Stagnation point flow of a Casson nanomaterial with the Cattaneo–Christov dual diffusion and motile micro-organism past a porous vertical sheet causing an entropy generation
The current investigation is carried out to study the mixed convective stagnation point flow of Casson nanomaterial comprising gyrotactic micro-organisms over a vertical porous sheet. The Casson fluid flow equation gives details about fluid rheology. The proposed Cattaneo–Christov dual diffusive the...
Saved in:
Published in | Pramāṇa Vol. 99; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
25.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The current investigation is carried out to study the mixed convective stagnation point flow of Casson nanomaterial comprising gyrotactic micro-organisms over a vertical porous sheet. The Casson fluid flow equation gives details about fluid rheology. The proposed Cattaneo–Christov dual diffusive theory is intended to explore the thermal and mass characteristics. Micro-organisms’ irreversible heat transport, mass transport and fluid friction formulate the entropy generation. Moreover, the heat radiation, heat source and chemical reaction have been computed for the heat and mass. The heat transport phenomena are used to account for convective flow conditions. The constitution equations are adapted into a system of dimensionless equations through the appropriate transmutation. The dimensionless equations have been solved using the homotopic approach, a semi-analytical technique. Tables and graphs are additionally employed for addressing the behaviour of additional physical factors of pursuit, including mass transfer rate, heat transport, velocity field, the density of the motile gyrotactic bacteria, entropy generation and Bejan number. The porosity variable and the bioconvection Raleigh number reduce the velocity field. The heat radiation has an intensifying effect on the thermal field. The concentration profile is noted to diminish as the magnitude of the chemical reaction and Brownian motion enhance. The entropy generation and Bejan number increase with the increment values of the Brikmann number. Our established approach to mixed convection is supported by computations that have been thoroughly validated by comparing our results with previously published literature. |
---|---|
AbstractList | The current investigation is carried out to study the mixed convective stagnation point flow of Casson nanomaterial comprising gyrotactic micro-organisms over a vertical porous sheet. The Casson fluid flow equation gives details about fluid rheology. The proposed Cattaneo–Christov dual diffusive theory is intended to explore the thermal and mass characteristics. Micro-organisms’ irreversible heat transport, mass transport and fluid friction formulate the entropy generation. Moreover, the heat radiation, heat source and chemical reaction have been computed for the heat and mass. The heat transport phenomena are used to account for convective flow conditions. The constitution equations are adapted into a system of dimensionless equations through the appropriate transmutation. The dimensionless equations have been solved using the homotopic approach, a semi-analytical technique. Tables and graphs are additionally employed for addressing the behaviour of additional physical factors of pursuit, including mass transfer rate, heat transport, velocity field, the density of the motile gyrotactic bacteria, entropy generation and Bejan number. The porosity variable and the bioconvection Raleigh number reduce the velocity field. The heat radiation has an intensifying effect on the thermal field. The concentration profile is noted to diminish as the magnitude of the chemical reaction and Brownian motion enhance. The entropy generation and Bejan number increase with the increment values of the Brikmann number. Our established approach to mixed convection is supported by computations that have been thoroughly validated by comparing our results with previously published literature. |
ArticleNumber | 83 |
Author | Ali, Farhan Zafar, S S Abdullaeva, Barno Sayfutdinovna Khan, M Ijaz Faizan, M |
Author_xml | – sequence: 1 givenname: Farhan surname: Ali fullname: Ali, Farhan organization: Department of Mathematical Sciences, Sciences and Technology, Federal Urdu University of Arts – sequence: 2 givenname: M surname: Faizan fullname: Faizan, M organization: Department of Mathematical Sciences, Sciences and Technology, Federal Urdu University of Arts – sequence: 3 givenname: S S surname: Zafar fullname: Zafar, S S organization: Department of Mathematical Sciences, Sciences and Technology, Federal Urdu University of Arts – sequence: 4 givenname: M Ijaz surname: Khan fullname: Khan, M Ijaz email: 2106391391@pku.edu.cn organization: Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University – sequence: 5 givenname: Barno Sayfutdinovna surname: Abdullaeva fullname: Abdullaeva, Barno Sayfutdinovna organization: Department of Mathematics and Information Technologies, Vice-Rector for Scientific Affairs, Tashkent State Pedagogical University |
BookMark | eNp9kU1u2zAQhYkgARInuUBWBLpWwz9J5rIw2iZAgC7arIkxNZIZWKRCUja86x16kN4pJwkTF2hXXRAkOO97w-FbkFMfPBJyw9lHzlh7m7hgSlZM1GVppip9Qi6YbmXVcs5P_zmfk0VKT4xxrWR9QX5_zzB4yC54OgXnM-23YU9DT4GuIKVy7cGHETJGB1u6d3lD8wZLMWfwGF5-_lptoks57Gg3F0Xn-n5Ob37gOzqG7LZIR2djqEIcwLs00glSLg2mEMOc6A5jdragaYOYqYWC-6HgFH2OYTrQAT3G90dekbMetgmv_-yX5PHL5x-ru-rh29f71aeHyopW5EosG9aBbnvbNZyjqlGCahTw5XqpO6mwtbJRPW_WQnLshJC1tRpVq5tm3dVWXpIPR98phucZUzZPYY6-tDSyqMsXs0YWlTiqynQpRezNFN0I8WA4M2_BmGMwpgRj3oMxukDyCKUi9gPGv9b_oV4Bd6iXrA |
Cites_doi | 10.1142/S0129183122500139 10.3390/mi13050744 10.3390/nano12050876 10.1002/htj.22064 10.1140/epjp/s13360-024-05546-9 10.1016/j.aej.2021.10.056 10.1115/1.2150834 10.1016/j.ijhydene.2022.02.141 10.1016/j.icheatmasstransfer.2022.106399 10.1016/j.aej.2022.06.041 10.1016/j.matcom.2021.11.019 10.1016/j.csite.2021.101229 10.1063/5.0250554 10.1007/s12043-021-02087-z 10.1016/j.applthermaleng.2015.12.138 10.1016/j.csite.2021.100898 10.1016/j.csite.2021.101184 10.1016/j.rineng.2023.101534 10.1016/j.rinp.2023.106908 10.1016/j.est.2022.105198 10.1007/s12648-020-01923-z 10.1016/j.jics.2022.100741 10.1080/10407782.2023.2281541 10.1140/epjp/s13360-023-04650-6 10.1016/j.ijthermalsci.2022.108058 10.1016/j.euromechflu.2020.06.004 10.1016/j.molliq.2024.125370 10.3390/nano12111791 10.3390/nano12234291 10.1016/j.jmmm.2023.171033 10.1016/j.mtcomm.2023.107844 10.1080/17455030.2023.2234047 10.1016/j.icheatmasstransfer.2022.106007 10.1021/acsomega.2c03919 10.1002/num.22696 10.1016/j.aej.2021.03.067 10.1016/j.est.2024.113638 10.1016/j.icheatmasstransfer.2004.11.005 |
ContentType | Journal Article |
Copyright | Indian Academy of Sciences 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Indian Academy of Sciences 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s12043-025-02904-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0973-7111 |
ExternalDocumentID | 10_1007_s12043_025_02904_9 |
GroupedDBID | -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2WC 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABDBE ABDBF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABLLD ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYQR AOCGG ARMRJ ATHPR AXYYD AYJHY B-. BA0 BGNMA CS3 CSCUP DDRTE DNIVK DPUIP E3Z EAD EAP EBLON EBS EIOEI EOJEC ESBYG EST ESX F5P FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GX1 HF~ HG5 HG6 HMJXF HRMNR I-F IJ- IKXTQ IWAJR IXC IXD IXE I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV KQ8 LLZTM M4Y MA- NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OBODZ OK1 OVT P19 P2P P9T PF0 PT4 PT5 QOK QOS R89 R9I RAB RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SC5 SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W48 WK8 XSB YLTOR Z45 ZMTXR ~02 ~8M ~A9 ~EX AAYXX CITATION ABRTQ |
ID | FETCH-LOGICAL-c272t-2860da97fcd611e45e3a464a18b89d34e7c364f16b231ed2235cc9e47966bd5c3 |
IEDL.DBID | U2A |
ISSN | 0973-7111 0304-4289 |
IngestDate | Sun Jul 13 04:38:16 EDT 2025 Thu Jul 03 08:44:39 EDT 2025 Wed Jun 25 02:36:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 76.S.xx 76.A.05 Bioconvection flow Nanofluid entropy generation stagnation point Casson flow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-2860da97fcd611e45e3a464a18b89d34e7c364f16b231ed2235cc9e47966bd5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3223904063 |
PQPubID | 2043787 |
ParticipantIDs | proquest_journals_3223904063 crossref_primary_10_1007_s12043_025_02904_9 springer_journals_10_1007_s12043_025_02904_9 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-25 |
PublicationDateYYYYMMDD | 2025-06-25 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
PublicationSubtitle | Published by the Indian Academy of Sciences |
PublicationTitle | Pramāṇa |
PublicationTitleAbbrev | Pramana - J Phys |
PublicationYear | 2025 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | A Ali (2904_CR24) 2024; 17 RH Hameed (2904_CR36) 2024 P Jalili (2904_CR18) 2023; 52 B Ali (2904_CR3) 2021; 194 J Cui (2904_CR15) 2022; 12 S QChan (2904_CR2) 2021; 60 P Mishra (2904_CR11) 2021; 95 NA Shah (2904_CR41) 2025; 18 S Shah (2904_CR43) 2021; 50 MI Khan (2904_CR8) 2022; 38 A Rehman (2904_CR23) 2024; 408 NA Shah (2904_CR7) 2025; 37 AV Kuznetsov (2904_CR1) 2005; 32 J Cui (2904_CR4) 2021; 61 SK Sahu (2904_CR28) 2022; 99 YJ Xu (2904_CR40) 2022; 33 2904_CR9 X-H Zhang (2904_CR25) 2021; 26 F Wang (2904_CR33) 2022; 47 KL Hsiao (2904_CR42) 2016; 98 NS Wahid (2904_CR27) 2022; 61 N Acharya (2904_CR14) 2020; 84 2904_CR6 NM Lisha (2904_CR22) 2023; 138 G Rasool (2904_CR31) 2022; 13 I Haq (2904_CR12) 2022; 7 N Acharya (2904_CR16) 2023; 38 N Acharya (2904_CR37) 2022; 53 SM Abo-Dahab (2904_CR20) 2021; 95 Y Wang (2904_CR38) 2022; 134 T Salahuddin (2904_CR30) 2023; 20 N Acharya (2904_CR35) 2023 N Acharya (2904_CR32) 2024; 100 J Wang (2904_CR5) 2022; 12 MS Khan (2904_CR13) 2022; 12 MV Krishna (2904_CR21) 2021; 27 SS Samantaray (2904_CR29) 2023; 45 R Kodi (2904_CR39) 2023; 582 O Çiçek (2904_CR34) 2022; 185 J Buongiorno (2904_CR10) 2006; 128 AU Awan (2904_CR17) 2022; 139 N Acharya (2904_CR19) 2021; 411 SE Ghasemi (2904_CR26) 2021; 25 |
References_xml | – volume: 45 start-page: 1571 issue: 1 year: 2023 ident: 2904_CR29 publication-title: Int. J. Model. Simul. – volume: 33 start-page: 2250013 year: 2022 ident: 2904_CR40 publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183122500139 – volume: 13 start-page: 744 year: 2022 ident: 2904_CR31 publication-title: Micromachines doi: 10.3390/mi13050744 – volume: 12 start-page: 876 year: 2022 ident: 2904_CR13 publication-title: Nanomater. doi: 10.3390/nano12050876 – volume: 50 start-page: 4062 year: 2021 ident: 2904_CR43 publication-title: Heat Transfer doi: 10.1002/htj.22064 – year: 2024 ident: 2904_CR36 publication-title: The Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-024-05546-9 – volume: 61 start-page: 5397 year: 2021 ident: 2904_CR4 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.10.056 – volume: 128 start-page: 240 year: 2006 ident: 2904_CR10 publication-title: ASME J. Heat Transfer doi: 10.1115/1.2150834 – volume: 47 start-page: 13911 year: 2022 ident: 2904_CR33 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.02.141 – volume: 139 year: 2022 ident: 2904_CR17 publication-title: Int. Commun. Heat Mass Transfer. doi: 10.1016/j.icheatmasstransfer.2022.106399 – volume: 61 start-page: 12661 year: 2022 ident: 2904_CR27 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.06.041 – volume: 194 start-page: 254 year: 2021 ident: 2904_CR3 publication-title: Math. Comput. Simulat. doi: 10.1016/j.matcom.2021.11.019 – volume: 27 year: 2021 ident: 2904_CR21 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101229 – volume: 37 year: 2025 ident: 2904_CR7 publication-title: Phys. Fluids doi: 10.1063/5.0250554 – volume: 95 start-page: 52 year: 2021 ident: 2904_CR11 publication-title: Pramana – J. Phys. doi: 10.1007/s12043-021-02087-z – volume: 98 start-page: 850 year: 2016 ident: 2904_CR42 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.12.138 – volume: 25 year: 2021 ident: 2904_CR26 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100898 – volume: 26 start-page: 101184 year: 2021 ident: 2904_CR25 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101184 – volume: 20 year: 2023 ident: 2904_CR30 publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101534 – volume: 52 year: 2023 ident: 2904_CR18 publication-title: Results Phys. doi: 10.1016/j.rinp.2023.106908 – volume: 53 year: 2022 ident: 2904_CR37 publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105198 – volume: 411 year: 2021 ident: 2904_CR19 publication-title: Appl. Math. Comput. – volume: 95 start-page: 2703 year: 2021 ident: 2904_CR20 publication-title: Indian J. Phys. doi: 10.1007/s12648-020-01923-z – volume: 99 start-page: 100741 year: 2022 ident: 2904_CR28 publication-title: J. Indian Chem. Soc. doi: 10.1016/j.jics.2022.100741 – year: 2023 ident: 2904_CR35 publication-title: Numer. Heat Transfer Part A Appl. doi: 10.1080/10407782.2023.2281541 – volume: 138 start-page: 1042 year: 2023 ident: 2904_CR22 publication-title: The Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-023-04650-6 – volume: 185 year: 2022 ident: 2904_CR34 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2022.108058 – volume: 84 start-page: 139 year: 2020 ident: 2904_CR14 publication-title: Eur. J. Mech. - B/Fluids doi: 10.1016/j.euromechflu.2020.06.004 – volume: 408 year: 2024 ident: 2904_CR23 publication-title: J. Mol. Liquids doi: 10.1016/j.molliq.2024.125370 – volume: 17 year: 2024 ident: 2904_CR24 publication-title: J. Radiat. Res. Appl. Sci. – volume: 12 start-page: 1791 year: 2022 ident: 2904_CR5 publication-title: Nanomater. doi: 10.3390/nano12111791 – volume: 12 start-page: 4291 year: 2022 ident: 2904_CR15 publication-title: Nanomater. doi: 10.3390/nano12234291 – volume: 582 year: 2023 ident: 2904_CR39 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2023.171033 – volume: 38 year: 2023 ident: 2904_CR16 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.107844 – ident: 2904_CR6 doi: 10.1080/17455030.2023.2234047 – volume: 134 year: 2022 ident: 2904_CR38 publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2022.106007 – ident: 2904_CR9 – volume: 7 start-page: 30477 year: 2022 ident: 2904_CR12 publication-title: ACS Omega doi: 10.1021/acsomega.2c03919 – volume: 38 start-page: 777 year: 2022 ident: 2904_CR8 publication-title: Numer. Meth. Partial Diff. Eqs doi: 10.1002/num.22696 – volume: 60 start-page: 5227 year: 2021 ident: 2904_CR2 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.03.067 – volume: 100 year: 2024 ident: 2904_CR32 publication-title: J. Energy Storage doi: 10.1016/j.est.2024.113638 – volume: 18 start-page: 101295 year: 2025 ident: 2904_CR41 publication-title: J. Radiat. Res. Appl. Sci. – volume: 32 start-page: 991 issue: 8 year: 2005 ident: 2904_CR1 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2004.11.005 |
SSID | ssj0019435 |
Score | 2.3749518 |
Snippet | The current investigation is carried out to study the mixed convective stagnation point flow of Casson nanomaterial comprising gyrotactic micro-organisms over... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Astronomy Astrophysics and Astroparticles Chemical reactions Convective flow Entropy Flow equations Fluid flow Fluid friction Mass transfer Mass transport Microorganisms Nanomaterials Observations and Techniques Physical factors Physics Physics and Astronomy Porous media flow Radiation Rheological properties Rheology Stagnation point Thermal radiation Transmutation Transport phenomena Velocity distribution |
Title | Stagnation point flow of a Casson nanomaterial with the Cattaneo–Christov dual diffusion and motile micro-organism past a porous vertical sheet causing an entropy generation |
URI | https://link.springer.com/article/10.1007/s12043-025-02904-9 https://www.proquest.com/docview/3223904063 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NbtQwEMct6AqJCwJK1YVSzYEbtZTEdrI-bssuFUicWKmcItsZbyu1yYpkqXrrO_RBeCeehLE3YUVFD5wixXES6e_Yv4zng7F3nhA8Vd7yJEPBpcuRm4lIuLc0M6aFsIWLXr5f8tOF_HSmzvqgsHbwdh-2JONMvQ12C2GcPJRfTTKdSK4fs5Gif_fgyLXIpn_2DjQRQB8e8-9-fy9BW668txUaV5j5c_asR0OYbrR8wR5h_ZI9iS6art1lP4kLlxvbHayai7oDf9lcQ-PBwAkhMJ2uTd0QgcZBBcHCCoR31NgRAWLz6_auTyXwA0IEFoTiKOtgLQNTVxC88i4RroKHHt8Ue2qvYGXajh5AlN6sW4jFm0lVaM8RO3AmuM0vqTsEI3GzuoFlTGMdXvIVW8xnX09OeV9ugbusyDqeTfKkMrrwrsrTFKVCYWQuTTqxE10JiYUTuSRxLTEhVsQVyjmNsqA_JlspJ_bYTt3UuM_AW62cRCF87qUyQktTFF7bBA2iTqoxez8oUK42WTXKbf7koFdJepVRr1KP2cEgUtl_YW1JE5GgViKsMTsahNs2P3y31_93-Rv2NItjJ-eZOmA73fc1viUO6ewhG02PPxzPw_Hjt8-zwzgMfwOFr94T |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NbtQwEMctWoTKBfEpFgrMgRtYSmLnw8eqolqg9NSV9hbZzniptJtEJEvVG-_QB-k79Uk69iasqOih1zhOIv0nzi_j-WDsoyMEj1NneJSg4NJmyHUhIu4MrYxxLkxuQ5TvSTadyW_zdD4khXVjtPu4JRlW6m2ym0_j5L79apSoSHK1wx4SDBTelmfJwd-9A0UEMKTH_H_ev5-gLVfe2goNX5ijp-zJgIZwsNHyGXuA9XP2KIRo2u4FuyIuXGx8d9A2Z3UPbtmcQ-NAwyEhMB2udd0QgQajAu9hBcI7GuyJALG5_nM5lBL4DT4DC3xzlLX3loGuK_BReUuElY_Q45tmT90KWt31dAOi9GbdQWjeTKpC9xOxB6t92PyCpoN3EjftBSxCGWv_kC_Z7OjL6eGUD-0WuE3ypOdJkUWVVrmzVRbHKFMUWmZSx4UpVCUk5lZkksQ1xIRYEVek1iqUOf0xmSq14hXbrZsaXzNwRqVWohAuczLVQkmd506ZCDWiiqoJ-zQqULabqhrltn6y16skvcqgV6kmbH8UqRzesK6khUjQKBHWhH0ehdsO3321N_c7_QPbm57-OC6Pv558f8seJ8GOMp6k-2y3_7XGd8QkvXkfTPAGOEDeAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NTtwwEMetlqoVF0RLq2756Bx6ay2S2EnWR0RZ0Q-hHroSt8h2xkslSCKSBfXGO_AgvBNP0rGTZQG1h17jOIn0nzi_jOeDsQ-OEDxOneFRgoJLmyHXYxFxZ2hljHNhchuifI-yw6n8epwe38viD9Huiy3JPqfBV2mqut2mdLvLxDef0sl9K9YoUZHk6il7Jn02MFn0NNm720dQRANDqszf5z38HC0Z89G2aPjaTNbZ2oCJsNfr-pI9weoVex7CNW27wW6IEWe9Hw-a-lfVgTutL6F2oGGfcJgOV7qqiUaDgYH3tgKhHg12RINY315dD2UFLsBnY4FvlDL3njPQVQk-Qu8U4cxH6_G-8VN7Bo1uO7oBEXs9byE0ciaFoT1B7MBqH0I_o-ngHcZ18xtmoaS1f8jXbDo5-Ll_yIfWC9wmedLxZJxFpVa5s2UWxyhTFFpmUsdjM1alkJhbkUkS2hAfYkmMkVqrUOb092TK1Io3bKWqK3zLwBmVWolCuMzJVAsldZ47ZSLUiCoqR-zjQoGi6StsFMtayl6vgvQqgl6FGrGthUjF8La1BS1KgkaJtkbs00K45fC_r_bu_05_z178-Dwpvn85-rbJVpNgRhlP0i220p3PcZvwpDM7wQL_AKeZ4jM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stagnation+point+flow+of+a+Casson+nanomaterial+with+the+Cattaneo%E2%80%93Christov+dual+diffusion+and+motile+micro-organism+past+a+porous+vertical+sheet+causing+an+entropy+generation&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Ali%2C+Farhan&rft.au=Faizan%2C+M&rft.au=Zafar%2C+S+S&rft.au=Khan%2C+M+Ijaz&rft.date=2025-06-25&rft.pub=Springer+India&rft.eissn=0973-7111&rft.volume=99&rft.issue=3&rft_id=info:doi/10.1007%2Fs12043-025-02904-9&rft.externalDocID=10_1007_s12043_025_02904_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-7111&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-7111&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-7111&client=summon |