Characterisation of zero duality gap for optimization problems in spaces without linear structure

We prove sufficient and necessary conditions ensuring zero Lagrangian duality gap for Lagrangians defined with help of general perturbation functions. This kind of Lagrangians include generalized and augmented Lagrangians. To this aim, we use the Φ -convexity theory and we formulate our zero duality...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 92; no. 1; pp. 135 - 158
Main Authors Bednarczuk, Ewa, Syga, Monika
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We prove sufficient and necessary conditions ensuring zero Lagrangian duality gap for Lagrangians defined with help of general perturbation functions. This kind of Lagrangians include generalized and augmented Lagrangians. To this aim, we use the Φ -convexity theory and we formulate our zero duality gap conditions in terms of elementary functions φ ∈ Φ . The obtained results apply to optimization problems involving prox-bounded functions, DC functions, weakly convex functions and paraconvex functions as well as infinite-dimensional linear optimization problems, including Kantorovich duality which plays an important role in determining Wasserstein distance.
AbstractList We prove sufficient and necessary conditions ensuring zero Lagrangian duality gap for Lagrangians defined with help of general perturbation functions. This kind of Lagrangians include generalized and augmented Lagrangians. To this aim, we use the Φ-convexity theory and we formulate our zero duality gap conditions in terms of elementary functions φ∈Φ. The obtained results apply to optimization problems involving prox-bounded functions, DC functions, weakly convex functions and paraconvex functions as well as infinite-dimensional linear optimization problems, including Kantorovich duality which plays an important role in determining Wasserstein distance.
We prove sufficient and necessary conditions ensuring zero Lagrangian duality gap for Lagrangians defined with help of general perturbation functions. This kind of Lagrangians include generalized and augmented Lagrangians. To this aim, we use the Φ -convexity theory and we formulate our zero duality gap conditions in terms of elementary functions φ ∈ Φ . The obtained results apply to optimization problems involving prox-bounded functions, DC functions, weakly convex functions and paraconvex functions as well as infinite-dimensional linear optimization problems, including Kantorovich duality which plays an important role in determining Wasserstein distance.
Author Syga, Monika
Bednarczuk, Ewa
Author_xml – sequence: 1
  givenname: Ewa
  surname: Bednarczuk
  fullname: Bednarczuk, Ewa
  organization: Systems Research Institute, Polish Academy of Sciences, Faculty of Mathematics and Information Science, Warsaw University of Technology
– sequence: 2
  givenname: Monika
  orcidid: 0000-0001-8816-7558
  surname: Syga
  fullname: Syga, Monika
  email: monika.syga@pw.edu.pl
  organization: Faculty of Mathematics and Information Science, Warsaw University of Technology
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxBw420kcj6jiS6rE0t1ykkvrKomD7Qi1v55AkNiYbrjnfe_0rMiidz0ScsvgngHIh8CgUEUCPEuApVIm-QVZskyKhCuWL8gS1LTKANgVWYVwBABVZHxJzOZgvKkiehtMtK6nrqFn9I7Wo2ltPNG9GWjjPHVDtJ09z9DgXdliF6jtaRhMhYF-2nhwY6St7dF4GqIfqzh6vCaXjWkD3vzONdk9P-02r8n2_eVt87hNKi55TERdIxpgkJalEmCKBooUoGYyVxWCMYxLlmVpUyLLC0QOmDIJOdQqk7IRa3I3106vfYwYoj660ffTRS04CMULCTBRfKYq70Lw2OjB2874k2agv03q2aSeTOofkzqfQmIOhQnu9-j_qv9JfQHSNHmh
Cites_doi 10.1137/1.9781611971088
10.1007/978-1-4612-1394-9
10.1137/0312021
10.1080/09720510.2002.10701049
10.1007/s00245-021-09772-w
10.1137/050647621
10.1016/0022-247X(78)90243-3
10.1016/S0362-546X(01)00251-6
10.1007/s10957-017-1210-4
10.1007/978-1-4757-3200-9
10.1007/978-3-319-27817-9
10.1007/978-3-642-02431-3
10.1007/3-540-07623-9_299
10.1007/978-1-4615-2025-2
