Moisture-resistant sustainable solar cell with RbGeI3 absorber layer
RbGeI₃ was investigated as a moisture-resistant lead-free absorber for perovskite solar cells (PSCs), addressing stability and environmental concerns of lead-based materials. Strong ionic bonding in RbGeI₃ prevented moisture-induced phase transitions, ensuring long-term stability under varying humid...
Saved in:
Published in | Journal of materials science Vol. 60; no. 22; pp. 9176 - 9196 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0022-2461 1573-4803 |
DOI | 10.1007/s10853-025-11002-5 |
Cover
Abstract | RbGeI₃ was investigated as a moisture-resistant lead-free absorber for perovskite solar cells (PSCs), addressing stability and environmental concerns of lead-based materials. Strong ionic bonding in RbGeI₃ prevented moisture-induced phase transitions, ensuring long-term stability under varying humidity conditions. First-principles density functional theory (DFT) calculations optimized the PSC design, analysed band alignment, and evaluated RbGeI
3
’s optical properties. The material showed a suitable band gap and strong light absorption, improving charge transport. DFT provided insights into the material’s electronic structure, charge carrier dynamics, and defect tolerance, enabling better material selection and optimization. A mathematical model for humidity analysis was developed to assess the impact of moisture on device stability. Poly(3-hexylthiophene-2,5-diyl) (P3HT), poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), and (2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene) (Spiro-OMeTAD) were used as hole transport layers (HTLs), while TiO₂ served as the electron transport layer (ETL), and fluoride-doped tin oxide (FTO) with Au acted as the back contact, ensuring efficient charge extraction. The optimized PSC achieved a power conversion efficiency (PCE) of 18.44%, fill factor (FF) of 74.19%, short-circuit current density (Jsc) of 30.84 mA/cm
2
, and open-circuit voltage (Voc) of 0.813 V, demonstrating high performance, moisture resistance, and potential for stable, cost-effective solar energy solutions.
Graphical abstract
This study presents an moisture resistant RbGeI
3
-based perovskite solar cell design, using RbGeI
3
as the absorber layer to address efficiency and stability challenges. By optimizing the ETL - TiO
2
and HTL – PEDOT: PSS, the device efficiency is enhanced. The figure below illustrates the optimised device structure and J-V characteristics, achieving a PCE of 18.44%, demonstrating its potential for highperformance, sustainable photovoltaic applications |
---|---|
AbstractList | RbGeI₃ was investigated as a moisture-resistant lead-free absorber for perovskite solar cells (PSCs), addressing stability and environmental concerns of lead-based materials. Strong ionic bonding in RbGeI₃ prevented moisture-induced phase transitions, ensuring long-term stability under varying humidity conditions. First-principles density functional theory (DFT) calculations optimized the PSC design, analysed band alignment, and evaluated RbGeI3’s optical properties. The material showed a suitable band gap and strong light absorption, improving charge transport. DFT provided insights into the material’s electronic structure, charge carrier dynamics, and defect tolerance, enabling better material selection and optimization. A mathematical model for humidity analysis was developed to assess the impact of moisture on device stability. Poly(3-hexylthiophene-2,5-diyl) (P3HT), poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), and (2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene) (Spiro-OMeTAD) were used as hole transport layers (HTLs), while TiO₂ served as the electron transport layer (ETL), and fluoride-doped tin oxide (FTO) with Au acted as the back contact, ensuring efficient charge extraction. The optimized PSC achieved a power conversion efficiency (PCE) of 18.44%, fill factor (FF) of 74.19%, short-circuit current density (Jsc) of 30.84 mA/cm2, and open-circuit voltage (Voc) of 0.813 V, demonstrating high performance, moisture resistance, and potential for stable, cost-effective solar energy solutions. RbGeI₃ was investigated as a moisture-resistant lead-free absorber for perovskite solar cells (PSCs), addressing stability and environmental concerns of lead-based materials. Strong ionic bonding in RbGeI₃ prevented moisture-induced phase transitions, ensuring long-term stability under varying humidity conditions. First-principles density functional theory (DFT) calculations optimized the PSC design, analysed band alignment, and evaluated RbGeI 3 ’s optical properties. The material showed a suitable band gap and strong light absorption, improving charge transport. DFT provided insights into the material’s electronic structure, charge carrier dynamics, and defect tolerance, enabling better material selection and optimization. A mathematical model for humidity analysis was developed to assess the impact of moisture on device stability. Poly(3-hexylthiophene-2,5-diyl) (P3HT), poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), and (2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene) (Spiro-OMeTAD) were used as hole transport layers (HTLs), while TiO₂ served as the electron transport layer (ETL), and fluoride-doped tin oxide (FTO) with Au acted as the back contact, ensuring efficient charge extraction. The optimized PSC achieved a power conversion efficiency (PCE) of 18.44%, fill factor (FF) of 74.19%, short-circuit current density (Jsc) of 30.84 mA/cm 2 , and open-circuit voltage (Voc) of 0.813 V, demonstrating high performance, moisture resistance, and potential for stable, cost-effective solar energy solutions. Graphical abstract This study presents an moisture resistant RbGeI 3 -based perovskite solar cell design, using RbGeI 3 as the absorber layer to address efficiency and stability challenges. By optimizing the ETL - TiO 2 and HTL – PEDOT: PSS, the device efficiency is enhanced. The figure below illustrates the optimised device structure and J-V characteristics, achieving a PCE of 18.44%, demonstrating its potential for highperformance, sustainable photovoltaic applications |
Author | Raj, Manasvi Goel, Neeraj Kushwaha, Aditya Aggarwal, Anshul |
Author_xml | – sequence: 1 givenname: Manasvi surname: Raj fullname: Raj, Manasvi organization: Department of Electronics and Communication Engineering, Netaji Subhas University of Technology – sequence: 2 givenname: Anshul surname: Aggarwal fullname: Aggarwal, Anshul organization: Department of Electronics and Communication Engineering, Netaji Subhas University of Technology – sequence: 3 givenname: Aditya surname: Kushwaha fullname: Kushwaha, Aditya organization: Department of Electronics and Communication Engineering, Netaji Subhas University of Technology – sequence: 4 givenname: Neeraj orcidid: 0000-0002-8740-6737 surname: Goel fullname: Goel, Neeraj email: neeraj.goel@nsut.ac.in organization: Department of Electronics and Communication Engineering, Netaji Subhas University of Technology |
BookMark | eNp9kE1LxDAQhoOs4O7qH_BU8BydTJqmHmXVdUERRM8hSafapbZr0iL7741W8ObpHYb3A54Fm3V9R4ydCjgXAPoiCiiV5ICKi_RArg7YXCgteV6CnLF5-iHHvBBHbBHjFgCURjFn1w99E4cxEA8U02W7IYtj0qazrqUs9q0Nmae2zT6b4S17cmvayMy62AdHIWvtnsIxO6xtG-nkV5fs5fbmeXXH7x_Xm9XVPfeocUjzzlqvda2rWqrS1lCQr5SylHsFZa4tOQSHEi6dEJhrLNDntkbvKqEqkEt2NvXuQv8xUhzMth9DlyaNRFGoEoqiSC6cXD70MQaqzS407zbsjQDzTctMtEyiZX5oGZVCcgrFZO5eKfxV_5P6AtCmbnk |
Cites_doi | 10.1016/j.optmat.2021.111839 10.1016/S0040-6090(99)00825-1 10.1524/zkri.220.5.567.65075 10.1063/1.5110495 10.1007/s11082-021-02959-z 10.1016/j.solener.2013.07.005 10.1002/pssa.202000721 10.1016/j.mtcomm.2023.107994 10.1016/j.renene.2024.120462 10.1016/j.solener.2023.111825 10.1007/s11082-023-05196-8 10.2139/ssrn.4987503 10.1016/j.ijleo.2020.165765 10.1134/S0036024424020213 10.1088/1402-4896/ad3174 10.1039/D4CC04000G 10.1016/j.solener.2022.11.025 10.1016/j.hybadv.2025.100408 10.3390/nano14080683 10.1016/j.orgel.2023.106781 10.1039/D1CE00364J 10.3390/nano11092321 10.1002/adts.202401283 10.1016/j.tox.2024.153771 10.1016/j.solener.2022.03.053 10.1016/j.jpcs.2024.112325 10.1016/j.cjph.2021.12.024 10.1002/adts.202500341 10.1016/j.nanoen.2017.06.039 10.1038/s41467-022-35400-4 10.1016/j.cap.2017.06.003 10.1016/j.solener.2024.112788 10.3390/molecules26247570 10.1007/s11082-024-07282-x 10.1038/s41467-023-40585-3 10.17485/ijst/2017/v10i11/110721 10.1103/PhysRevB.41.7892 10.1007/s12648-024-03158-8 10.1088/1361-6463/ac1e4c 10.1039/C6RA06635F 10.1016/j.solener.2022.02.056 10.1063/5.0145199 10.1103/PhysRevLett.100.136406 10.1002/solr.202300155 10.1002/pssa.202100606 10.1007/s10854-022-07799-5 10.1016/j.jpcs.2025.112777 10.1038/s41467-018-07951-y 10.1021/acsomega.1c04096 10.1016/j.solener.2020.05.041 10.3390/nano11123463 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10853-025-11002-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-4803 |
EndPage | 9196 |
ExternalDocumentID | 10_1007_s10853_025_11002_5 |
GroupedDBID | -XW -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29K 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDEX ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IGS IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF- PHGZM PHGZT PMFND PT4 PT5 PTHSS QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 ZE2 ZMTXR ZY4 ~02 ~8M ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION PQGLB |
ID | FETCH-LOGICAL-c272t-24baac77f7df358af06ecd55ae4c50847aeb20b2309b11247262c4af2cbd15d03 |
IEDL.DBID | AGYKE |
ISSN | 0022-2461 |
IngestDate | Sat Aug 23 13:24:10 EDT 2025 Tue Aug 05 12:06:20 EDT 2025 Sun Jun 08 01:10:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-24baac77f7df358af06ecd55ae4c50847aeb20b2309b11247262c4af2cbd15d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8740-6737 |
PQID | 3216580666 |
PQPubID | 2043599 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3216580666 crossref_primary_10_1007_s10853_025_11002_5 springer_journals_10_1007_s10853_025_11002_5 |
PublicationCentury | 2000 |
PublicationDate | 20250600 2025-06-00 20250601 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science |
PublicationTitleAbbrev | J Mater Sci |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | BK Ravidas (11002_CR6) 2023; 249 11002_CR46 J Troughton (11002_CR51) 2017; 39 JP Perdew (11002_CR19) 2008; 100 SY Kim (11002_CR34) 2023; 7 SJ Clark (11002_CR18) 2005; 220 H Sohrabpoor (11002_CR29) 2016; 6 A Mohandes (11002_CR39) 2021; 53 J Luo (11002_CR23) 2024; 99 MA Islam (11002_CR28) 2021; 11 A Talukdar (11002_CR12) 2024; 98 SM Hasnain (11002_CR14) 2025; 9 Y He (11002_CR41) 2021; 11 M Burgelman (11002_CR24) 2000; 361–362 U Mandadapu (11002_CR38) 2017; 10 RM Anshul (11002_CR9) 2025 A Ndiaye (11002_CR26) 2013; 96 M Minbashi (11002_CR47) 2017; 17 AMN Abena (11002_CR40) 2022; 76 CH Swartz (11002_CR30) 2021; 218 S Ahmed (11002_CR44) 2021; 225 G Haidari (11002_CR25) 2019; 9 H Xu (11002_CR5) 2024; 60 Z Zhang (11002_CR33) 2022; 13 D Vanderbilt (11002_CR20) 1990; 41 D Geng (11002_CR21) 2024; 38 KD Jayan (11002_CR13) 2023; 55 G Pindolia (11002_CR45) 2022; 236 S Rabhi (11002_CR50) 2024; 56 S Karthick (11002_CR48) 2020; 205 SM Hasnain (11002_CR10) 2023; 262 K Deepthi Jayan (11002_CR35) 2022; 219 I Qasim (11002_CR17) 2022; 237 G Annohene (11002_CR32) 2021; 26 X Liu (11002_CR36) 2022; 33 S Lin (11002_CR37) 2021; 6 D Saikia (11002_CR43) 2022; 123 T Luo (11002_CR11) 2021; 23 O Ahmad (11002_CR16) 2023; 117 RM Anshul (11002_CR2) 2025; 204 SM Hasnain (11002_CR15) 2024; 278 F Baumann (11002_CR31) 2023; 1 M Chen (11002_CR8) 2019; 10 M Raj (11002_CR4) 2025 M Jiang (11002_CR7) 2021; 54 J Guo (11002_CR1) 2024; 14 BK Ravidas (11002_CR42) 2025; 196 X Zou (11002_CR22) 2024; 98 NTP Hartono (11002_CR27) 2023; 14 P Harshitha (11002_CR3) 2024; 503 A Kumar (11002_CR49) 2024; 226 |
References_xml | – volume: 123 year: 2022 ident: 11002_CR43 publication-title: Opt Mater (Amst) doi: 10.1016/j.optmat.2021.111839 – volume: 361–362 start-page: 527 year: 2000 ident: 11002_CR24 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00825-1 – volume: 220 start-page: 567 year: 2005 ident: 11002_CR18 publication-title: Z Kristallogr Cryst Mater doi: 10.1524/zkri.220.5.567.65075 – volume: 9 year: 2019 ident: 11002_CR25 publication-title: AIP Adv doi: 10.1063/1.5110495 – volume: 53 start-page: 319 year: 2021 ident: 11002_CR39 publication-title: Opt Quantum Electron doi: 10.1007/s11082-021-02959-z – volume: 96 start-page: 140 year: 2013 ident: 11002_CR26 publication-title: Sol Energy doi: 10.1016/j.solener.2013.07.005 – volume: 218 start-page: 2000721 year: 2021 ident: 11002_CR30 publication-title: Phys Status solidi (a). doi: 10.1002/pssa.202000721 – volume: 38 year: 2024 ident: 11002_CR21 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2023.107994 – volume: 226 year: 2024 ident: 11002_CR49 publication-title: Renew Energy doi: 10.1016/j.renene.2024.120462 – volume: 262 year: 2023 ident: 11002_CR10 publication-title: Sol Energy doi: 10.1016/j.solener.2023.111825 – volume: 55 start-page: 910 year: 2023 ident: 11002_CR13 publication-title: Opt Quantum Electron doi: 10.1007/s11082-023-05196-8 – ident: 11002_CR46 doi: 10.2139/ssrn.4987503 – volume: 225 year: 2021 ident: 11002_CR44 publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2020.165765 – volume: 98 start-page: 290 year: 2024 ident: 11002_CR22 publication-title: Russ J Phys Chem A doi: 10.1134/S0036024424020213 – volume: 99 year: 2024 ident: 11002_CR23 publication-title: Phys Scr doi: 10.1088/1402-4896/ad3174 – volume: 60 start-page: 12287 year: 2024 ident: 11002_CR5 publication-title: Chem Commun doi: 10.1039/D4CC04000G – volume: 249 start-page: 163 year: 2023 ident: 11002_CR6 publication-title: Sol Energy doi: 10.1016/j.solener.2022.11.025 – volume: 9 year: 2025 ident: 11002_CR14 publication-title: Hybrid Advances doi: 10.1016/j.hybadv.2025.100408 – volume: 14 start-page: 683 year: 2024 ident: 11002_CR1 publication-title: Nanomaterials doi: 10.3390/nano14080683 – volume: 117 year: 2023 ident: 11002_CR16 publication-title: Org Electron doi: 10.1016/j.orgel.2023.106781 – volume: 23 start-page: 4917 year: 2021 ident: 11002_CR11 publication-title: CrystEngComm doi: 10.1039/D1CE00364J – volume: 11 start-page: 2321 year: 2021 ident: 11002_CR41 publication-title: Nanomaterials doi: 10.3390/nano11092321 – year: 2025 ident: 11002_CR9 publication-title: Adv Theory Simul doi: 10.1002/adts.202401283 – volume: 503 year: 2024 ident: 11002_CR3 publication-title: Toxicology doi: 10.1016/j.tox.2024.153771 – volume: 236 start-page: 802 year: 2022 ident: 11002_CR45 publication-title: Sol Energy doi: 10.1016/j.solener.2022.03.053 – volume: 196 year: 2025 ident: 11002_CR42 publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2024.112325 – volume: 76 start-page: 94 year: 2022 ident: 11002_CR40 publication-title: Chin J Phys doi: 10.1016/j.cjph.2021.12.024 – year: 2025 ident: 11002_CR4 publication-title: Adv Theory Simul doi: 10.1002/adts.202500341 – volume: 39 start-page: 60 year: 2017 ident: 11002_CR51 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.039 – volume: 13 start-page: 7639 year: 2022 ident: 11002_CR33 publication-title: Nat Commun doi: 10.1038/s41467-022-35400-4 – volume: 17 start-page: 1238 year: 2017 ident: 11002_CR47 publication-title: Curr Appl Phys doi: 10.1016/j.cap.2017.06.003 – volume: 278 year: 2024 ident: 11002_CR15 publication-title: Sol Energy doi: 10.1016/j.solener.2024.112788 – volume: 26 start-page: 7570 year: 2021 ident: 11002_CR32 publication-title: Molecules doi: 10.3390/molecules26247570 – volume: 56 start-page: 1372 year: 2024 ident: 11002_CR50 publication-title: Opt Quantum Electron doi: 10.1007/s11082-024-07282-x – volume: 14 start-page: 4869 year: 2023 ident: 11002_CR27 publication-title: Nat Commun doi: 10.1038/s41467-023-40585-3 – volume: 10 start-page: 1 year: 2017 ident: 11002_CR38 publication-title: Indian J Sci Technol doi: 10.17485/ijst/2017/v10i11/110721 – volume: 41 start-page: 7892 year: 1990 ident: 11002_CR20 publication-title: Phys Rev B doi: 10.1103/PhysRevB.41.7892 – volume: 98 start-page: 3913 year: 2024 ident: 11002_CR12 publication-title: Indian J Phys doi: 10.1007/s12648-024-03158-8 – volume: 54 year: 2021 ident: 11002_CR7 publication-title: J Phys D Appl Phys doi: 10.1088/1361-6463/ac1e4c – volume: 6 start-page: 49328 year: 2016 ident: 11002_CR29 publication-title: RSC Adv doi: 10.1039/C6RA06635F – volume: 237 start-page: 52 year: 2022 ident: 11002_CR17 publication-title: Sol Energy doi: 10.1016/j.solener.2022.02.056 – volume: 1 year: 2023 ident: 11002_CR31 publication-title: APL Energy doi: 10.1063/5.0145199 – volume: 100 year: 2008 ident: 11002_CR19 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.100.136406 – volume: 7 start-page: 2300155 year: 2023 ident: 11002_CR34 publication-title: Solar RRL doi: 10.1002/solr.202300155 – volume: 219 start-page: 2100606 year: 2022 ident: 11002_CR35 publication-title: Phys Status Solidi (a). doi: 10.1002/pssa.202100606 – volume: 33 start-page: 6253 year: 2022 ident: 11002_CR36 publication-title: J Mater Sci: Mater Electron doi: 10.1007/s10854-022-07799-5 – volume: 204 year: 2025 ident: 11002_CR2 publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2025.112777 – volume: 10 start-page: 16 year: 2019 ident: 11002_CR8 publication-title: Nat Commun doi: 10.1038/s41467-018-07951-y – volume: 6 start-page: 26689 year: 2021 ident: 11002_CR37 publication-title: ACS Omega doi: 10.1021/acsomega.1c04096 – volume: 205 start-page: 349 year: 2020 ident: 11002_CR48 publication-title: Sol Energy doi: 10.1016/j.solener.2020.05.041 – volume: 11 start-page: 3463 year: 2021 ident: 11002_CR28 publication-title: Nanomaterials doi: 10.3390/nano11123463 |
SSID | ssj0005721 |
Score | 2.4630082 |
Snippet | RbGeI₃ was investigated as a moisture-resistant lead-free absorber for perovskite solar cells (PSCs), addressing stability and environmental concerns of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9176 |
SubjectTerms | Absorbers Characterization and Evaluation of Materials Charge transport Chemistry and Materials Science Classical Mechanics Computation & Theory Crystallography and Scattering Methods Current carriers Density functional theory Electromagnetic absorption Electron transport Electronic structure Energy conversion efficiency First principles Humidity Lead free Materials Science Materials selection Moisture resistance Open circuit voltage Optical properties Perovskites Phase transitions Photovoltaic cells Polymer Sciences Polystyrene resins Short circuit currents Solar cells Solar energy Solid Mechanics Stability Tin oxides |
Title | Moisture-resistant sustainable solar cell with RbGeI3 absorber layer |
URI | https://link.springer.com/article/10.1007/s10853-025-11002-5 https://www.proquest.com/docview/3216580666 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdoGBb0ShVB7YIFXixHE7ttAPQO2AqFSmyHbsBdSiJl349ZzTRCkVDJ0TnZy7c_ze2fcMcEtNGHNhOo50bbWK4lRsq5A5vmGYTsyEIivojyfhaBo8z9gsbwpLitPuxZZk9qfeaHbDpcWx169amTOkUBWoMa_daVeh1h2-v_TLox2ceoVKuNVLy5tl_rbye0EqUebWxmi23gyOYFqMdH3M5KO1SmVLfW-JOO76KcdwmANQ0l1nzAns6fkpHGzIEp7B43iBwV8ttYNc3OLLeUqSstGKJJYOE1vyJ7aMS17lUD_5RMhksZR6ST4F4vhzmA76bw8jJ79twVGU0xQdJYVQnBseG5-1hXFDrWLGhA4UoriACyThrkTK0pEI0gJOQ6oCYaiSscdi17-A6nwx15dAELZYmmIYmgti1xMqRGDKhKDSsEDzOtwVLo--1qIaUSmfbH0ToW-izDcRq0OjiEqUT7Ak8qmH2MmSrzrcF04uH_9v7Wq3169hn9o4ZXWXBlTT5UrfIAxJZROzbtDrTZp59jWhMqXdH6BK0yk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTywQaTEieN2rIDSQtsBtVI3y3bsCaVVkv5_zmmiFAQDc6KT8s7OvXf23QHcUxsnXNqep3yXraK4Fbs6Zl5oGS4nZmNZJvQn03g4j94WbFEVheX1bff6SLL8U28Vu2Fo8dz4VdfmDCXULuwhGei6uQVz2m8udnAa1D3CXbe0qlTmdxvfw1HDMX8ci5bRZnAMRxVNJP2NX09gx6SncLjVPPAMnidLdNE6Mx4qZscC04LkTTkUyZ1oJS4xT1yylXyoVzMKiVT5MlMmI58S2fY5zAcvs6ehV81E8DTltMAPUlJqzi1PbMi60vqx0Qlj0kQauVbEJUplX6Gw6CmkUhGnMdWRtFSrJGCJH15AK12m5hIIkgsnJixDc1HiB1LHSB-ZlFRZFhnehocaGrHatL4QTZNjB6RAIEUJpGBt6NToiWob5CKkATIcJ5Ha8Fgj2jz-29rV_16_g_3hbDIW49H0_RoOqHNwmSnpQKvI1uYGiUOhbst18gUWP7a4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgSAgOiE8xGJADN6jWpk2zHSfG2IBNCDFptyhJkxPqprb7_zjdqg4EB86tLNV26vec-AXglto44dJ2PeW7bhXFpdjRMfNCyzCdmI1l2dAfT-LhNHqesdnGFH952r3aklzNNDiVprRoLxLb3hh8wzLjuatYneQZ0qlt2MHfceAyfUp79SEPToNKL9wpp63HZn638b001XjzxxZpWXkGh3Cwhoykt4rxEWyZ9Bj2N4QET6A_nmO4lpnxkD07RJgWJK9Ho0juCCxxTXriGq_kXT2ZUUikyueZMhn5lIi8T2E6ePx4GHrr-xE8TTkt8IOUlJpzyxMbso60fmx0wpg0kUbcFXGJtNlXSDK6CmFVxGlMdSQt1SoJWOKHZ9BI56k5B4JAwxELy9BclPiB1DFCSSYlVZZFhjfhrnKNWKxkMEQteOwcKdCRonSkYE1oVd4T6yWRi5AGiHYcXWrCfeXR-vHf1i7-9_oN7L71B-J1NHm5hD3q4ls2TVrQKLKluUIMUajrMk2-AB1buvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moisture-resistant+sustainable+solar+cell+with+RbGeI3+absorber+layer&rft.jtitle=Journal+of+materials+science&rft.au=Raj%2C+Manasvi&rft.au=Aggarwal%2C+Anshul&rft.au=Kushwaha%2C+Aditya&rft.au=Goel%2C+Neeraj&rft.date=2025-06-01&rft.pub=Springer+US&rft.issn=0022-2461&rft.eissn=1573-4803&rft.volume=60&rft.issue=22&rft.spage=9176&rft.epage=9196&rft_id=info:doi/10.1007%2Fs10853-025-11002-5&rft.externalDocID=10_1007_s10853_025_11002_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon |