Normalized solutions of mass supercritical Schrödinger–Poisson equation with potential

In this paper we prove the existence of normalized solutions ( λ , u ) ⊂ ( 0 , ∞ ) × H 1 ( R 3 ) to the following Schrödinger–Poisson equation - Δ u + V ( x ) u + λ u + ( | x | - 1 ∗ u 2 ) u = | u | p - 2 u in R 3 , u > 0 , ∫ R 3 u 2 d x = a 2 , where a > 0 is fixed, p ∈ ( 10 3 , 6 ) is a give...

Full description

Saved in:
Bibliographic Details
Published inCalculus of variations and partial differential equations Vol. 64; no. 5
Main Authors Peng, Xueqin, Rizzi, Matteo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-2669
1432-0835
DOI10.1007/s00526-025-03012-7

Cover

Abstract In this paper we prove the existence of normalized solutions ( λ , u ) ⊂ ( 0 , ∞ ) × H 1 ( R 3 ) to the following Schrödinger–Poisson equation - Δ u + V ( x ) u + λ u + ( | x | - 1 ∗ u 2 ) u = | u | p - 2 u in R 3 , u > 0 , ∫ R 3 u 2 d x = a 2 , where a > 0 is fixed, p ∈ ( 10 3 , 6 ) is a given exponent and the potential V satisfies some suitable conditions. Since the L 2 ( R 3 ) -norm of u is fixed, λ appears as a Lagrange multiplier. For V ( x ) ≥ 0 , our solutions are obtained by using a mountain-pass argument on bounded domains and a limit process introduced by Bartsch et al (Commun Partial Differ Equ 46:1729–1756, 2021). For V ( x ) ≤ 0 , we directly construct an entire mountain-pass solution with positive energy.
AbstractList In this paper we prove the existence of normalized solutions (λ,u)⊂(0,∞)×H1(R3) to the following Schrödinger–Poisson equation -Δu+V(x)u+λu+(|x|-1∗u2)u=|u|p-2uinR3,u>0,∫R3u2dx=a2,where a>0 is fixed, p∈(103,6) is a given exponent and the potential V satisfies some suitable conditions. Since the L2(R3)-norm of u is fixed, λ appears as a Lagrange multiplier. For V(x)≥0, our solutions are obtained by using a mountain-pass argument on bounded domains and a limit process introduced by Bartsch et al (Commun Partial Differ Equ 46:1729–1756, 2021). For V(x)≤0, we directly construct an entire mountain-pass solution with positive energy.
In this paper we prove the existence of normalized solutions ( λ , u ) ⊂ ( 0 , ∞ ) × H 1 ( R 3 ) to the following Schrödinger–Poisson equation - Δ u + V ( x ) u + λ u + ( | x | - 1 ∗ u 2 ) u = | u | p - 2 u in R 3 , u > 0 , ∫ R 3 u 2 d x = a 2 , where a > 0 is fixed, p ∈ ( 10 3 , 6 ) is a given exponent and the potential V satisfies some suitable conditions. Since the L 2 ( R 3 ) -norm of u is fixed, λ appears as a Lagrange multiplier. For V ( x ) ≥ 0 , our solutions are obtained by using a mountain-pass argument on bounded domains and a limit process introduced by Bartsch et al (Commun Partial Differ Equ 46:1729–1756, 2021). For V ( x ) ≤ 0 , we directly construct an entire mountain-pass solution with positive energy.
ArticleNumber 152
Author Rizzi, Matteo
Peng, Xueqin
Author_xml – sequence: 1
  givenname: Xueqin
  orcidid: 0000-0002-6595-7693
  surname: Peng
  fullname: Peng, Xueqin
  email: pxq52918@163.com
  organization: Department of Mathematical Sciences, Tsinghua University
– sequence: 2
  givenname: Matteo
  surname: Rizzi
  fullname: Rizzi, Matteo
  organization: Mathematisches Institut, Justus-Liebig-University Giessen
BookMark eNp9kEtOwzAURS1UJNrCBhhZYhzwLx8PUcVPqgAJGDCyXOeZukrj1E6EYMQe2AsbYCeshJQgMWP0Jvfcp3smaFT7GhA6pOSYEpKfREJSliWEpQnhhLIk30FjKjhLSMHTERoTKUTCskzuoUmMK0JoWjAxRo_XPqx15V6hxNFXXet8HbG3eK1jxLFrIJjgWmd0he_MMnx-lK5-gvD19n7rXYy-xrDp9BbDz65d4sa3ULdOV_to1-oqwsHvnaKH87P72WUyv7m4mp3OE8Ny1iY0LZnlwhohraCMpgspdQELDjIvQGZFWhaLjNtS5lJCCgBGMlsAtcSIkmR8io6G3ib4TQexVSvfhbp_qTjr3ch-uexTbEiZ4GMMYFUT3FqHF0WJ2ipUg0LVK1Q_ClXeQ3yAYh_erv6r_of6BkrSeVw
Cites_doi 10.1112/plms/pds072
10.1007/s00033-010-0092-1
10.1007/BF00282048
10.1017/CBO9780511551703
10.1016/j.jmaa.2014.02.038
10.1016/j.jfa.2006.04.005
10.1016/S0362-546X(96)00021-1
10.1007/s00033-012-0272-2
10.4310/jdg/1214433725
10.1007/s00526-002-0169-6
10.1007/BF00250556
10.1090/S0002-9939-1983-0699419-3
10.1016/j.anihpc.2004.07.005
10.1007/s00033-021-01633-4
10.1007/s00526-014-0724-y
10.1016/j.jmaa.2008.04.053
10.1080/03605302.2021.1893747
10.1007/BF01205672
10.1016/j.jfa.2011.06.014
10.1007/s00013-012-0468-x
10.1090/cbms/065
10.1007/BF02418013
10.1016/j.jmaa.2019.123447
10.1016/j.jmaa.2020.124071
10.1016/j.jde.2021.09.022
10.1016/0001-8708(77)90108-6
10.1016/S0893-9659(01)80038-0
10.1007/s00208-024-02857-1
10.1088/1361-6544/ad1efb
10.1007/s00033-022-01922-6
10.1016/j.jde.2022.06.012
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00526-025-03012-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0835
ExternalDocumentID 10_1007_s00526_025_03012_7
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 202208310170
  funderid: http://dx.doi.org/10.13039/501100004543
GroupedDBID -Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
AAYXX
CITATION
ABRTQ
JQ2
ID FETCH-LOGICAL-c272t-15d2f34fc49f41215b99a8eb3e978e9685d8b63fd9799e5eeec92f8e1f0c4d063
IEDL.DBID AGYKE
ISSN 0944-2669
IngestDate Tue Sep 09 14:41:54 EDT 2025
Thu Jul 03 08:40:43 EDT 2025
Sun Jun 15 01:13:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 35J10
35J50
35J60
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c272t-15d2f34fc49f41215b99a8eb3e978e9685d8b63fd9799e5eeec92f8e1f0c4d063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6595-7693
PQID 3200799449
PQPubID 32028
ParticipantIDs proquest_journals_3200799449
crossref_primary_10_1007_s00526_025_03012_7
springer_journals_10_1007_s00526_025_03012_7
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Calculus of variations and partial differential equations
PublicationTitleAbbrev Calc. Var
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References H Brézis (3012_CR14) 1983; 88
V Benci (3012_CR10) 1976; 13
L Nirenberg (3012_CR31) 1959; 13
J Bellazzini (3012_CR8) 2011; 62
L Zhao (3012_CR39) 2008; 346
V Benci (3012_CR9) 1987; 99
H Berestycki (3012_CR11) 1983; 82
T Bartsch (3012_CR4) 2024; 390
TJ Luo (3012_CR28) 2014; 416
J Liu (3012_CR27) 2015; 52
J Bellazzini (3012_CR6) 2013; 107
EH Lieb (3012_CR23) 2001
J Jeanjean (3012_CR19) 1997; 28
R Molle (3012_CR30) 2022; 333
XQ Peng (3012_CR33) 2023; 74
T Bartsch (3012_CR2) 2013; 100
L Jeanjean (3012_CR21) 2013; 64
PL Lions (3012_CR25) 1987; 109
3012_CR34
T Aubin (3012_CR1) 1976; 11
3012_CR13
G Talenti (3012_CR37) 1976; 110
3012_CR38
3012_CR17
T Bartsch (3012_CR5) 2005; 22
3012_CR18
N Li (3012_CR22) 2020; 488
NJ Mauser (3012_CR29) 2001; 14
XQ Peng (3012_CR32) 2021; 72
T Bartsch (3012_CR3) 2021; 46
P Pucci (3012_CR26) 2024; 37
J Borthwick (3012_CR12) 2024; 377
M Struwe (3012_CR36) 1996
ST Chen (3012_CR16) 2020; 481
D Ruiz (3012_CR35) 2006; 237
EH Lieb (3012_CR24) 1977; 23
G Cerami (3012_CR15) 2003; 17
J Bellazzini (3012_CR7) 2011; 261
L Jeanjean (3012_CR20) 2021; 303
References_xml – volume: 107
  start-page: 303
  year: 2013
  ident: 3012_CR6
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pds072
– volume: 62
  start-page: 267
  issue: 2
  year: 2011
  ident: 3012_CR8
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-010-0092-1
– volume: 99
  start-page: 283
  issue: 4
  year: 1987
  ident: 3012_CR9
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00282048
– ident: 3012_CR17
  doi: 10.1017/CBO9780511551703
– volume: 416
  start-page: 195
  year: 2014
  ident: 3012_CR28
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.02.038
– volume: 237
  start-page: 655
  year: 2006
  ident: 3012_CR35
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2006.04.005
– volume: 28
  start-page: 1633
  issue: 10
  year: 1997
  ident: 3012_CR19
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(96)00021-1
– volume: 64
  start-page: 937
  year: 2013
  ident: 3012_CR21
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-012-0272-2
– volume: 11
  start-page: 573
  issue: 4
  year: 1976
  ident: 3012_CR1
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1214433725
– volume: 17
  start-page: 257
  issue: 3
  year: 2003
  ident: 3012_CR15
  publication-title: Cal. Var.
  doi: 10.1007/s00526-002-0169-6
– volume: 82
  start-page: 347
  year: 1983
  ident: 3012_CR11
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00250556
– volume: 88
  start-page: 486
  issue: 3
  year: 1983
  ident: 3012_CR14
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1983-0699419-3
– volume: 22
  start-page: 259
  year: 2005
  ident: 3012_CR5
  publication-title: Ann. Inst. Henri Poincaré Anal. Nonlinéaire
  doi: 10.1016/j.anihpc.2004.07.005
– volume-title: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems
  year: 1996
  ident: 3012_CR36
– volume: 72
  start-page: 198
  year: 2021
  ident: 3012_CR32
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-021-01633-4
– volume: 52
  start-page: 565
  year: 2015
  ident: 3012_CR27
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/s00526-014-0724-y
– volume: 346
  start-page: 155
  year: 2008
  ident: 3012_CR39
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.04.053
– volume: 46
  start-page: 1729
  year: 2021
  ident: 3012_CR3
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1080/03605302.2021.1893747
– volume: 13
  start-page: 115
  year: 1959
  ident: 3012_CR31
  publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci.
– volume: 109
  start-page: 33
  issue: 1
  year: 1987
  ident: 3012_CR25
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01205672
– volume: 261
  start-page: 2486
  issue: 9
  year: 2011
  ident: 3012_CR7
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2011.06.014
– ident: 3012_CR18
– volume: 100
  start-page: 75
  year: 2013
  ident: 3012_CR2
  publication-title: Arch. Math.
  doi: 10.1007/s00013-012-0468-x
– ident: 3012_CR34
  doi: 10.1090/cbms/065
– volume-title: Analysis, Graduate Studies in Mathematics
  year: 2001
  ident: 3012_CR23
– volume: 110
  start-page: 353
  year: 1976
  ident: 3012_CR37
  publication-title: Ann. Mat. Pura Appl. (4)
  doi: 10.1007/BF02418013
– volume: 481
  year: 2020
  ident: 3012_CR16
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.123447
– volume: 488
  year: 2020
  ident: 3012_CR22
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2020.124071
– volume: 13
  start-page: 832
  issue: 3
  year: 1976
  ident: 3012_CR10
  publication-title: Boll. Un. Mat. Ital. B
– volume: 303
  start-page: 277
  year: 2021
  ident: 3012_CR20
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2021.09.022
– volume: 23
  start-page: 22
  issue: 1
  year: 1977
  ident: 3012_CR24
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(77)90108-6
– volume: 14
  start-page: 759
  issue: 6
  year: 2001
  ident: 3012_CR29
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(01)80038-0
– volume: 390
  start-page: 4813
  issue: 3
  year: 2024
  ident: 3012_CR4
  publication-title: Math. Ann.
  doi: 10.1007/s00208-024-02857-1
– ident: 3012_CR13
– volume: 377
  start-page: 4481
  issue: 6
  year: 2024
  ident: 3012_CR12
  publication-title: Trans. Am. Math. Soc.
– volume: 37
  start-page: 23
  issue: 3
  year: 2024
  ident: 3012_CR26
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ad1efb
– volume: 74
  start-page: 29
  year: 2023
  ident: 3012_CR33
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-022-01922-6
– ident: 3012_CR38
– volume: 333
  start-page: 302
  year: 2022
  ident: 3012_CR30
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2022.06.012
SSID ssj0015824
Score 2.39009
Snippet In this paper we prove the existence of normalized solutions ( λ , u ) ⊂ ( 0 , ∞ ) × H 1 ( R 3 ) to the following Schrödinger–Poisson equation - Δ u + V ( x )...
In this paper we prove the existence of normalized solutions (λ,u)⊂(0,∞)×H1(R3) to the following Schrödinger–Poisson equation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Analysis
Calculus of Variations and Optimal Control; Optimization
Control
Lagrange multiplier
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Poisson equation
Systems Theory
Theoretical
Title Normalized solutions of mass supercritical Schrödinger–Poisson equation with potential
URI https://link.springer.com/article/10.1007/s00526-025-03012-7
https://www.proquest.com/docview/3200799449
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5Bu8DAP6JQkAc2CGoTO43HCrVUoFZIEIlOUW2fBQKa0qQLE-_Au_ACvAlPgp0mQSAYmJPYyd05_u7O9x3AYdP1pUDjnbSE8ByqkTpC-MxBZblMqKCetAXO_YHfC-n5DbvJi8KS4rR7kZLM_tRlsVtGTeLY9qsWxhtcuAhV1gx4UIFq-2x40SmzByzImtkaz4U6ZgPiebHM76N835C-UOaPxGi233RXISzedH7M5P5klooT-fyDxPG_n7IGKzkAJe25xazDAo43YLlfsrcmmzAcWCD7cPeMipSmSWJNHg3SJslsglOZd0ggV_J2-v6mstk_Xl4vY6PIeEzwaU4hTmycl0zi1B5KGj1sQdjtXJ_2nLwFgyPdlps6TaZc7VEtKdfUElEIzkeBccDReJ_I_YCpQPieVjY7iAwRJXd1gE3dkFQZ-LMNlXE8xh0g2FBm8TPZ0B6jivvmMWMamo64NBhCYQ2OCj1EkznTRlRyKmcCi4zAokxgUasG9UJVUb7qksizgVdutM5rcFxI_uvy36Pt_u_2PVhyM-XZYEwdKul0hvsGm6TiIDfFA1gM3fYnH37eIQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagDMCA-BWFAh7YIFKbOGk8VoiqQFsh0Uplimr7LJBKU5p0YeIdeBdegDfhSTi7SSoQDMxJHOk72_edz_cdIac1N5ACMDqpC-E5TANzhAh8B5TRMmGCedIUOHe6QavPrgf-ICsKS_Lb7nlK0u7URbGblSZxTPtVQ-ORFy6TFSQDoelb0HcbRe7AD20rW4xbmIPuh2elMr-P8d0dLTjmj7So9TbNTbKR0UTamNt1iyzBeJusdwqN1WSH3HcN3Rw9voCixQSisaZPyIdpMpvAVGZ9DOidfJh-vCv7q8_Xt9sY4Y7HFJ7nQt_UnMbSSZyaq0PD0S7pNy97Fy0na5TgSLfupk7NV672mJaMa2bkIgTnwxDDZMAYEXgQ-ioUgaeVyeGBDwCSuzqEmq5KppCk7JHSOB7DPqFQVbhEfVnVns8UD_AzNKBmQy7R0ysok7Mcr2gy18OICuVji26E6EYW3aheJpUc0ihbG0nkmeNRjtbhZXKew7x4_PdoB_97_YSstnqddtS-6t4ckjXXWt0cn1RIKZ3O4AjZRCqO7eT5Aqt-wyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTsMwELWgSAgWiK8oFPCCHURtEyeNlxVQlU-rSlCprKLaHgskSEqbblhxB-7CBbgJJ2HspikgWLBO4khvxpk3nswbQg6rbiAFYHZSE8JzmAbmCBH4DiijZcIE86RpcG61g2aXXfT83pcufvu3-7QkOelpMCpNcVoeKF3OG9-sTIljRrEaSo8ccZ4s4Oe4ajy969bzOoIf2rG2mMMwB0MRz9pmfl_je2ia8c0fJVIbeRqrZCWjjLQ-sfEamYN4nSy3cr3V0Qa5bRvq-XD_DIrmzkQTTR-RG9PReABDmc00oNfybvj-puyrPl5eOwlCn8QUniai39SczNJBYtBA39wk3cbZzUnTyYYmONKtualT9ZWrPaYl45oZ6QjBeT_ElBkwXwQehL4KReBpZep54AOA5K4OoaorkikkLFukECcxbBMKFYXb1ZcV7flM8QAfQ2Nq1ucSo76CIjma4hUNJtoYUa6CbNGNEN3IohvViqQ0hTTK9sko8sxRKUfr8CI5nsI8u_z3ajv_u_2ALHZOG9HVeftylyy51ujmJKVECulwDHtILFKxb33nExHVx2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normalized+solutions+of+mass+supercritical+Schr%C3%B6dinger%E2%80%93Poisson+equation+with+potential&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Peng%2C+Xueqin&rft.au=Rizzi%2C+Matteo&rft.date=2025-06-01&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=64&rft.issue=5&rft_id=info:doi/10.1007%2Fs00526-025-03012-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00526_025_03012_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon