Lax Formulation of 3-Component KP Hierarchy by Shiota Construction

It is quite basic in integrable systems to derive Lax equations from bilinear equations. For multi-component KP theory, corresponding Lax structures are mainly constructed by matrix pseudo-differential operators for fixed discrete variables, or by matrix difference operators for even-component cases...

Full description

Saved in:
Bibliographic Details
Published inJournal of nonlinear science Vol. 35; no. 5
Main Authors Cui, Tongtong, Wang, Jinbiao, Cao, Wenqi, Cheng, Jipeng
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is quite basic in integrable systems to derive Lax equations from bilinear equations. For multi-component KP theory, corresponding Lax structures are mainly constructed by matrix pseudo-differential operators for fixed discrete variables, or by matrix difference operators for even-component cases. Here we use Shiota method to construct Lax structure of 3-component KP hierarchy and its reduction by introducing two shift operators Λ 1 and Λ 2 , where relations among different discrete variables can be easily found. We believe the results here are quite typical for general multi-component KP theory, which may be helpful for general cases.
AbstractList It is quite basic in integrable systems to derive Lax equations from bilinear equations. For multi-component KP theory, corresponding Lax structures are mainly constructed by matrix pseudo-differential operators for fixed discrete variables, or by matrix difference operators for even-component cases. Here we use Shiota method to construct Lax structure of 3-component KP hierarchy and its reduction by introducing two shift operators Λ 1 and Λ 2 , where relations among different discrete variables can be easily found. We believe the results here are quite typical for general multi-component KP theory, which may be helpful for general cases.
It is quite basic in integrable systems to derive Lax equations from bilinear equations. For multi-component KP theory, corresponding Lax structures are mainly constructed by matrix pseudo-differential operators for fixed discrete variables, or by matrix difference operators for even-component cases. Here we use Shiota method to construct Lax structure of 3-component KP hierarchy and its reduction by introducing two shift operators Λ1 and Λ2, where relations among different discrete variables can be easily found. We believe the results here are quite typical for general multi-component KP theory, which may be helpful for general cases.
ArticleNumber 93
Author Cui, Tongtong
Wang, Jinbiao
Cao, Wenqi
Cheng, Jipeng
Author_xml – sequence: 1
  givenname: Tongtong
  surname: Cui
  fullname: Cui, Tongtong
  organization: School of Mathematics, China University of Mining and Technology
– sequence: 2
  givenname: Jinbiao
  surname: Wang
  fullname: Wang, Jinbiao
  organization: School of Mathematics, China University of Mining and Technology
– sequence: 3
  givenname: Wenqi
  surname: Cao
  fullname: Cao, Wenqi
  organization: School of Mathematics, China University of Mining and Technology
– sequence: 4
  givenname: Jipeng
  surname: Cheng
  fullname: Cheng, Jipeng
  email: chengjp@cumt.edu.cn, chengjipeng1983@163.com
  organization: School of Mathematics, China University of Mining and Technology, Jiangsu Center for Applied Mathematics (CUMT)
BookMark eNp9kMFKw0AQhhepYFt9AU8LnqM7O5smOWqwViwoqOdlm8zalDZbdxOwb-_WCN5kDgPD__0D34SNWtcSY5cgrkGI7CYIgSgTIdMEBBQiwRM2BhVPoGbZiI1FgXmSF5k6Y5MQNkJAlqIcs7ul-eJz53f91nSNa7mzHJPS7fbxQdvxpxe-aMgbX60PfHXgr-vGdYaXrg2d76sjcs5OrdkGuvjdU_Y-v38rF8ny-eGxvF0mlcxkl0ChCIhUXqdCoq1zAaZAg1BTRUgoLeDKxKlmxYootbWiStjCgiSZgsEpuxp699599hQ6vXG9b-NLjRJBqhyViik5pCrvQvBk9d43O-MPGoQ-utKDKx1d6R9XGiOEAxRiuP0g_1f9D_UNWG9tzQ
Cites_doi 10.1143/PTPS.94.210
10.1007/BF00312674
10.1017/CBO9780511535024
10.1088/0305-4470/39/30/003
10.1063/1.533104
10.1007/s11005-017-1006-3
10.1143/JPSJ.50.3806
10.1017/9781108610902
10.1007/BF02098018
10.1088/0266-5611/10/2/001
10.1063/1.1590055
10.1142/5108
10.1007/s11005-024-01888-8
10.1090/pspum/049.1/1013133
10.1016/j.aim.2019.05.030
10.1090/crmp/014/13
10.1063/1.529875
10.2977/prims/1195182017
10.2977/prims/1195183297
10.1007/s002200050609
10.1007/s00220-020-03817-x
10.1007/s00029-021-00646-1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00332-025-10190-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1432-1467
ExternalDocumentID 10_1007_s00332_025_10190_3
GrantInformation_xml – fundername: Qinglan Project of Jiangsu Province of China
  funderid: http://dx.doi.org/10.13039/501100013088
– fundername: National Natural Science Foundation of China
  grantid: 12171472; 12171472; 12171472; 12171472
GroupedDBID -~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
-Y2
1SB
2P1
2VQ
5QI
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFGCZ
AGGDS
AGQPQ
AJBLW
AMVHM
B0M
BBWZM
BDATZ
CAG
CITATION
COF
EAD
EJD
EMK
EPL
FINBP
FSGXE
H13
HZ~
I-F
KOW
N2Q
NDZJH
O9-
R4E
RIG
RNI
RZK
S26
S28
SCLPG
T16
TUS
UZXMN
VFIZW
VOH
ZWQNP
~8M
ID FETCH-LOGICAL-c272t-194e1ee48d5023fd801a93a31dece3e32f13bababc69bee5fd4ec0f9f12e251a3
IEDL.DBID U2A
ISSN 0938-8974
IngestDate Sat Aug 23 13:02:27 EDT 2025
Thu Jul 24 01:57:25 EDT 2025
Fri Jul 18 01:10:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Tau function
3-Component KP
Lax equation
35Q53
35Q51
37K10
Bilinear equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-194e1ee48d5023fd801a93a31dece3e32f13bababc69bee5fd4ec0f9f12e251a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3231248344
PQPubID 2043730
ParticipantIDs proquest_journals_3231248344
crossref_primary_10_1007_s00332_025_10190_3
springer_journals_10_1007_s00332_025_10190_3
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of nonlinear science
PublicationTitleAbbrev J Nonlinear Sci
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Y Cheng (10190_CR5) 1992; 33
Y Cheng (10190_CR6) 1994; 10
B Dubrovin (10190_CR12) 2019; 351
10190_CR13
J Cheng (10190_CR7) 2021; 27
J Harnad (10190_CR14) 2021
10190_CR10
10190_CR17
SQ Liu (10190_CR22) 2021; 775
V Kac (10190_CR16) 1996; 37
SQ Liu (10190_CR21) 2018; 108
Y Ohta (10190_CR25) 1988; 94
V Kac (10190_CR19) 2023; 64
W Oevel (10190_CR24) 1993; 157
M Jimbo (10190_CR15) 1983; 19
E Date (10190_CR9) 1982; 18
10190_CR20
L Dickey (10190_CR11) 2003
V Kac (10190_CR18) 2003; 44
E Date (10190_CR8) 1981; 50
10190_CR28
10190_CR27
10190_CR26
10190_CR29
T Miwa (10190_CR23) 2000
S Carpentier (10190_CR4) 2020; 380
M Adler (10190_CR1) 1999; 203
O Babelon (10190_CR2) 2003
G Carlet (10190_CR3) 2006; 39
References_xml – volume: 94
  start-page: 210
  year: 1988
  ident: 10190_CR25
  publication-title: Progr. Theor. Phys. Suppl.
  doi: 10.1143/PTPS.94.210
– volume: 37
  start-page: 435
  year: 1996
  ident: 10190_CR16
  publication-title: Lett. Math. Phys.
  doi: 10.1007/BF00312674
– volume-title: Introduction to Classical Integrable Systems
  year: 2003
  ident: 10190_CR2
  doi: 10.1017/CBO9780511535024
– volume: 64
  year: 2023
  ident: 10190_CR19
  publication-title: J. Math. Phys.
– ident: 10190_CR27
– volume: 39
  start-page: 9411
  year: 2006
  ident: 10190_CR3
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/39/30/003
– ident: 10190_CR29
  doi: 10.1063/1.533104
– volume: 108
  start-page: 261
  year: 2018
  ident: 10190_CR21
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-017-1006-3
– volume: 50
  start-page: 3806
  year: 1981
  ident: 10190_CR8
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.50.3806
– ident: 10190_CR10
– volume-title: Tau Functions and Their Applications
  year: 2021
  ident: 10190_CR14
  doi: 10.1017/9781108610902
– volume: 157
  start-page: 51
  year: 1993
  ident: 10190_CR24
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02098018
– volume: 10
  start-page: L11
  year: 1994
  ident: 10190_CR6
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/10/2/001
– volume: 44
  start-page: 3245
  year: 2003
  ident: 10190_CR18
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1590055
– volume-title: Soliton Equations and Hamiltonian Systems
  year: 2003
  ident: 10190_CR11
  doi: 10.1142/5108
– ident: 10190_CR13
  doi: 10.1007/s11005-024-01888-8
– volume-title: Solitons: Differential Equations, Symmetries and Infinite-Dimensional Algebras
  year: 2000
  ident: 10190_CR23
– ident: 10190_CR20
  doi: 10.1090/pspum/049.1/1013133
– volume: 351
  start-page: 897
  year: 2019
  ident: 10190_CR12
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2019.05.030
– ident: 10190_CR17
  doi: 10.1090/crmp/014/13
– ident: 10190_CR26
– volume: 33
  start-page: 3774
  year: 1992
  ident: 10190_CR5
  publication-title: J. Math. Phys.
  doi: 10.1063/1.529875
– volume: 19
  start-page: 943
  year: 1983
  ident: 10190_CR15
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1195182017
– volume: 775
  start-page: 259
  year: 2021
  ident: 10190_CR22
  publication-title: J. Reine Angew. Math.
– ident: 10190_CR28
– volume: 18
  start-page: 1077
  year: 1982
  ident: 10190_CR9
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1195183297
– volume: 203
  start-page: 185
  year: 1999
  ident: 10190_CR1
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050609
– volume: 380
  start-page: 655
  year: 2020
  ident: 10190_CR4
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-020-03817-x
– volume: 27
  start-page: 1
  year: 2021
  ident: 10190_CR7
  publication-title: Selecta Math.
  doi: 10.1007/s00029-021-00646-1
SSID ssj0017532
Score 2.39466
Snippet It is quite basic in integrable systems to derive Lax equations from bilinear equations. For multi-component KP theory, corresponding Lax structures are mainly...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Analysis
Classical Mechanics
Differential equations
Economic Theory/Quantitative Economics/Mathematical Methods
Finite differences
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Theoretical
Title Lax Formulation of 3-Component KP Hierarchy by Shiota Construction
URI https://link.springer.com/article/10.1007/s00332-025-10190-3
https://www.proquest.com/docview/3231248344
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOjBH6gRRdKDN21C126sRzBMIkJMlARPS9e1gQuYjIP8976ObUSjB7PDDmtelq99fd_2-r0HcMt8JZHaJ1RzLqiQPKBKa6fkksImNpUsdQLn8SQYTsXTzJ8VorCsPO1epiTznboSu7m2Yx517VdZLoDm-1D33bc7ruKp16tyB0jA89yBRFcOkS4XUpnfbXwPRzuO-SMtmkeb6ASOCppIett5PYU9s2zAcUEZSeGQWQMOx1XZ1ewM-s_qk0TIQoueXGRlCafO5VdLDC5k9EKGC6c41vMNSTbkdb5YrRVxTTvLMrLnMI0Gbw9DWjRJoNrremvKpDDMGBGmPoZfm2LEUZIrzlKjDTfcs4wnCi8dyMQY36bC6I6VlnkGuY3iF1Bb4ktcAtHdrhsSmjSUQjOR-DoMlAnRjka7tgl3JVbxx7YWRlxVPc6RjRHZOEc25k1olXDGhV9kMUc66bn_l6IJ9yXEu8d_W7v63_BrOPC2s0w7rAU1BNHcIHtYJ22o96J-f-Luj--jQTtfPF9BRL4f
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1jCsZPGY0FUgX4IiVbqFjmOrXZpkdKB_nvOqdMKBAPKGOsUPefynnJ-dwC3LFQSpX1GNeeCCskjqrR2Ti4pbGZzyXJncO4PomQkXsfh2JvCiuq0e1WSLL_Ua7ObGzsWUDd-lZUGaL4NOygGYneQaxS017UDFOBl7UBiKscol71V5vcY3-loozF_lEVLtukcwYGXiaS92tdj2DKzOhx6yUh8QhZ12O-v264WJ_DYU5-kgyrUz-Qic0s4dSk_nyG5kO4bSabOcawnS5ItyftkOl8o4oZ2Vm1kT2HUeR4-JdQPSaA6aAULyqQwzBgR5yHSr82RcZTkirPcaMMNDyzjmcJLRzIzJrS5MPrBSssCg9pG8TOozfAhzoHoVsstiU0eS6GZyEIdR8rEGEdjXNuAuwqr9GPVCyNddz0ukU0R2bRENuUNaFZwpj4vipSjnAzc_0vRgPsK4s3tv6Nd_G_5Dewmw34v7b0MupewF6x2nD6wJtQQUHOFSmKRXZcvzhdxGb4C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbGC1jp00HssjKvShSlCpW-Q4ttqlrdQO9N9zTpMWEAwoY6yT89nn-5Tzdwdwy3wlkdonVHMuqJA8oEprp-SSwiY2lSx1AuduL2gNxOvQH35R8We33YuU5ErT4Ko0TRa1WWpra-Gba0HmUdeKlWViaL4NO3gcM7evB15znUdAMp7lESS6dYjUOZfN_G7je2ja8M0fKdIs8kRHcJBTRtJcrfExbJlJGQ5z-khy55yXYb-7LsE6P4GHjvogETLSvD8XmVrCqXP_6QQ_lLT7pDV26mM9WpJkSd5G4-lCEdfAsygpewqD6Pn9sUXzhglUew1vQZkUhhkjwtTHUGxTjD5KcsVZarThhnuW8UThowOZGOPbVBhdt9IyzyDPUfwMShOcxDkQ3Wi4IaFJQyk0E4mvw0CZEO1otGsrcFdgFc9WdTHidQXkDNkYkY0zZGNegWoBZ5z7yDzmSC099y9TVOC-gHjz-m9rF_8bfgO7_aco7rz02pew560WnNZZFUqIp7lCUrFIrrN98wnFjsI-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lax+Formulation+of+3-Component+KP+Hierarchy+by+Shiota+Construction&rft.jtitle=Journal+of+nonlinear+science&rft.au=Cui%2C+Tongtong&rft.au=Wang%2C+Jinbiao&rft.au=Cao%2C+Wenqi&rft.au=Cheng%2C+Jipeng&rft.date=2025-10-01&rft.issn=0938-8974&rft.eissn=1432-1467&rft.volume=35&rft.issue=5&rft_id=info:doi/10.1007%2Fs00332-025-10190-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00332_025_10190_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-8974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-8974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-8974&client=summon