Simultaneous tracking of objects with loose context constraints from multiple views: human–human interaction paradigm
When a scene consists of multiple regions of interest related in some context, their tracking can (and often should) incorporate topology constraints that depict the inherent structure properties of the target scene subset. Such principle has been commonly implemented by pictorial structure represen...
Saved in:
Published in | Machine vision and applications Vol. 36; no. 4; p. 74 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0932-8092 1432-1769 |
DOI | 10.1007/s00138-025-01695-8 |
Cover
Loading…
Abstract | When a scene consists of multiple regions of interest related in some context, their tracking can (and often should) incorporate topology constraints that depict the inherent structure properties of the target scene subset. Such principle has been commonly implemented by pictorial structure representations, graph networks, siamese trackers, etc., and, in general, part-based spatio-temporal modeling. This is contrary to the multiple object tracking principle, where all objects of the desired categories are detected and tracked, including objects that do not ‘belong’ to the context. Context topology is often not fixed over time. We use the notion of ‘loose context’ to denote partial conditionality among the targets: preserving relationships with respect to labels and locations within each part set (part-defined entity), while assuming conditionality between part sets only where dictated by the given scenario. An indicative example is human–human interaction, where one person can move independently from the other, while their approximate relative positions are given. We encode context with a small graph, where tracked regions are represented by nodes, and context topology is captured by edges. Instead of using image patches in a fully connected graph representation, we employ region proposals: we decouple the graph definition from the image domain, and the search space consists of a proposal set to be sampled for deriving candidate solutions at each time instance. We use sequences from multiple views to alleviate missing data from occlusions, and the corresponding proposals are also considered, through projection regression, in the candidate graph solution for a reference plane (view). The objective function incorporates spatio-temporal topology information, and appearance similarity of the proposal regions as encoded by a definition of residual loss of a siamese graph attention network (embedding similarity). Our architecture consists of four parts: a region proposal network, a plane-to-plane reciprocal projection regression module, the siamese GAT for evaluating target set appearance similarity between successive instances, and the objective optimizer. We validate our method using a ‘round table’ setup with four subjects and three cameras: one providing bird’s-eye view, where the desired targets are hands, and each of the other cameras captures two subjects with desired targets being faces and hands. |
---|---|
AbstractList | When a scene consists of multiple regions of interest related in some context, their tracking can (and often should) incorporate topology constraints that depict the inherent structure properties of the target scene subset. Such principle has been commonly implemented by pictorial structure representations, graph networks, siamese trackers, etc., and, in general, part-based spatio-temporal modeling. This is contrary to the multiple object tracking principle, where all objects of the desired categories are detected and tracked, including objects that do not ‘belong’ to the context. Context topology is often not fixed over time. We use the notion of ‘loose context’ to denote partial conditionality among the targets: preserving relationships with respect to labels and locations within each part set (part-defined entity), while assuming conditionality between part sets only where dictated by the given scenario. An indicative example is human–human interaction, where one person can move independently from the other, while their approximate relative positions are given. We encode context with a small graph, where tracked regions are represented by nodes, and context topology is captured by edges. Instead of using image patches in a fully connected graph representation, we employ region proposals: we decouple the graph definition from the image domain, and the search space consists of a proposal set to be sampled for deriving candidate solutions at each time instance. We use sequences from multiple views to alleviate missing data from occlusions, and the corresponding proposals are also considered, through projection regression, in the candidate graph solution for a reference plane (view). The objective function incorporates spatio-temporal topology information, and appearance similarity of the proposal regions as encoded by a definition of residual loss of a siamese graph attention network (embedding similarity). Our architecture consists of four parts: a region proposal network, a plane-to-plane reciprocal projection regression module, the siamese GAT for evaluating target set appearance similarity between successive instances, and the objective optimizer. We validate our method using a ‘round table’ setup with four subjects and three cameras: one providing bird’s-eye view, where the desired targets are hands, and each of the other cameras captures two subjects with desired targets being faces and hands. |
ArticleNumber | 74 |
Author | Tsechpenakis, Gavriil Vatti, Jay |
Author_xml | – sequence: 1 givenname: Jay surname: Vatti fullname: Vatti, Jay organization: Computer Science, Purdue University Indianapolis – sequence: 2 givenname: Gavriil surname: Tsechpenakis fullname: Tsechpenakis, Gavriil email: gtsechpe@purdue.edu organization: Computer Science, Purdue University Indianapolis |
BookMark | eNp9kMtOxCAYhYnRxPHyAq5IXFd_oNMWd8Z4SyZxoa5JW_6OjFMYgTq68x18Q59E6pi4c3VI-M6BfHtk2zqLhBwxOGEA5WkAYKLKgE8zYIWcZtUWmbBc8IyVhdwmE5DpXIHku2QvhAUA5GWZT8j63vTDMtYW3RBo9HX7bOycuo66ZoFtDHRt4hNdOheQts5GfItjhoQam64773o6TpjVEumrwXU4o09DX9uvj8-fpInDNByNs3RV-1qbeX9Adrp6GfDwN_fJ49Xlw8VNNru7vr04n2UtL3nMeCdl07as0qzQXYHN-GvQbYG6KVndCME1VNjIvJsWsiug0sgEcqm1ljnnYp8cb3ZX3r0MGKJauMHb9KQSHEQyxKqR4huq9S4Ej51aedPX_l0xUKNgtRGskmD1I1hVqSQ2pZBgO0f_N_1P6xs_5oRe |
Cites_doi | 10.1109/CVPR42600.2020.00661 10.1007/s11263-020-01393-0 10.1109/CVPR46437.2021.00942 10.1109/CVPR52733.2024.01903 10.1109/FG.2017.64 10.1109/TIP.2023.3328485 10.1109/CVPR.2016.297 10.1023/B:VISI.0000042934.15159.49 10.1109/TPAMI.2006.244 10.1109/ICCV.2017.322 10.1039/C8AY02724B 10.1109/CVPR46437.2021.01219 10.1109/CVPR.2018.00935 10.1109/TPAMI.2008.57 10.1007/BF00054995 10.1016/j.neucom.2017.11.050 10.1109/CVPR52733.2024.01438 10.1016/j.cviu.2023.103634 10.1007/978-3-642-35494-6_4 10.1088/1361-6501/ad916c 10.1145/3447548.3467256 10.24963/ijcai.2018/505 10.1109/ICCV.2015.381 10.1609/aaai.v34i07.6944 10.1109/CVPR52733.2024.01811 10.1109/CVPR46437.2021.01583 10.1109/CVPR.2019.00441 10.1016/j.jbiomech.2021.110460 10.1145/3395035.3425961 10.1109/CVPR52688.2022.00864 10.1109/CVPR52733.2024.01797 10.1109/WACV45572.2020.9093347 10.1007/978-3-319-93417-4_38 10.1109/ICCVW54120.2021.00030 10.1109/T-C.1973.223602 10.1609/aaai.v32i1.12328 10.1007/978-3-319-48881-3_56 10.1109/TNNLS.2020.2978386 10.1109/TIP.2018.2816121 10.1186/s40649-019-0069-y 10.1007/978-3-030-63823-8_76 10.1198/004017002188618509 10.1109/ICCV.2015.169 10.1007/978-3-319-46484-8_29 10.1007/978-3-319-49409-8_17 10.1109/CVPR.2019.00478 10.1007/978-3-030-93409-5_31 10.3390/s20174810 10.1109/CVPR52688.2022.00852 10.1007/978-981-16-6054-2_6 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00138-025-01695-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1432-1769 |
ExternalDocumentID | 10_1007_s00138_025_01695_8 |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACUHS ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBS EIOEI ESBYG ESX FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 ZMTXR ~EX -Y2 .4S 1SB 28- 2P1 2VQ 5QI 8FE 8FG AAOBN AARHV AAYTO AAYXX ABJCF ABQSL ABULA ACBXY ADHKG ADMLS AEBTG AEFIE AEKMD AFEXP AFGCZ AFKRA AGGDS AGQPQ AJBLW ARCSS B0M BBWZM BDATZ BGLVJ CAG CCPQU CITATION COF EAD EDO EJD EMK EPL FINBP FSGXE H13 I-F KOW L6V M7S N2Q NDZJH O9- P62 PHGZM PHGZT PQGLB PTHSS R4E RIG RNI RZK S26 S28 SCJ SCLPG T16 TUS UZXMN VFIZW ZY4 ~8M |
ID | FETCH-LOGICAL-c272t-2f99bcc18d16df6eb47740dc6edb71ab332d08eb94f569f608de13e29ddd94223 |
IEDL.DBID | U2A |
ISSN | 0932-8092 |
IngestDate | Sat Aug 23 12:48:13 EDT 2025 Wed Aug 06 19:39:34 EDT 2025 Thu Jul 31 01:53:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Multiple target tracking Human–human interaction Siamese GATs Tracking from multiple views Context-based tracking |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-2f99bcc18d16df6eb47740dc6edb71ab332d08eb94f569f608de13e29ddd94223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3203432182 |
PQPubID | 2043753 |
ParticipantIDs | proquest_journals_3203432182 crossref_primary_10_1007_s00138_025_01695_8 springer_journals_10_1007_s00138_025_01695_8 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: New York |
PublicationTitle | Machine vision and applications |
PublicationTitleAbbrev | Machine Vision and Applications |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | N Cronin (1695_CR11) 2021; 123 1695_CR46 1695_CR45 1695_CR43 1695_CR42 S Zhang (1695_CR66) 2019; 6 1695_CR41 1695_CR40 S Ellison (1695_CR15) 2019; 11 1695_CR49 1695_CR47 1695_CR70 Z Wu (1695_CR60) 2021; 66 X Zhang (1695_CR67) 2020; 20 R Maronna (1695_CR44) 2012; 44 1695_CR35 1695_CR34 1695_CR33 1695_CR32 1695_CR31 1695_CR30 1695_CR39 1695_CR38 1695_CR37 1695_CR36 Z Qin (1695_CR48) 2023; 32 1695_CR24 1695_CR68 1695_CR23 1695_CR22 1695_CR21 1695_CR20 1695_CR64 1695_CR63 1695_CR62 1695_CR61 1695_CR29 1695_CR28 G Chrysos (1695_CR10) 2018; 27 1695_CR27 1695_CR26 1695_CR25 1695_CR69 1695_CR2 J Wang (1695_CR59) 2022; 17 1695_CR1 1695_CR4 1695_CR3 I Chami (1695_CR6) 2022; 23 1695_CR13 1695_CR57 1695_CR9 1695_CR12 1695_CR56 H Zhang (1695_CR65) 2018; 275 1695_CR55 1695_CR54 1695_CR53 1695_CR5 1695_CR52 1695_CR8 1695_CR51 1695_CR7 1695_CR50 1695_CR18 1695_CR17 1695_CR16 1695_CR14 1695_CR58 M Fischler (1695_CR19) 1973; C22 |
References_xml | – ident: 1695_CR1 – ident: 1695_CR55 – ident: 1695_CR58 doi: 10.1109/CVPR42600.2020.00661 – ident: 1695_CR13 doi: 10.1007/s11263-020-01393-0 – ident: 1695_CR24 doi: 10.1109/CVPR46437.2021.00942 – ident: 1695_CR27 doi: 10.1109/CVPR52733.2024.01903 – ident: 1695_CR3 doi: 10.1109/FG.2017.64 – volume: 32 start-page: 6543 year: 2023 ident: 1695_CR48 publication-title: IEEE Trans. Image Proc. doi: 10.1109/TIP.2023.3328485 – ident: 1695_CR36 – ident: 1695_CR64 doi: 10.1109/CVPR.2016.297 – ident: 1695_CR70 – ident: 1695_CR17 doi: 10.1023/B:VISI.0000042934.15159.49 – ident: 1695_CR5 – volume: 17 issue: 11 year: 2022 ident: 1695_CR59 publication-title: PLoS ONE – ident: 1695_CR2 doi: 10.1109/TPAMI.2006.244 – ident: 1695_CR26 doi: 10.1109/ICCV.2017.322 – volume: 11 start-page: 2639 year: 2019 ident: 1695_CR15 publication-title: Anal. Methods doi: 10.1039/C8AY02724B – ident: 1695_CR54 doi: 10.1109/CVPR46437.2021.01219 – ident: 1695_CR37 doi: 10.1109/CVPR.2018.00935 – ident: 1695_CR34 doi: 10.1109/TPAMI.2008.57 – ident: 1695_CR9 doi: 10.1007/BF00054995 – volume: 275 start-page: 2645 year: 2018 ident: 1695_CR65 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.050 – ident: 1695_CR14 doi: 10.1109/CVPR52733.2024.01438 – ident: 1695_CR41 doi: 10.1016/j.cviu.2023.103634 – ident: 1695_CR51 doi: 10.1007/978-3-642-35494-6_4 – ident: 1695_CR46 doi: 10.1088/1361-6501/ad916c – ident: 1695_CR50 – ident: 1695_CR29 doi: 10.1145/3447548.3467256 – ident: 1695_CR8 – ident: 1695_CR63 doi: 10.24963/ijcai.2018/505 – ident: 1695_CR32 doi: 10.1109/ICCV.2015.381 – ident: 1695_CR61 doi: 10.1609/aaai.v34i07.6944 – ident: 1695_CR16 – ident: 1695_CR43 – ident: 1695_CR68 doi: 10.1109/CVPR52733.2024.01811 – ident: 1695_CR53 doi: 10.1109/CVPR46437.2021.01583 – ident: 1695_CR38 doi: 10.1109/CVPR.2019.00441 – volume: 123 year: 2021 ident: 1695_CR11 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110460 – ident: 1695_CR28 – ident: 1695_CR30 – ident: 1695_CR7 – ident: 1695_CR33 doi: 10.1145/3395035.3425961 – volume: 23 start-page: 3840 issue: 1 year: 2022 ident: 1695_CR6 publication-title: J. Mach. Learn. Res. – ident: 1695_CR45 doi: 10.1109/CVPR52688.2022.00864 – ident: 1695_CR49 doi: 10.1109/CVPR52733.2024.01797 – ident: 1695_CR39 doi: 10.1109/WACV45572.2020.9093347 – ident: 1695_CR57 – ident: 1695_CR52 doi: 10.1007/978-3-319-93417-4_38 – ident: 1695_CR21 doi: 10.1109/ICCVW54120.2021.00030 – volume: C22 start-page: 67 issue: 1 year: 1973 ident: 1695_CR19 publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1973.223602 – ident: 1695_CR62 doi: 10.1609/aaai.v32i1.12328 – ident: 1695_CR4 doi: 10.1007/978-3-319-48881-3_56 – volume: 66 start-page: 4 year: 2021 ident: 1695_CR60 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – volume: 27 start-page: 3529 issue: 7 year: 2018 ident: 1695_CR10 publication-title: IEEE Trans. Image Proc. doi: 10.1109/TIP.2018.2816121 – volume: 6 start-page: 11 issue: 1 year: 2019 ident: 1695_CR66 publication-title: Comput. Soc. Netw. doi: 10.1186/s40649-019-0069-y – ident: 1695_CR12 doi: 10.1007/978-3-030-63823-8_76 – ident: 1695_CR25 – ident: 1695_CR31 – ident: 1695_CR35 – volume: 44 start-page: 307 issue: 4 year: 2012 ident: 1695_CR44 publication-title: Technometrics doi: 10.1198/004017002188618509 – ident: 1695_CR22 doi: 10.1109/ICCV.2015.169 – ident: 1695_CR47 doi: 10.1007/978-3-319-46484-8_29 – ident: 1695_CR56 – ident: 1695_CR69 doi: 10.1007/978-3-319-49409-8_17 – ident: 1695_CR18 – ident: 1695_CR20 doi: 10.1109/CVPR.2019.00478 – ident: 1695_CR23 doi: 10.1007/978-3-030-93409-5_31 – volume: 20 start-page: 4810 issue: 17 year: 2020 ident: 1695_CR67 publication-title: Sensors doi: 10.3390/s20174810 – ident: 1695_CR40 doi: 10.1109/CVPR52688.2022.00852 – ident: 1695_CR42 doi: 10.1007/978-981-16-6054-2_6 |
SSID | ssj0004774 |
Score | 2.3944554 |
Snippet | When a scene consists of multiple regions of interest related in some context, their tracking can (and often should) incorporate topology constraints that... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 74 |
SubjectTerms | Cameras Communications Engineering Computer Science Constraints Context Graph representations Graph theory Graphical representations Image Processing and Computer Vision Missing data Multiple target tracking Network topologies Networks Object recognition Pattern Recognition Proposals Similarity |
Title | Simultaneous tracking of objects with loose context constraints from multiple views: human–human interaction paradigm |
URI | https://link.springer.com/article/10.1007/s00138-025-01695-8 https://www.proquest.com/docview/3203432182 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8DARwFRKJUHNoiUOJ9mq1BLBYIFKpUpcmwHVYIENUGs_Af-Ib-Es5O0gGBgsmRbHnz2-dm-9w7gWNkuHhxCWJLjbvIQNFjMc4VhLAsaJcwzwvPXN8F44l1O_WlNCiuaaPfmS9J46gXZzXyqWTr9qlYQ8a1oFdq-vrvjKp7QwZINGVbay4hM0P8yWlNlfh_j-3G0xJg_vkXNaTPago0aJpJBZddtWFFZBzZryEjqDVlgVZOVoanrwPoXicEdeL2d6ZhBnim84pNyzoV-Gyd5SvJEP8EURL_Eksc8LxTRcevorHVZmNwR2Kz5J6QJOyRGuvSMmMx-H2_vpiRacmJeESSIlhKXs4enXZiMhnfnY6tOtmAJGtLSoiljiRBOJJ1ApoFK9DTaUgRKJqHDE9el0o4UGi_1A5YGdiSV4yrKpJTMQ5CxB60sz9Q-EJZyxh30sly4nqQJgjyXhilCMV_43FFdOGnmPH6uNDXihXqysVCMFoqNheKoC73GLHG9v4rYpbZmxOLlqAunjamWzX-PdvC_7oewRs1q0fG5PWiV8xd1hCikTPrQHlzcXw37ZvF9AopG1-I |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG0RKnE-zVYiqQNuFVupmJbaDKkGCmiJW_gP_kF_C2UkoIBiYLNmWB599frbvvQM4VbaLB4cQloxxN3kIGizmucIwlgWNEuYZ4fnBMOiNvZuJP6lIYUUd7V5_SRpP_Ul2M59qlk6_qhVEfCtahhUEA5EO5BrTzoINGZbay4hM0P8yWlFlfh_j-3G0wJg_vkXNadPdgo0KJpJOaddtWFJZEzYryEiqDVlgVZ2Voa5rwvoXicEdeLmb6pjBOFN4xSfzWSz02zjJU5In-gmmIPolljzkeaGIjltHZ63LwuSOwGbNPyF12CEx0qUXxGT2e399MyXRkhOzkiBBtJS4nN4_7sK4ezW67FlVsgVL0JDOLZoylgjhRNIJZBqoRE-jLUWgZBI6ceK6VNqRQuOlfsDSwI6kclxFmZSSeQgy9qCR5ZnaB8LSmMUOetlYuJ6kCYI8l4YpQjFf-LGjWnBWzzl_KjU1-Kd6srEQRwtxYyEetaBdm4VX-6vgLrU1IxYvRy04r021aP57tIP_dT-B1d5o0Of96-HtIaxRs3J0rG4bGvPZszpCRDJPjs0C_AAUu9lB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CIiEYeBQQhQIe2CAicR6N2SqgKq8KCSp1ixLbQZUgqZogGPkH_pAv4dpJ2oJgYLLkRB58_Di27zkX4FCaNm4cnBsixNnkIGkwmGNzrVjm1I-Yo43nb3tet-9cDdzBjIpfR7tXT5KFpkG5NCX5yUjEJxPhm35gM1QqVuUm4hr-PCzgcmypcd2n7akyslX4MCNLwbWY0VI283sb37emKd_88USqd57OGqyUlJG0C4zXYU4mdVgt6SMpJ2eGVVWGhqquDsszdoMb8Ho_VPGDYSLxuE_yccjVPTlJY5JG6jomI-pWljylaSaJ7pC3XJWZziOBn5UWhVQhiETbmJ4SneXv8_1Dl0TZT4wLsQRRtuJi-Pi8Cf3OxcNZ1ygTLxictmhu0JixiHPLF5YnYk9GqhtNwT0popYVRrZNhelLBDJ2PRZ7pi-kZUvKhBDMQcKxBbUkTeQ2EBaHLLRwxQ257QgaIeGzaStGWuZyN7RkA46qPg9Ghb9GMHFS1ggFiFCgEQr8BjQrWIJyrmWBTU2ljsWDUgOOK6imn_9ubed_vx_A4t15J7i57F3vwhLVA0eF7Tahlo9f5B6Skzza1-PvC4_q3X0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+tracking+of+objects+with+loose+context+constraints+from+multiple+views%3A+human%E2%80%93human+interaction+paradigm&rft.jtitle=Machine+vision+and+applications&rft.au=Vatti%2C+Jay&rft.au=Tsechpenakis%2C+Gavriil&rft.date=2025-07-01&rft.issn=0932-8092&rft.eissn=1432-1769&rft.volume=36&rft.issue=4&rft_id=info:doi/10.1007%2Fs00138-025-01695-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00138_025_01695_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-8092&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-8092&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-8092&client=summon |