Simultaneous tracking of objects with loose context constraints from multiple views: human–human interaction paradigm

When a scene consists of multiple regions of interest related in some context, their tracking can (and often should) incorporate topology constraints that depict the inherent structure properties of the target scene subset. Such principle has been commonly implemented by pictorial structure represen...

Full description

Saved in:
Bibliographic Details
Published inMachine vision and applications Vol. 36; no. 4; p. 74
Main Authors Vatti, Jay, Tsechpenakis, Gavriil
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0932-8092
1432-1769
DOI10.1007/s00138-025-01695-8

Cover

Loading…
Abstract When a scene consists of multiple regions of interest related in some context, their tracking can (and often should) incorporate topology constraints that depict the inherent structure properties of the target scene subset. Such principle has been commonly implemented by pictorial structure representations, graph networks, siamese trackers, etc., and, in general, part-based spatio-temporal modeling. This is contrary to the multiple object tracking principle, where all objects of the desired categories are detected and tracked, including objects that do not ‘belong’ to the context. Context topology is often not fixed over time. We use the notion of ‘loose context’ to denote partial conditionality among the targets: preserving relationships with respect to labels and locations within each part set (part-defined entity), while assuming conditionality between part sets only where dictated by the given scenario. An indicative example is human–human interaction, where one person can move independently from the other, while their approximate relative positions are given. We encode context with a small graph, where tracked regions are represented by nodes, and context topology is captured by edges. Instead of using image patches in a fully connected graph representation, we employ region proposals: we decouple the graph definition from the image domain, and the search space consists of a proposal set to be sampled for deriving candidate solutions at each time instance. We use sequences from multiple views to alleviate missing data from occlusions, and the corresponding proposals are also considered, through projection regression, in the candidate graph solution for a reference plane (view). The objective function incorporates spatio-temporal topology information, and appearance similarity of the proposal regions as encoded by a definition of residual loss of a siamese graph attention network (embedding similarity). Our architecture consists of four parts: a region proposal network, a plane-to-plane reciprocal projection regression module, the siamese GAT for evaluating target set appearance similarity between successive instances, and the objective optimizer. We validate our method using a ‘round table’ setup with four subjects and three cameras: one providing bird’s-eye view, where the desired targets are hands, and each of the other cameras captures two subjects with desired targets being faces and hands.
AbstractList When a scene consists of multiple regions of interest related in some context, their tracking can (and often should) incorporate topology constraints that depict the inherent structure properties of the target scene subset. Such principle has been commonly implemented by pictorial structure representations, graph networks, siamese trackers, etc., and, in general, part-based spatio-temporal modeling. This is contrary to the multiple object tracking principle, where all objects of the desired categories are detected and tracked, including objects that do not ‘belong’ to the context. Context topology is often not fixed over time. We use the notion of ‘loose context’ to denote partial conditionality among the targets: preserving relationships with respect to labels and locations within each part set (part-defined entity), while assuming conditionality between part sets only where dictated by the given scenario. An indicative example is human–human interaction, where one person can move independently from the other, while their approximate relative positions are given. We encode context with a small graph, where tracked regions are represented by nodes, and context topology is captured by edges. Instead of using image patches in a fully connected graph representation, we employ region proposals: we decouple the graph definition from the image domain, and the search space consists of a proposal set to be sampled for deriving candidate solutions at each time instance. We use sequences from multiple views to alleviate missing data from occlusions, and the corresponding proposals are also considered, through projection regression, in the candidate graph solution for a reference plane (view). The objective function incorporates spatio-temporal topology information, and appearance similarity of the proposal regions as encoded by a definition of residual loss of a siamese graph attention network (embedding similarity). Our architecture consists of four parts: a region proposal network, a plane-to-plane reciprocal projection regression module, the siamese GAT for evaluating target set appearance similarity between successive instances, and the objective optimizer. We validate our method using a ‘round table’ setup with four subjects and three cameras: one providing bird’s-eye view, where the desired targets are hands, and each of the other cameras captures two subjects with desired targets being faces and hands.
ArticleNumber 74
Author Tsechpenakis, Gavriil
Vatti, Jay
Author_xml – sequence: 1
  givenname: Jay
  surname: Vatti
  fullname: Vatti, Jay
  organization: Computer Science, Purdue University Indianapolis
– sequence: 2
  givenname: Gavriil
  surname: Tsechpenakis
  fullname: Tsechpenakis, Gavriil
  email: gtsechpe@purdue.edu
  organization: Computer Science, Purdue University Indianapolis
BookMark eNp9kMtOxCAYhYnRxPHyAq5IXFd_oNMWd8Z4SyZxoa5JW_6OjFMYgTq68x18Q59E6pi4c3VI-M6BfHtk2zqLhBwxOGEA5WkAYKLKgE8zYIWcZtUWmbBc8IyVhdwmE5DpXIHku2QvhAUA5GWZT8j63vTDMtYW3RBo9HX7bOycuo66ZoFtDHRt4hNdOheQts5GfItjhoQam64773o6TpjVEumrwXU4o09DX9uvj8-fpInDNByNs3RV-1qbeX9Adrp6GfDwN_fJ49Xlw8VNNru7vr04n2UtL3nMeCdl07as0qzQXYHN-GvQbYG6KVndCME1VNjIvJsWsiug0sgEcqm1ljnnYp8cb3ZX3r0MGKJauMHb9KQSHEQyxKqR4huq9S4Ej51aedPX_l0xUKNgtRGskmD1I1hVqSQ2pZBgO0f_N_1P6xs_5oRe
Cites_doi 10.1109/CVPR42600.2020.00661
10.1007/s11263-020-01393-0
10.1109/CVPR46437.2021.00942
10.1109/CVPR52733.2024.01903
10.1109/FG.2017.64
10.1109/TIP.2023.3328485
10.1109/CVPR.2016.297
10.1023/B:VISI.0000042934.15159.49
10.1109/TPAMI.2006.244
10.1109/ICCV.2017.322
10.1039/C8AY02724B
10.1109/CVPR46437.2021.01219
10.1109/CVPR.2018.00935
10.1109/TPAMI.2008.57
10.1007/BF00054995
10.1016/j.neucom.2017.11.050
10.1109/CVPR52733.2024.01438
10.1016/j.cviu.2023.103634
10.1007/978-3-642-35494-6_4
10.1088/1361-6501/ad916c
10.1145/3447548.3467256
10.24963/ijcai.2018/505
10.1109/ICCV.2015.381
10.1609/aaai.v34i07.6944
10.1109/CVPR52733.2024.01811
10.1109/CVPR46437.2021.01583
10.1109/CVPR.2019.00441
10.1016/j.jbiomech.2021.110460
10.1145/3395035.3425961
10.1109/CVPR52688.2022.00864
10.1109/CVPR52733.2024.01797
10.1109/WACV45572.2020.9093347
10.1007/978-3-319-93417-4_38
10.1109/ICCVW54120.2021.00030
10.1109/T-C.1973.223602
10.1609/aaai.v32i1.12328
10.1007/978-3-319-48881-3_56
10.1109/TNNLS.2020.2978386
10.1109/TIP.2018.2816121
10.1186/s40649-019-0069-y
10.1007/978-3-030-63823-8_76
10.1198/004017002188618509
10.1109/ICCV.2015.169
10.1007/978-3-319-46484-8_29
10.1007/978-3-319-49409-8_17
10.1109/CVPR.2019.00478
10.1007/978-3-030-93409-5_31
10.3390/s20174810
10.1109/CVPR52688.2022.00852
10.1007/978-981-16-6054-2_6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00138-025-01695-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1432-1769
ExternalDocumentID 10_1007_s00138_025_01695_8
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
-Y2
.4S
1SB
28-
2P1
2VQ
5QI
8FE
8FG
AAOBN
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ACBXY
ADHKG
ADMLS
AEBTG
AEFIE
AEKMD
AFEXP
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
ARCSS
B0M
BBWZM
BDATZ
BGLVJ
CAG
CCPQU
CITATION
COF
EAD
EDO
EJD
EMK
EPL
FINBP
FSGXE
H13
I-F
KOW
L6V
M7S
N2Q
NDZJH
O9-
P62
PHGZM
PHGZT
PQGLB
PTHSS
R4E
RIG
RNI
RZK
S26
S28
SCJ
SCLPG
T16
TUS
UZXMN
VFIZW
ZY4
~8M
ID FETCH-LOGICAL-c272t-2f99bcc18d16df6eb47740dc6edb71ab332d08eb94f569f608de13e29ddd94223
IEDL.DBID U2A
ISSN 0932-8092
IngestDate Sat Aug 23 12:48:13 EDT 2025
Wed Aug 06 19:39:34 EDT 2025
Thu Jul 31 01:53:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Multiple target tracking
Human–human interaction
Siamese GATs
Tracking from multiple views
Context-based tracking
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-2f99bcc18d16df6eb47740dc6edb71ab332d08eb94f569f608de13e29ddd94223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3203432182
PQPubID 2043753
ParticipantIDs proquest_journals_3203432182
crossref_primary_10_1007_s00138_025_01695_8
springer_journals_10_1007_s00138_025_01695_8
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: New York
PublicationTitle Machine vision and applications
PublicationTitleAbbrev Machine Vision and Applications
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References N Cronin (1695_CR11) 2021; 123
1695_CR46
1695_CR45
1695_CR43
1695_CR42
S Zhang (1695_CR66) 2019; 6
1695_CR41
1695_CR40
S Ellison (1695_CR15) 2019; 11
1695_CR49
1695_CR47
1695_CR70
Z Wu (1695_CR60) 2021; 66
X Zhang (1695_CR67) 2020; 20
R Maronna (1695_CR44) 2012; 44
1695_CR35
1695_CR34
1695_CR33
1695_CR32
1695_CR31
1695_CR30
1695_CR39
1695_CR38
1695_CR37
1695_CR36
Z Qin (1695_CR48) 2023; 32
1695_CR24
1695_CR68
1695_CR23
1695_CR22
1695_CR21
1695_CR20
1695_CR64
1695_CR63
1695_CR62
1695_CR61
1695_CR29
1695_CR28
G Chrysos (1695_CR10) 2018; 27
1695_CR27
1695_CR26
1695_CR25
1695_CR69
1695_CR2
J Wang (1695_CR59) 2022; 17
1695_CR1
1695_CR4
1695_CR3
I Chami (1695_CR6) 2022; 23
1695_CR13
1695_CR57
1695_CR9
1695_CR12
1695_CR56
H Zhang (1695_CR65) 2018; 275
1695_CR55
1695_CR54
1695_CR53
1695_CR5
1695_CR52
1695_CR8
1695_CR51
1695_CR7
1695_CR50
1695_CR18
1695_CR17
1695_CR16
1695_CR14
1695_CR58
M Fischler (1695_CR19) 1973; C22
References_xml – ident: 1695_CR1
– ident: 1695_CR55
– ident: 1695_CR58
  doi: 10.1109/CVPR42600.2020.00661
– ident: 1695_CR13
  doi: 10.1007/s11263-020-01393-0
– ident: 1695_CR24
  doi: 10.1109/CVPR46437.2021.00942
– ident: 1695_CR27
  doi: 10.1109/CVPR52733.2024.01903
– ident: 1695_CR3
  doi: 10.1109/FG.2017.64
– volume: 32
  start-page: 6543
  year: 2023
  ident: 1695_CR48
  publication-title: IEEE Trans. Image Proc.
  doi: 10.1109/TIP.2023.3328485
– ident: 1695_CR36
– ident: 1695_CR64
  doi: 10.1109/CVPR.2016.297
– ident: 1695_CR70
– ident: 1695_CR17
  doi: 10.1023/B:VISI.0000042934.15159.49
– ident: 1695_CR5
– volume: 17
  issue: 11
  year: 2022
  ident: 1695_CR59
  publication-title: PLoS ONE
– ident: 1695_CR2
  doi: 10.1109/TPAMI.2006.244
– ident: 1695_CR26
  doi: 10.1109/ICCV.2017.322
– volume: 11
  start-page: 2639
  year: 2019
  ident: 1695_CR15
  publication-title: Anal. Methods
  doi: 10.1039/C8AY02724B
– ident: 1695_CR54
  doi: 10.1109/CVPR46437.2021.01219
– ident: 1695_CR37
  doi: 10.1109/CVPR.2018.00935
– ident: 1695_CR34
  doi: 10.1109/TPAMI.2008.57
– ident: 1695_CR9
  doi: 10.1007/BF00054995
– volume: 275
  start-page: 2645
  year: 2018
  ident: 1695_CR65
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.050
– ident: 1695_CR14
  doi: 10.1109/CVPR52733.2024.01438
– ident: 1695_CR41
  doi: 10.1016/j.cviu.2023.103634
– ident: 1695_CR51
  doi: 10.1007/978-3-642-35494-6_4
– ident: 1695_CR46
  doi: 10.1088/1361-6501/ad916c
– ident: 1695_CR50
– ident: 1695_CR29
  doi: 10.1145/3447548.3467256
– ident: 1695_CR8
– ident: 1695_CR63
  doi: 10.24963/ijcai.2018/505
– ident: 1695_CR32
  doi: 10.1109/ICCV.2015.381
– ident: 1695_CR61
  doi: 10.1609/aaai.v34i07.6944
– ident: 1695_CR16
– ident: 1695_CR43
– ident: 1695_CR68
  doi: 10.1109/CVPR52733.2024.01811
– ident: 1695_CR53
  doi: 10.1109/CVPR46437.2021.01583
– ident: 1695_CR38
  doi: 10.1109/CVPR.2019.00441
– volume: 123
  year: 2021
  ident: 1695_CR11
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110460
– ident: 1695_CR28
– ident: 1695_CR30
– ident: 1695_CR7
– ident: 1695_CR33
  doi: 10.1145/3395035.3425961
– volume: 23
  start-page: 3840
  issue: 1
  year: 2022
  ident: 1695_CR6
  publication-title: J. Mach. Learn. Res.
– ident: 1695_CR45
  doi: 10.1109/CVPR52688.2022.00864
– ident: 1695_CR49
  doi: 10.1109/CVPR52733.2024.01797
– ident: 1695_CR39
  doi: 10.1109/WACV45572.2020.9093347
– ident: 1695_CR57
– ident: 1695_CR52
  doi: 10.1007/978-3-319-93417-4_38
– ident: 1695_CR21
  doi: 10.1109/ICCVW54120.2021.00030
– volume: C22
  start-page: 67
  issue: 1
  year: 1973
  ident: 1695_CR19
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1973.223602
– ident: 1695_CR62
  doi: 10.1609/aaai.v32i1.12328
– ident: 1695_CR4
  doi: 10.1007/978-3-319-48881-3_56
– volume: 66
  start-page: 4
  year: 2021
  ident: 1695_CR60
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– volume: 27
  start-page: 3529
  issue: 7
  year: 2018
  ident: 1695_CR10
  publication-title: IEEE Trans. Image Proc.
  doi: 10.1109/TIP.2018.2816121
– volume: 6
  start-page: 11
  issue: 1
  year: 2019
  ident: 1695_CR66
  publication-title: Comput. Soc. Netw.
  doi: 10.1186/s40649-019-0069-y
– ident: 1695_CR12
  doi: 10.1007/978-3-030-63823-8_76
– ident: 1695_CR25
– ident: 1695_CR31
– ident: 1695_CR35
– volume: 44
  start-page: 307
  issue: 4
  year: 2012
  ident: 1695_CR44
  publication-title: Technometrics
  doi: 10.1198/004017002188618509
– ident: 1695_CR22
  doi: 10.1109/ICCV.2015.169
– ident: 1695_CR47
  doi: 10.1007/978-3-319-46484-8_29
– ident: 1695_CR56
– ident: 1695_CR69
  doi: 10.1007/978-3-319-49409-8_17
– ident: 1695_CR18
– ident: 1695_CR20
  doi: 10.1109/CVPR.2019.00478
– ident: 1695_CR23
  doi: 10.1007/978-3-030-93409-5_31
– volume: 20
  start-page: 4810
  issue: 17
  year: 2020
  ident: 1695_CR67
  publication-title: Sensors
  doi: 10.3390/s20174810
– ident: 1695_CR40
  doi: 10.1109/CVPR52688.2022.00852
– ident: 1695_CR42
  doi: 10.1007/978-981-16-6054-2_6
SSID ssj0004774
Score 2.3944554
Snippet When a scene consists of multiple regions of interest related in some context, their tracking can (and often should) incorporate topology constraints that...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 74
SubjectTerms Cameras
Communications Engineering
Computer Science
Constraints
Context
Graph representations
Graph theory
Graphical representations
Image Processing and Computer Vision
Missing data
Multiple target tracking
Network topologies
Networks
Object recognition
Pattern Recognition
Proposals
Similarity
Title Simultaneous tracking of objects with loose context constraints from multiple views: human–human interaction paradigm
URI https://link.springer.com/article/10.1007/s00138-025-01695-8
https://www.proquest.com/docview/3203432182
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8DARwFRKJUHNoiUOJ9mq1BLBYIFKpUpcmwHVYIENUGs_Af-Ib-Es5O0gGBgsmRbHnz2-dm-9w7gWNkuHhxCWJLjbvIQNFjMc4VhLAsaJcwzwvPXN8F44l1O_WlNCiuaaPfmS9J46gXZzXyqWTr9qlYQ8a1oFdq-vrvjKp7QwZINGVbay4hM0P8yWlNlfh_j-3G0xJg_vkXNaTPago0aJpJBZddtWFFZBzZryEjqDVlgVZOVoanrwPoXicEdeL2d6ZhBnim84pNyzoV-Gyd5SvJEP8EURL_Eksc8LxTRcevorHVZmNwR2Kz5J6QJOyRGuvSMmMx-H2_vpiRacmJeESSIlhKXs4enXZiMhnfnY6tOtmAJGtLSoiljiRBOJJ1ApoFK9DTaUgRKJqHDE9el0o4UGi_1A5YGdiSV4yrKpJTMQ5CxB60sz9Q-EJZyxh30sly4nqQJgjyXhilCMV_43FFdOGnmPH6uNDXihXqysVCMFoqNheKoC73GLHG9v4rYpbZmxOLlqAunjamWzX-PdvC_7oewRs1q0fG5PWiV8xd1hCikTPrQHlzcXw37ZvF9AopG1-I
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG0RKnE-zVYiqQNuFVupmJbaDKkGCmiJW_gP_kF_C2UkoIBiYLNmWB599frbvvQM4VbaLB4cQloxxN3kIGizmucIwlgWNEuYZ4fnBMOiNvZuJP6lIYUUd7V5_SRpP_Ul2M59qlk6_qhVEfCtahhUEA5EO5BrTzoINGZbay4hM0P8yWlFlfh_j-3G0wJg_vkXNadPdgo0KJpJOaddtWFJZEzYryEiqDVlgVZ2Voa5rwvoXicEdeLmb6pjBOFN4xSfzWSz02zjJU5In-gmmIPolljzkeaGIjltHZ63LwuSOwGbNPyF12CEx0qUXxGT2e399MyXRkhOzkiBBtJS4nN4_7sK4ezW67FlVsgVL0JDOLZoylgjhRNIJZBqoRE-jLUWgZBI6ceK6VNqRQuOlfsDSwI6kclxFmZSSeQgy9qCR5ZnaB8LSmMUOetlYuJ6kCYI8l4YpQjFf-LGjWnBWzzl_KjU1-Kd6srEQRwtxYyEetaBdm4VX-6vgLrU1IxYvRy04r021aP57tIP_dT-B1d5o0Of96-HtIaxRs3J0rG4bGvPZszpCRDJPjs0C_AAUu9lB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CIiEYeBQQhQIe2CAicR6N2SqgKq8KCSp1ixLbQZUgqZogGPkH_pAv4dpJ2oJgYLLkRB58_Di27zkX4FCaNm4cnBsixNnkIGkwmGNzrVjm1I-Yo43nb3tet-9cDdzBjIpfR7tXT5KFpkG5NCX5yUjEJxPhm35gM1QqVuUm4hr-PCzgcmypcd2n7akyslX4MCNLwbWY0VI283sb37emKd_88USqd57OGqyUlJG0C4zXYU4mdVgt6SMpJ2eGVVWGhqquDsszdoMb8Ho_VPGDYSLxuE_yccjVPTlJY5JG6jomI-pWljylaSaJ7pC3XJWZziOBn5UWhVQhiETbmJ4SneXv8_1Dl0TZT4wLsQRRtuJi-Pi8Cf3OxcNZ1ygTLxictmhu0JixiHPLF5YnYk9GqhtNwT0popYVRrZNhelLBDJ2PRZ7pi-kZUvKhBDMQcKxBbUkTeQ2EBaHLLRwxQ257QgaIeGzaStGWuZyN7RkA46qPg9Ghb9GMHFS1ggFiFCgEQr8BjQrWIJyrmWBTU2ljsWDUgOOK6imn_9ubed_vx_A4t15J7i57F3vwhLVA0eF7Tahlo9f5B6Skzza1-PvC4_q3X0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+tracking+of+objects+with+loose+context+constraints+from+multiple+views%3A+human%E2%80%93human+interaction+paradigm&rft.jtitle=Machine+vision+and+applications&rft.au=Vatti%2C+Jay&rft.au=Tsechpenakis%2C+Gavriil&rft.date=2025-07-01&rft.issn=0932-8092&rft.eissn=1432-1769&rft.volume=36&rft.issue=4&rft_id=info:doi/10.1007%2Fs00138-025-01695-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00138_025_01695_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-8092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-8092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-8092&client=summon