10.1080/02331934.2021.2010076
10.1090/gsm/058/03
10.1007/s11856-012-0091-3
10.1007/b138356
10.1080/02331934.2022.2132822
10.1142/9789812777096
10.1287/moor.27.4.775.295
10.1007/978-94-017-1588-1
10.1090/S0002-9947-96-01544-9
10.1007/978-3-642-04900-2
10.1006/jmaa.1999.6496
10.1007/978-3-030-21803-4_18
10.1007/s10957-007-9185-1
10.1080/02331930500138536
10.1080/02331934.2017.1295046
10.1080/02331934.2021.1910694
10.1137/0315022
10.1080/02331934.2017.1338289
10.1016/j.jmaa.2022.126868
10.1007/s10898-004-5695-7
10.1137/0316018
10.1007/978-3-322-81539-2
10.1007/s10208-020-09486-5
10.1287/moor.8.2.231
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. May 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10898-025-01477-6
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 158
ExternalDocumentID 10_1007_s10898_025_01477_6
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
ZY4
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c272t-3ddeea0104bb930a8f08400d1769ce0aa1271554fbe168ee20e417060d9577f3
IEDL.DBID U2A
ISSN 0925-5001
IngestDate Sat Aug 16 17:50:50 EDT 2025
Tue Jul 01 04:43:49 EDT 2025
Sun May 11 01:10:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Abstract convexity
Lagrangian duality
Prox-regular functions
Minimax theorem
Weak duality
Augmented Lagrangians
Wasserstein distance
Paraconvex and weakly convex functions
Kantorovich duality
Zero duality gap
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-3ddeea0104bb930a8f08400d1769ce0aa1271554fbe168ee20e417060d9577f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8816-7558
PQID 3203928700
PQPubID 29930
PageCount 24
ParticipantIDs proquest_journals_3203928700
crossref_primary_10_1007_s10898_025_01477_6
springer_journals_10_1007_s10898_025_01477_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250500
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 5
  year: 2025
  text: 20250500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References R Bergmann (1477_CR9) 2021; 21
S Rolewicz (1477_CR11) 1994; 23
1477_CR4
L Gasiński (1477_CR45) 2016
RT Rockafellar (1477_CR43) 1974; 12
J-P Penot (1477_CR15) 2005; 54
C Zălinescu (1477_CR44) 2023; 520
B Miroslav (1477_CR10) 2013; 194
P Cannarsa (1477_CR32) 2004
1477_CR36
1477_CR1
1477_CR37
1477_CR12
W Hare (1477_CR7) 2001; 47
TH Bui (1477_CR20) 2019; 71
1477_CR38
XX Huang (1477_CR33) 2005; 31
AM Rubinov (1477_CR34) 2002; 27
X-K Sun (1477_CR6) 2015; 16
P Bardsley (1477_CR17) 2017
M Syga (1477_CR28) 2018; 176
V Jeyakumar (1477_CR19) 2007; 132
S Kurcyusz (1477_CR39) 1976
X Sun (1477_CR5) 2017; 66
RS Burachik (1477_CR14) 2007; 18
R Rockafellar (1477_CR24) 1998
JF Toland (1477_CR3) 1978; 66
AD Ioffe (1477_CR16) 2002; 4
EM Bednarczuk (1477_CR35) 2014; 43
1477_CR42
1477_CR25
AM Rubinov (1477_CR13) 2000
1477_CR23
B Bonnet (1477_CR8) 2021; 84
1477_CR46
MD Fajardo (1477_CR21) 2017; 66
1477_CR29
M Andramonov (1477_CR22) 2002
J-E Martínez-Legaz (1477_CR2) 1999; 237
EM Bednarczuk (1477_CR40) 2022; 71
S Dolecki (1477_CR18) 1978; 16
I Ekeland (1477_CR30) 1999
J-P Vial (1477_CR26) 1983; 8
RA Poliquin (1477_CR31) 1996; 348
S Rolewicz (1477_CR27) 2005; 34
E Bednarczuk (1477_CR41) 2023; 72
References_xml – volume-title: Convex Analysis and Variational Problems
  year: 1999
  ident: 1477_CR30
  doi: 10.1137/1.9781611971088
– volume-title: Duality in contracting
  year: 2017
  ident: 1477_CR17
– ident: 1477_CR23
– ident: 1477_CR38
  doi: 10.1007/978-1-4612-1394-9
– volume: 12
  start-page: 268
  issue: 2
  year: 1974
  ident: 1477_CR43
  publication-title: SIAM J. Control
  doi: 10.1137/0312021
– volume: 34
  start-page: 951
  year: 2005
  ident: 1477_CR27
  publication-title: Control. Cybern.
– year: 2002
  ident: 1477_CR22
  publication-title: J. Stat. Manag. Syst.
  doi: 10.1080/09720510.2002.10701049
– volume: 16
  start-page: 1607
  year: 2015
  ident: 1477_CR6
  publication-title: J. Nonlinear Convex Anal.
– volume: 84
  start-page: 1
  year: 2021
  ident: 1477_CR8
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-021-09772-w
– volume: 18
  start-page: 413
  issue: 2
  year: 2007
  ident: 1477_CR14
  publication-title: SIAM J. Optim.
  doi: 10.1137/050647621
– volume: 66
  start-page: 399
  year: 1978
  ident: 1477_CR3
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(78)90243-3
– volume: 47
  start-page: 1117
  year: 2001
  ident: 1477_CR7
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(01)00251-6
– volume: 176
  start-page: 306
  issue: 2
  year: 2018
  ident: 1477_CR28
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-017-1210-4
– volume-title: Abstract Convexity and Global Optimization
  year: 2000
  ident: 1477_CR13
  doi: 10.1007/978-1-4757-3200-9
– volume: 4
  start-page: 1
  year: 2002
  ident: 1477_CR16
  publication-title: Adv. Math. Econ.
– year: 2016
  ident: 1477_CR45
  publication-title: Exercises in Analysis
  doi: 10.1007/978-3-319-27817-9
– volume-title: Variational Analysis
  year: 1998
  ident: 1477_CR24
  doi: 10.1007/978-3-642-02431-3
– start-page: 362
  volume-title: Optimization Techniques Modeling and Optimization in the Service of Man Part 2
  year: 1976
  ident: 1477_CR39
  doi: 10.1007/3-540-07623-9_299
– ident: 1477_CR25
  doi: 10.1007/978-1-4615-2025-2
– volume: 43
  start-page: 421
  issue: 3
  year: 2014
  ident: 1477_CR35
  publication-title: Control. Cybern.
– volume: 71
  start-page: 949
  issue: 4
  year: 2022
  ident: 1477_CR40
  publication-title: Optimization
  doi: 10.1080/02331934.2021.2010076
– ident: 1477_CR46
  doi: 10.1090/gsm/058/03
– volume: 194
  start-page: 689
  year: 2013
  ident: 1477_CR10
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-012-0091-3
– volume-title: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control
  year: 2004
  ident: 1477_CR32
  doi: 10.1007/b138356
– volume: 72
  start-page: 37
  issue: 1
  year: 2023
  ident: 1477_CR41
  publication-title: Optimization
  doi: 10.1080/02331934.2022.2132822
– ident: 1477_CR29
  doi: 10.1142/9789812777096
– volume: 27
  start-page: 775
  issue: 4
  year: 2002
  ident: 1477_CR34
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.27.4.775.295
– ident: 1477_CR12
  doi: 10.1007/978-94-017-1588-1
– volume: 348
  start-page: 1805
  year: 1996
  ident: 1477_CR31
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-96-01544-9
– ident: 1477_CR1
  doi: 10.1007/978-3-642-04900-2
– volume: 237
  start-page: 657
  issue: 2
  year: 1999
  ident: 1477_CR2
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1999.6496
– ident: 1477_CR42
  doi: 10.1007/978-3-030-21803-4_18
– volume: 132
  start-page: 441
  issue: 3
  year: 2007
  ident: 1477_CR19
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-007-9185-1
– volume: 54
  start-page: 443
  issue: 4–5
  year: 2005
  ident: 1477_CR15
  publication-title: Optimization
  doi: 10.1080/02331930500138536
– volume: 66
  start-page: 705
  year: 2017
  ident: 1477_CR21
  publication-title: Optimization
  doi: 10.1080/02331934.2017.1295046
– volume: 23
  start-page: 247
  year: 1994
  ident: 1477_CR11
  publication-title: Control. Cybern.
– volume: 71
  start-page: 811
  year: 2019
  ident: 1477_CR20
  publication-title: Optimization
  doi: 10.1080/02331934.2021.1910694
– ident: 1477_CR37
  doi: 10.1137/0315022
– volume: 66
  start-page: 1425
  issue: 9
  year: 2017
  ident: 1477_CR5
  publication-title: Optimization
  doi: 10.1080/02331934.2017.1338289
– volume: 520
  start-page: 126
  issue: 1
  year: 2023
  ident: 1477_CR44
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2022.126868
– volume: 31
  start-page: 193
  issue: 2
  year: 2005
  ident: 1477_CR33
  publication-title: Further study on augmented lagrangian duality theory
  doi: 10.1007/s10898-004-5695-7
– volume: 16
  start-page: 277
  year: 1978
  ident: 1477_CR18
  publication-title: SIAM J. Control and Optimization
  doi: 10.1137/0316018
– ident: 1477_CR4
  doi: 10.1007/978-3-322-81539-2
– volume: 21
  start-page: 1465
  year: 2021
  ident: 1477_CR9
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-020-09486-5
– volume: 8
  start-page: 231
  issue: 2
  year: 1983
  ident: 1477_CR26
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.8.2.231
– ident: 1477_CR36
SSID ssj0009852
Score 2.412987
Snippet We prove sufficient and necessary conditions ensuring zero Lagrangian duality gap for Lagrangians defined with help of general perturbation functions. This...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 135
SubjectTerms Computer Science
Convex analysis
Convexity
Lagrangian function
Mathematical functions
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Real Functions
Title Characterisation of zero duality gap for optimization problems in spaces without linear structure
URI https://link.springer.com/article/10.1007/s10898-025-01477-6
https://www.proquest.com/docview/3203928700
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8AAtIAolMoDAwgiOV92MrYVpQKViUpliuzEQQw0qCkD_HrOrkMKgoEpinLy4Gef38V37wDOojyTNAp8R7KAOjpCcESoAkdmacRY6vNM6EBxcs_G0-B2Fs5sUVhZZbtXV5LGU68Vu0W6HMzTyWYB5w7bhGaIsbtO5Jp6_VpqNzJ9dmiMliF6YVsq8_sY34-jmmP-uBY1p81oD3YsTST9Fa4t2FDzNuxWLRiI3ZFt2F7TE8S3yZcIa9mGlrUqybkVl77YBzGsFZoNKKTIyYdaFCQz5ZXv5Em8EmSypEBn8mKrNIntO1OS5zlBH6QH1X9wi7cl0TxVLMhKiPZtoQ7gYXT9MBw7ts2Ck3rcWzo-ejgldFwmZexTEeUIHqWZy1mcKiqE63HNOnKpXBYp5VEVGNGdLA45z_1DaMyLuToCkkdxEEvqShdNGMZyKmNxEPpIAfLU9XkHLqvJTl5XYhpJLZusoUkQmsRAk7AOdCs8EruxysT3KDI6dDK0A1cVRvXnv0c7_p_5CWx5ZpnoldKFBs6hOkX6sZQ9aPZHg8G9ft483l33zOr7BCwb08M
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYABaAFRnh4YQBDJednOWCGq8ihTK7FFduIgBhrUlAF-PWfXIQXBwBj55MHf-fxd7PsO4FQUuaIiCj3FIuqZDMGTsY48lWeCsSzkuTSJ4vCBDcbR7WP86IrCqvq1e30laSP1QrGbMOVggXlsFnHusWVYQTIgjC-Pg14jtStsnx2aoGWMUdiVyvw-x_fjqOGYP65F7WnT34INRxNJb45rG5b0pAObdQsG4nZkB9YX9ATxa_glwlp1oO2sKnLmxKXPt0FeNQrNFhRSFuRDT0uS2_LKd_IkXwkyWVJiMHlxVZrE9Z2pyPOEYAwyk5o_uOXbjBieKqdkLkT7NtU7MOpfj64Gnmuz4GUBD2ZeiBFOS5OXKZWEVIoCwaM09zlLMk2l9ANuWEehtM-E1gHVkRXdyZOY8yLchdaknOg9IIVIokRRX_lowjCX0zlLojhEClBkfsi7cFEvdvo6F9NIG9lkA02K0KQWmpR14bDGI3Ubq0rDgCKjwyBDu3BZY9QM_z3b_v_MT2B1MBrep_c3D3cHsBZYlzFecwgtXE99hFRkpo6t530CB3nTpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3xISEY-CggCgU8MIAgqpM4djJWQMW3GEBii-zEQQwkVVsG-PWcXYcUBANjlJMHP_v8Ls57B3AQF7miMQs9xRn1TIXgyUgzT-VZzHkWilyaQvH2jl88squn6GlKxW__dq-vJCeaBuPSVI67g7zoTgnfYiMNC8yPZ0wIj8_CPDNqYFzRj0Gvsd2Nbc8dmmBkhBnZyWZ-H-P70dTwzR9XpPbk6a_CsqOMpDfBeA1mdNmClbodA3G7swVLU96C-HT7Zcg6asGaixqRQ2c0fbQO8rRxa7YAkaogH3pYkdxKLd_JsxwQZLWkwsTy6hSbxPWgGZGXkmA-MoOar7nV25gYziqHZGJK-zbUG_DQP384vfBcywUvC0Qw9kLMdlqaGk2pJKQyLhBISnNf8CTTVEo_EIaBFEr7PNY6oJpZA548iYQowk2YK6tSbwEp4oQlivrKxxCOdZ3OecKiEOlAkfmhaMNxPdnpYGKskTYWygaaFKFJLTQpb0OnxiN1m2yUItzI7jDh0Dac1Bg1r_8ebft_4fuwcH_WT28u7653YDGwK8Ysmg7M4XTqXWQlY7VnF94nWkbX2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterisation+of+zero+duality+gap+for+optimization+problems+in+spaces+without+linear+structure&rft.jtitle=Journal+of+global+optimization&rft.au=Bednarczuk%2C+Ewa&rft.au=Syga%2C+Monika&rft.date=2025-05-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=92&rft.issue=1&rft.spage=135&rft.epage=158&rft_id=info:doi/10.1007%2Fs10898-025-01477-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_025_01477_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon