photonics Physics Physics and Astronomy Plastic deformation Secondary recrystallization Theoretical Thermal stability Tungsten Zirconium base alloys |
Title | Thermal stability of V–W–Cr–Zr alloy after high-pressure torsion |
URI | https://link.springer.com/article/10.1007/s11182-025-03443-x https://www.proquest.com/docview/3230511180 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ29TsMwEIBPqBUSC-JXFErlgQ0sObFTJ2NUtVQgmCgUFitxnAm1KG0luvEOvCFPwtlJiEAwMCRSFMvDXe78OXe-AzhD5LCq9WnS9yMqJE9paNCuWJpHaZTlLHI_3G5u--OJuJoG0-pQ2KLOdq9Dks5TN4fdLAtT237VlqnjFMmxHeDe3SZyTfz4K3ZgHbCLcfYFxf2drI7K_D7H9-WoYcwfYVG32ox2YLvCRBKXet2FDTPbg02XrqkX-zBC7aJHfSbIdi67dU3mObn_eHt_wGtQ4O2pIDamviauCzixZYmpS3pdFYbYFjuokAOYjIZ3gzGtOiJQ7Ut_SZFd0EQD7YUJgolG1kIgyT0ZJrmRNmVEZplIDMu0FnkWhVwE3EQSfRhSHI7hh9CazWfmCIhE2_a0CWTCUoSyMMEnwYXUhqUZcmAHzmvBqJey8IVqShxbMSoUo3JiVK8d6NayU5URLBTH7U1gh7IOXNTybF7_Pdvx_4afwJZfqpQyrwutZbEyp4gKy7QH7fjy8XrYc1_IJ2aat7o |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ29TsMwEIBPqAjBgvgVhQIe2MCSEzt1MlYVVYG2UwsVi5U4zoTaKm0luvEOvCFPwtlNiEAwMCRSFMvDne_8JXe-A7hC5LCq9Wnc9CMqJE9oaNCuWJJFSZRmLHI_3PqDZnck7sfBuDgUNi-z3cuQpPPU1WE3y8LUtl-1Zeo4RXLcRBgI7Voe-a2v2IF1wC7G2RQUv-9kcVTm9zm-b0cVY_4Ii7rdprMHuwUmktZar_uwYSYHsOXSNfX8EDqoXfSoLwTZzmW3rsg0I48fb-9PeLVzvD3nxMbUV8R1ASe2LDF1Sa_L3BDbYgcVcgSjzu2w3aVFRwSqfekvKLILmmigvTBGMNHIWggkmSfDODPSpozINBWxYanWIkujkIuAm0iiD0OKwzH8GGqT6cScAJFo2542gYxZglAWxvgkuJDasCRFDqzDdSkYNVsXvlBViWMrRoViVE6M6rUOjVJ2qjCCueL4eRPYoawON6U8q9d_z3b6v-GXsN0d9nuqdzd4OIMdf61eyrwG1Bb50pwjNiySC7dKPgFtXbkZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIBPqAjEgniKQgEPbGA1D6dOxqoQlVfFQKFisRLHmVBatalEN_4D_5BfwtlJCCAYGBIpiuXhzmd_yb0AThA5tGodGnWcgDLuxtRXaFdWnAZxkKRWYH643Q46_SG7GnmjL1n8Jtq9ckkWOQ26SlOWtydJ2q4T3zQXU92KVZescylS5DLT2cC4oodO99OPoDdj4-_sMIrferxMm_l9ju9HU82bP1yk5uQJN2C9REbSLXS8CUsq24IVE7opZ9sQoqZxd30myHkm0nVBxil5eH99e8SrN8Xb05Ro__qCmI7gRJcopiYAdj5VRLfbQeXswDC8uO_1adkdgUqHOzlFjkFz9aTtRwgpErkL4SS1uR-liuvwEZ4kLFJWIiVLk8B3meeqgON-hkSHY9xdaGTjTO0B4WjntlQej6wYAc2P8Im5jEtlxQkyYRNOK8GISVEEQ9TljrUYBYpRGDGKlya0KtmJ0iBmwsVPHU8PtZpwVsmzfv33bPv_G34Mq3fnobi5HFwfwJpTaJdadgsa-XSuDpEg8vjILJIPU7a9TA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+stability+of+V%E2%80%93W%E2%80%93Cr%E2%80%93Zr+alloy+after+high-pressure+torsion&rft.jtitle=Russian+physics+journal&rft.au=Smirnov%2C+I+V&rft.au=Ditenberg%2C+I+A&rft.au=Tolstikhin%2C+V+I&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1064-8887&rft.eissn=1573-9228&rft.volume=68&rft.issue=3&rft.spage=376&rft.epage=382&rft_id=info:doi/10.1007%2Fs11182-025-03443-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8887&client=summon |