Moisture-resistant sustainable solar cell with RbGeI3 absorber layer

RbGeI₃ was investigated as a moisture-resistant lead-free absorber for perovskite solar cells (PSCs), addressing stability and environmental concerns of lead-based materials. Strong ionic bonding in RbGeI₃ prevented moisture-induced phase transitions, ensuring long-term stability under varying humid...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science Vol. 60; no. 22; pp. 9176 - 9196
Main Authors Raj, Manasvi, Aggarwal, Anshul, Kushwaha, Aditya, Goel, Neeraj
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-2461
1573-4803
DOI10.1007/s10853-025-11002-5

Cover

Abstract RbGeI₃ was investigated as a moisture-resistant lead-free absorber for perovskite solar cells (PSCs), addressing stability and environmental concerns of lead-based materials. Strong ionic bonding in RbGeI₃ prevented moisture-induced phase transitions, ensuring long-term stability under varying humidity conditions. First-principles density functional theory (DFT) calculations optimized the PSC design, analysed band alignment, and evaluated RbGeI 3 ’s optical properties. The material showed a suitable band gap and strong light absorption, improving charge transport. DFT provided insights into the material’s electronic structure, charge carrier dynamics, and defect tolerance, enabling better material selection and optimization. A mathematical model for humidity analysis was developed to assess the impact of moisture on device stability. Poly(3-hexylthiophene-2,5-diyl) (P3HT), poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), and (2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene) (Spiro-OMeTAD) were used as hole transport layers (HTLs), while TiO₂ served as the electron transport layer (ETL), and fluoride-doped tin oxide (FTO) with Au acted as the back contact, ensuring efficient charge extraction. The optimized PSC achieved a power conversion efficiency (PCE) of 18.44%, fill factor (FF) of 74.19%, short-circuit current density (Jsc) of 30.84 mA/cm 2 , and open-circuit voltage (Voc) of 0.813 V, demonstrating high performance, moisture resistance, and potential for stable, cost-effective solar energy solutions. Graphical abstract This study presents an moisture resistant RbGeI 3 -based perovskite solar cell design, using RbGeI 3 as the absorber layer to address efficiency and stability challenges. By optimizing the ETL - TiO 2 and HTL – PEDOT: PSS, the device efficiency is enhanced. The figure below illustrates the optimised device structure and J-V characteristics, achieving a PCE of 18.44%, demonstrating its potential for highperformance, sustainable photovoltaic applications
AbstractList RbGeI₃ was investigated as a moisture-resistant lead-free absorber for perovskite solar cells (PSCs), addressing stability and environmental concerns of lead-based materials. Strong ionic bonding in RbGeI₃ prevented moisture-induced phase transitions, ensuring long-term stability under varying humidity conditions. First-principles density functional theory (DFT) calculations optimized the PSC design, analysed band alignment, and evaluated RbGeI3’s optical properties. The material showed a suitable band gap and strong light absorption, improving charge transport. DFT provided insights into the material’s electronic structure, charge carrier dynamics, and defect tolerance, enabling better material selection and optimization. A mathematical model for humidity analysis was developed to assess the impact of moisture on device stability. Poly(3-hexylthiophene-2,5-diyl) (P3HT), poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), and (2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene) (Spiro-OMeTAD) were used as hole transport layers (HTLs), while TiO₂ served as the electron transport layer (ETL), and fluoride-doped tin oxide (FTO) with Au acted as the back contact, ensuring efficient charge extraction. The optimized PSC achieved a power conversion efficiency (PCE) of 18.44%, fill factor (FF) of 74.19%, short-circuit current density (Jsc) of 30.84 mA/cm2, and open-circuit voltage (Voc) of 0.813 V, demonstrating high performance, moisture resistance, and potential for stable, cost-effective solar energy solutions.
RbGeI₃ was investigated as a moisture-resistant lead-free absorber for perovskite solar cells (PSCs), addressing stability and environmental concerns of lead-based materials. Strong ionic bonding in RbGeI₃ prevented moisture-induced phase transitions, ensuring long-term stability under varying humidity conditions. First-principles density functional theory (DFT) calculations optimized the PSC design, analysed band alignment, and evaluated RbGeI 3 ’s optical properties. The material showed a suitable band gap and strong light absorption, improving charge transport. DFT provided insights into the material’s electronic structure, charge carrier dynamics, and defect tolerance, enabling better material selection and optimization. A mathematical model for humidity analysis was developed to assess the impact of moisture on device stability. Poly(3-hexylthiophene-2,5-diyl) (P3HT), poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), and (2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene) (Spiro-OMeTAD) were used as hole transport layers (HTLs), while TiO₂ served as the electron transport layer (ETL), and fluoride-doped tin oxide (FTO) with Au acted as the back contact, ensuring efficient charge extraction. The optimized PSC achieved a power conversion efficiency (PCE) of 18.44%, fill factor (FF) of 74.19%, short-circuit current density (Jsc) of 30.84 mA/cm 2 , and open-circuit voltage (Voc) of 0.813 V, demonstrating high performance, moisture resistance, and potential for stable, cost-effective solar energy solutions. Graphical abstract This study presents an moisture resistant RbGeI 3 -based perovskite solar cell design, using RbGeI 3 as the absorber layer to address efficiency and stability challenges. By optimizing the ETL - TiO 2 and HTL – PEDOT: PSS, the device efficiency is enhanced. The figure below illustrates the optimised device structure and J-V characteristics, achieving a PCE of 18.44%, demonstrating its potential for highperformance, sustainable photovoltaic applications
Author Raj, Manasvi
Goel, Neeraj
Kushwaha, Aditya
Aggarwal, Anshul
Author_xml – sequence: 1
  givenname: Manasvi
  surname: Raj
  fullname: Raj, Manasvi
  organization: Department of Electronics and Communication Engineering, Netaji Subhas University of Technology
– sequence: 2
  givenname: Anshul
  surname: Aggarwal
  fullname: Aggarwal, Anshul
  organization: Department of Electronics and Communication Engineering, Netaji Subhas University of Technology
– sequence: 3
  givenname: Aditya
  surname: Kushwaha
  fullname: Kushwaha, Aditya
  organization: Department of Electronics and Communication Engineering, Netaji Subhas University of Technology
– sequence: 4
  givenname: Neeraj
  orcidid: 0000-0002-8740-6737
  surname: Goel
  fullname: Goel, Neeraj
  email: neeraj.goel@nsut.ac.in
  organization: Department of Electronics and Communication Engineering, Netaji Subhas University of Technology
BookMark eNp9kE1LxDAQhoOs4O7qH_BU8BydTJqmHmXVdUERRM8hSafapbZr0iL7741W8ObpHYb3A54Fm3V9R4ydCjgXAPoiCiiV5ICKi_RArg7YXCgteV6CnLF5-iHHvBBHbBHjFgCURjFn1w99E4cxEA8U02W7IYtj0qazrqUs9q0Nmae2zT6b4S17cmvayMy62AdHIWvtnsIxO6xtG-nkV5fs5fbmeXXH7x_Xm9XVPfeocUjzzlqvda2rWqrS1lCQr5SylHsFZa4tOQSHEi6dEJhrLNDntkbvKqEqkEt2NvXuQv8xUhzMth9DlyaNRFGoEoqiSC6cXD70MQaqzS407zbsjQDzTctMtEyiZX5oGZVCcgrFZO5eKfxV_5P6AtCmbnk
Cites_doi 10.1016/j.optmat.2021.111839
10.1016/S0040-6090(99)00825-1
10.1524/zkri.220.5.567.65075
10.1063/1.5110495
10.1007/s11082-021-02959-z
10.1016/j.solener.2013.07.005
10.1002/pssa.202000721
10.1016/j.mtcomm.2023.107994
10.1016/j.renene.2024.120462
10.1016/j.solener.2023.111825
10.1007/s11082-023-05196-8
10.2139/ssrn.4987503
10.1016/j.ijleo.2020.165765
10.1134/S0036024424020213
10.1088/1402-4896/ad3174
10.1039/D4CC04000G
10.1016/j.solener.2022.11.025
10.1016/j.hybadv.2025.100408
10.3390/nano14080683
10.1016/j.orgel.2023.106781
10.1039/D1CE00364J
10.3390/nano11092321
10.1002/adts.202401283
10.1016/j.tox.2024.153771
10.1016/j.solener.2022.03.053
10.1016/j.jpcs.2024.112325
10.1016/j.cjph.2021.12.024
10.1002/adts.202500341
10.1016/j.nanoen.2017.06.039
10.1038/s41467-022-35400-4
10.1016/j.cap.2017.06.003
10.1016/j.solener.2024.112788
10.3390/molecules26247570
10.1007/s11082-024-07282-x
10.1038/s41467-023-40585-3
10.17485/ijst/2017/v10i11/110721
10.1103/PhysRevB.41.7892
10.1007/s12648-024-03158-8
10.1088/1361-6463/ac1e4c
10.1039/C6RA06635F
10.1016/j.solener.2022.02.056
10.1063/5.0145199
10.1103/PhysRevLett.100.136406
10.1002/solr.202300155
10.1002/pssa.202100606
10.1007/s10854-022-07799-5
10.1016/j.jpcs.2025.112777
10.1038/s41467-018-07951-y
10.1021/acsomega.1c04096
10.1016/j.solener.2020.05.041
10.3390/nano11123463
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
DOI 10.1007/s10853-025-11002-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-4803
EndPage 9196
ExternalDocumentID 10_1007_s10853_025_11002_5
GroupedDBID -XW
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
29K
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDEX
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IGS
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF-
PHGZM
PHGZT
PMFND
PT4
PT5
PTHSS
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
ZE2
ZMTXR
ZY4
~02
~8M
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
PQGLB
ID FETCH-LOGICAL-c272t-24baac77f7df358af06ecd55ae4c50847aeb20b2309b11247262c4af2cbd15d03
IEDL.DBID AGYKE
ISSN 0022-2461
IngestDate Sat Aug 23 13:24:10 EDT 2025
Tue Aug 05 12:06:20 EDT 2025
Sun Jun 08 01:10:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-24baac77f7df358af06ecd55ae4c50847aeb20b2309b11247262c4af2cbd15d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8740-6737
PQID 3216580666
PQPubID 2043599
PageCount 21
ParticipantIDs proquest_journals_3216580666
crossref_primary_10_1007_s10853_025_11002_5
springer_journals_10_1007_s10853_025_11002_5
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science
PublicationTitleAbbrev J Mater Sci
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BK Ravidas (11002_CR6) 2023; 249
11002_CR46
J Troughton (11002_CR51) 2017; 39
JP Perdew (11002_CR19) 2008; 100
SY Kim (11002_CR34) 2023; 7
SJ Clark (11002_CR18) 2005; 220
H Sohrabpoor (11002_CR29) 2016; 6
A Mohandes (11002_CR39) 2021; 53
J Luo (11002_CR23) 2024; 99
MA Islam (11002_CR28) 2021; 11
A Talukdar (11002_CR12) 2024; 98
SM Hasnain (11002_CR14) 2025; 9
Y He (11002_CR41) 2021; 11
M Burgelman (11002_CR24) 2000; 361–362
U Mandadapu (11002_CR38) 2017; 10
RM Anshul (11002_CR9) 2025
A Ndiaye (11002_CR26) 2013; 96
M Minbashi (11002_CR47) 2017; 17
AMN Abena (11002_CR40) 2022; 76
CH Swartz (11002_CR30) 2021; 218
S Ahmed (11002_CR44) 2021; 225
G Haidari (11002_CR25) 2019; 9
H Xu (11002_CR5) 2024; 60
Z Zhang (11002_CR33) 2022; 13
D Vanderbilt (11002_CR20) 1990; 41
D Geng (11002_CR21) 2024; 38
KD Jayan (11002_CR13) 2023; 55
G Pindolia (11002_CR45) 2022; 236
S Rabhi (11002_CR50) 2024; 56
S Karthick (11002_CR48) 2020; 205
SM Hasnain (11002_CR10) 2023; 262
K Deepthi Jayan (11002_CR35) 2022; 219
I Qasim (11002_CR17) 2022; 237
G Annohene (11002_CR32) 2021; 26
X Liu (11002_CR36) 2022; 33
S Lin (11002_CR37) 2021; 6
D Saikia (11002_CR43) 2022; 123
T Luo (11002_CR11) 2021; 23
O Ahmad (11002_CR16) 2023; 117
RM Anshul (11002_CR2) 2025; 204
SM Hasnain (11002_CR15) 2024; 278
F Baumann (11002_CR31) 2023; 1
M Chen (11002_CR8) 2019; 10
M Raj (11002_CR4) 2025
M Jiang (11002_CR7) 2021; 54
J Guo (11002_CR1) 2024; 14
BK Ravidas (11002_CR42) 2025; 196
X Zou (11002_CR22) 2024; 98
NTP Hartono (11002_CR27) 2023; 14
P Harshitha (11002_CR3) 2024; 503
A Kumar (11002_CR49) 2024; 226
References_xml – volume: 123
  year: 2022
  ident: 11002_CR43
  publication-title: Opt Mater (Amst)
  doi: 10.1016/j.optmat.2021.111839
– volume: 361–362
  start-page: 527
  year: 2000
  ident: 11002_CR24
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(99)00825-1
– volume: 220
  start-page: 567
  year: 2005
  ident: 11002_CR18
  publication-title: Z Kristallogr Cryst Mater
  doi: 10.1524/zkri.220.5.567.65075
– volume: 9
  year: 2019
  ident: 11002_CR25
  publication-title: AIP Adv
  doi: 10.1063/1.5110495
– volume: 53
  start-page: 319
  year: 2021
  ident: 11002_CR39
  publication-title: Opt Quantum Electron
  doi: 10.1007/s11082-021-02959-z
– volume: 96
  start-page: 140
  year: 2013
  ident: 11002_CR26
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2013.07.005
– volume: 218
  start-page: 2000721
  year: 2021
  ident: 11002_CR30
  publication-title: Phys Status solidi (a).
  doi: 10.1002/pssa.202000721
– volume: 38
  year: 2024
  ident: 11002_CR21
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2023.107994
– volume: 226
  year: 2024
  ident: 11002_CR49
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2024.120462
– volume: 262
  year: 2023
  ident: 11002_CR10
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2023.111825
– volume: 55
  start-page: 910
  year: 2023
  ident: 11002_CR13
  publication-title: Opt Quantum Electron
  doi: 10.1007/s11082-023-05196-8
– ident: 11002_CR46
  doi: 10.2139/ssrn.4987503
– volume: 225
  year: 2021
  ident: 11002_CR44
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2020.165765
– volume: 98
  start-page: 290
  year: 2024
  ident: 11002_CR22
  publication-title: Russ J Phys Chem A
  doi: 10.1134/S0036024424020213
– volume: 99
  year: 2024
  ident: 11002_CR23
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ad3174
– volume: 60
  start-page: 12287
  year: 2024
  ident: 11002_CR5
  publication-title: Chem Commun
  doi: 10.1039/D4CC04000G
– volume: 249
  start-page: 163
  year: 2023
  ident: 11002_CR6
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2022.11.025
– volume: 9
  year: 2025
  ident: 11002_CR14
  publication-title: Hybrid Advances
  doi: 10.1016/j.hybadv.2025.100408
– volume: 14
  start-page: 683
  year: 2024
  ident: 11002_CR1
  publication-title: Nanomaterials
  doi: 10.3390/nano14080683
– volume: 117
  year: 2023
  ident: 11002_CR16
  publication-title: Org Electron
  doi: 10.1016/j.orgel.2023.106781
– volume: 23
  start-page: 4917
  year: 2021
  ident: 11002_CR11
  publication-title: CrystEngComm
  doi: 10.1039/D1CE00364J
– volume: 11
  start-page: 2321
  year: 2021
  ident: 11002_CR41
  publication-title: Nanomaterials
  doi: 10.3390/nano11092321
– year: 2025
  ident: 11002_CR9
  publication-title: Adv Theory Simul
  doi: 10.1002/adts.202401283
– volume: 503
  year: 2024
  ident: 11002_CR3
  publication-title: Toxicology
  doi: 10.1016/j.tox.2024.153771
– volume: 236
  start-page: 802
  year: 2022
  ident: 11002_CR45
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2022.03.053
– volume: 196
  year: 2025
  ident: 11002_CR42
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2024.112325
– volume: 76
  start-page: 94
  year: 2022
  ident: 11002_CR40
  publication-title: Chin J Phys
  doi: 10.1016/j.cjph.2021.12.024
– year: 2025
  ident: 11002_CR4
  publication-title: Adv Theory Simul
  doi: 10.1002/adts.202500341
– volume: 39
  start-page: 60
  year: 2017
  ident: 11002_CR51
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.039
– volume: 13
  start-page: 7639
  year: 2022
  ident: 11002_CR33
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-35400-4
– volume: 17
  start-page: 1238
  year: 2017
  ident: 11002_CR47
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2017.06.003
– volume: 278
  year: 2024
  ident: 11002_CR15
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2024.112788
– volume: 26
  start-page: 7570
  year: 2021
  ident: 11002_CR32
  publication-title: Molecules
  doi: 10.3390/molecules26247570
– volume: 56
  start-page: 1372
  year: 2024
  ident: 11002_CR50
  publication-title: Opt Quantum Electron
  doi: 10.1007/s11082-024-07282-x
– volume: 14
  start-page: 4869
  year: 2023
  ident: 11002_CR27
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-40585-3
– volume: 10
  start-page: 1
  year: 2017
  ident: 11002_CR38
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2017/v10i11/110721
– volume: 41
  start-page: 7892
  year: 1990
  ident: 11002_CR20
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.41.7892
– volume: 98
  start-page: 3913
  year: 2024
  ident: 11002_CR12
  publication-title: Indian J Phys
  doi: 10.1007/s12648-024-03158-8
– volume: 54
  year: 2021
  ident: 11002_CR7
  publication-title: J Phys D Appl Phys
  doi: 10.1088/1361-6463/ac1e4c
– volume: 6
  start-page: 49328
  year: 2016
  ident: 11002_CR29
  publication-title: RSC Adv
  doi: 10.1039/C6RA06635F
– volume: 237
  start-page: 52
  year: 2022
  ident: 11002_CR17
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2022.02.056
– volume: 1
  year: 2023
  ident: 11002_CR31
  publication-title: APL Energy
  doi: 10.1063/5.0145199
– volume: 100
  year: 2008
  ident: 11002_CR19
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.100.136406
– volume: 7
  start-page: 2300155
  year: 2023
  ident: 11002_CR34
  publication-title: Solar RRL
  doi: 10.1002/solr.202300155
– volume: 219
  start-page: 2100606
  year: 2022
  ident: 11002_CR35
  publication-title: Phys Status Solidi (a).
  doi: 10.1002/pssa.202100606
– volume: 33
  start-page: 6253
  year: 2022
  ident: 11002_CR36
  publication-title: J Mater Sci: Mater Electron
  doi: 10.1007/s10854-022-07799-5
– volume: 204
  year: 2025
  ident: 11002_CR2
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2025.112777
– volume: 10
  start-page: 16
  year: 2019
  ident: 11002_CR8
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07951-y
– volume: 6
  start-page: 26689
  year: 2021
  ident: 11002_CR37
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c04096
– volume: 205
  start-page: 349
  year: 2020
  ident: 11002_CR48
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.05.041
– volume: 11
  start-page: 3463
  year: 2021
  ident: 11002_CR28
  publication-title: Nanomaterials
  doi: 10.3390/nano11123463
SSID ssj0005721
Score 2.4630082
Snippet RbGeI₃ was investigated as a moisture-resistant lead-free absorber for perovskite solar cells (PSCs), addressing stability and environmental concerns of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 9176
SubjectTerms Absorbers
Characterization and Evaluation of Materials
Charge transport
Chemistry and Materials Science
Classical Mechanics
Computation & Theory
Crystallography and Scattering Methods
Current carriers
Density functional theory
Electromagnetic absorption
Electron transport
Electronic structure
Energy conversion efficiency
First principles
Humidity
Lead free
Materials Science
Materials selection
Moisture resistance
Open circuit voltage
Optical properties
Perovskites
Phase transitions
Photovoltaic cells
Polymer Sciences
Polystyrene resins
Short circuit currents
Solar cells
Solar energy
Solid Mechanics
Stability
Tin oxides
Title Moisture-resistant sustainable solar cell with RbGeI3 absorber layer
URI https://link.springer.com/article/10.1007/s10853-025-11002-5
https://www.proquest.com/docview/3216580666
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RdoGBb0ShVB7YIFXixHE7ttAPQO2AqFSmyHbsBdSiJl349ZzTRCkVDJ0TnZy7c_ze2fcMcEtNGHNhOo50bbWK4lRsq5A5vmGYTsyEIivojyfhaBo8z9gsbwpLitPuxZZk9qfeaHbDpcWx169amTOkUBWoMa_daVeh1h2-v_TLox2ceoVKuNVLy5tl_rbye0EqUebWxmi23gyOYFqMdH3M5KO1SmVLfW-JOO76KcdwmANQ0l1nzAns6fkpHGzIEp7B43iBwV8ttYNc3OLLeUqSstGKJJYOE1vyJ7aMS17lUD_5RMhksZR6ST4F4vhzmA76bw8jJ79twVGU0xQdJYVQnBseG5-1hXFDrWLGhA4UoriACyThrkTK0pEI0gJOQ6oCYaiSscdi17-A6nwx15dAELZYmmIYmgti1xMqRGDKhKDSsEDzOtwVLo--1qIaUSmfbH0ToW-izDcRq0OjiEqUT7Ak8qmH2MmSrzrcF04uH_9v7Wq3169hn9o4ZXWXBlTT5UrfIAxJZROzbtDrTZp59jWhMqXdH6BK0yk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTywQaTEieN2rIDSQtsBtVI3y3bsCaVVkv5_zmmiFAQDc6KT8s7OvXf23QHcUxsnXNqep3yXraK4Fbs6Zl5oGS4nZmNZJvQn03g4j94WbFEVheX1bff6SLL8U28Vu2Fo8dz4VdfmDCXULuwhGei6uQVz2m8udnAa1D3CXbe0qlTmdxvfw1HDMX8ci5bRZnAMRxVNJP2NX09gx6SncLjVPPAMnidLdNE6Mx4qZscC04LkTTkUyZ1oJS4xT1yylXyoVzMKiVT5MlMmI58S2fY5zAcvs6ehV81E8DTltMAPUlJqzi1PbMi60vqx0Qlj0kQauVbEJUplX6Gw6CmkUhGnMdWRtFSrJGCJH15AK12m5hIIkgsnJixDc1HiB1LHSB-ZlFRZFhnehocaGrHatL4QTZNjB6RAIEUJpGBt6NToiWob5CKkATIcJ5Ha8Fgj2jz-29rV_16_g_3hbDIW49H0_RoOqHNwmSnpQKvI1uYGiUOhbst18gUWP7a4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgSAgOiE8xGJADN6jWpk2zHSfG2IBNCDFptyhJkxPqprb7_zjdqg4EB86tLNV26vec-AXglto44dJ2PeW7bhXFpdjRMfNCyzCdmI1l2dAfT-LhNHqesdnGFH952r3aklzNNDiVprRoLxLb3hh8wzLjuatYneQZ0qlt2MHfceAyfUp79SEPToNKL9wpp63HZn638b001XjzxxZpWXkGh3Cwhoykt4rxEWyZ9Bj2N4QET6A_nmO4lpnxkD07RJgWJK9Ho0juCCxxTXriGq_kXT2ZUUikyueZMhn5lIi8T2E6ePx4GHrr-xE8TTkt8IOUlJpzyxMbso60fmx0wpg0kUbcFXGJtNlXSDK6CmFVxGlMdSQt1SoJWOKHZ9BI56k5B4JAwxELy9BclPiB1DFCSSYlVZZFhjfhrnKNWKxkMEQteOwcKdCRonSkYE1oVd4T6yWRi5AGiHYcXWrCfeXR-vHf1i7-9_oN7L71B-J1NHm5hD3q4ls2TVrQKLKluUIMUajrMk2-AB1buvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moisture-resistant+sustainable+solar+cell+with+RbGeI3+absorber+layer&rft.jtitle=Journal+of+materials+science&rft.au=Raj%2C+Manasvi&rft.au=Aggarwal%2C+Anshul&rft.au=Kushwaha%2C+Aditya&rft.au=Goel%2C+Neeraj&rft.date=2025-06-01&rft.pub=Springer+US&rft.issn=0022-2461&rft.eissn=1573-4803&rft.volume=60&rft.issue=22&rft.spage=9176&rft.epage=9196&rft_id=info:doi/10.1007%2Fs10853-025-11002-5&rft.externalDocID=10_1007_s10853_025_11002_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon