Normalized solutions of mass supercritical Schrödinger–Poisson equation with potential
In this paper we prove the existence of normalized solutions ( λ , u ) ⊂ ( 0 , ∞ ) × H 1 ( R 3 ) to the following Schrödinger–Poisson equation - Δ u + V ( x ) u + λ u + ( | x | - 1 ∗ u 2 ) u = | u | p - 2 u in R 3 , u > 0 , ∫ R 3 u 2 d x = a 2 , where a > 0 is fixed, p ∈ ( 10 3 , 6 ) is a give...
Saved in:
Published in | Calculus of variations and partial differential equations Vol. 64; no. 5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0944-2669 1432-0835 |
DOI | 10.1007/s00526-025-03012-7 |
Cover
Abstract | In this paper we prove the existence of normalized solutions
(
λ
,
u
)
⊂
(
0
,
∞
)
×
H
1
(
R
3
)
to the following Schrödinger–Poisson equation
-
Δ
u
+
V
(
x
)
u
+
λ
u
+
(
|
x
|
-
1
∗
u
2
)
u
=
|
u
|
p
-
2
u
in
R
3
,
u
>
0
,
∫
R
3
u
2
d
x
=
a
2
,
where
a
>
0
is fixed,
p
∈
(
10
3
,
6
)
is a given exponent and the potential
V
satisfies some suitable conditions. Since the
L
2
(
R
3
)
-norm of
u
is fixed,
λ
appears as a Lagrange multiplier. For
V
(
x
)
≥
0
, our solutions are obtained by using a mountain-pass argument on bounded domains and a limit process introduced by Bartsch et al (Commun Partial Differ Equ 46:1729–1756, 2021). For
V
(
x
)
≤
0
, we directly construct an entire mountain-pass solution with positive energy. |
---|---|
AbstractList | In this paper we prove the existence of normalized solutions (λ,u)⊂(0,∞)×H1(R3) to the following Schrödinger–Poisson equation -Δu+V(x)u+λu+(|x|-1∗u2)u=|u|p-2uinR3,u>0,∫R3u2dx=a2,where a>0 is fixed, p∈(103,6) is a given exponent and the potential V satisfies some suitable conditions. Since the L2(R3)-norm of u is fixed, λ appears as a Lagrange multiplier. For V(x)≥0, our solutions are obtained by using a mountain-pass argument on bounded domains and a limit process introduced by Bartsch et al (Commun Partial Differ Equ 46:1729–1756, 2021). For V(x)≤0, we directly construct an entire mountain-pass solution with positive energy. In this paper we prove the existence of normalized solutions ( λ , u ) ⊂ ( 0 , ∞ ) × H 1 ( R 3 ) to the following Schrödinger–Poisson equation - Δ u + V ( x ) u + λ u + ( | x | - 1 ∗ u 2 ) u = | u | p - 2 u in R 3 , u > 0 , ∫ R 3 u 2 d x = a 2 , where a > 0 is fixed, p ∈ ( 10 3 , 6 ) is a given exponent and the potential V satisfies some suitable conditions. Since the L 2 ( R 3 ) -norm of u is fixed, λ appears as a Lagrange multiplier. For V ( x ) ≥ 0 , our solutions are obtained by using a mountain-pass argument on bounded domains and a limit process introduced by Bartsch et al (Commun Partial Differ Equ 46:1729–1756, 2021). For V ( x ) ≤ 0 , we directly construct an entire mountain-pass solution with positive energy. |
ArticleNumber | 152 |
Author | Rizzi, Matteo Peng, Xueqin |
Author_xml | – sequence: 1 givenname: Xueqin orcidid: 0000-0002-6595-7693 surname: Peng fullname: Peng, Xueqin email: pxq52918@163.com organization: Department of Mathematical Sciences, Tsinghua University – sequence: 2 givenname: Matteo surname: Rizzi fullname: Rizzi, Matteo organization: Mathematisches Institut, Justus-Liebig-University Giessen |
BookMark | eNp9kEtOwzAURS1UJNrCBhhZYhzwLx8PUcVPqgAJGDCyXOeZukrj1E6EYMQe2AsbYCeshJQgMWP0Jvfcp3smaFT7GhA6pOSYEpKfREJSliWEpQnhhLIk30FjKjhLSMHTERoTKUTCskzuoUmMK0JoWjAxRo_XPqx15V6hxNFXXet8HbG3eK1jxLFrIJjgWmd0he_MMnx-lK5-gvD19n7rXYy-xrDp9BbDz65d4sa3ULdOV_to1-oqwsHvnaKH87P72WUyv7m4mp3OE8Ny1iY0LZnlwhohraCMpgspdQELDjIvQGZFWhaLjNtS5lJCCgBGMlsAtcSIkmR8io6G3ib4TQexVSvfhbp_qTjr3ch-uexTbEiZ4GMMYFUT3FqHF0WJ2ipUg0LVK1Q_ClXeQ3yAYh_erv6r_of6BkrSeVw |
Cites_doi | 10.1112/plms/pds072 10.1007/s00033-010-0092-1 10.1007/BF00282048 10.1017/CBO9780511551703 10.1016/j.jmaa.2014.02.038 10.1016/j.jfa.2006.04.005 10.1016/S0362-546X(96)00021-1 10.1007/s00033-012-0272-2 10.4310/jdg/1214433725 10.1007/s00526-002-0169-6 10.1007/BF00250556 10.1090/S0002-9939-1983-0699419-3 10.1016/j.anihpc.2004.07.005 10.1007/s00033-021-01633-4 10.1007/s00526-014-0724-y 10.1016/j.jmaa.2008.04.053 10.1080/03605302.2021.1893747 10.1007/BF01205672 10.1016/j.jfa.2011.06.014 10.1007/s00013-012-0468-x 10.1090/cbms/065 10.1007/BF02418013 10.1016/j.jmaa.2019.123447 10.1016/j.jmaa.2020.124071 10.1016/j.jde.2021.09.022 10.1016/0001-8708(77)90108-6 10.1016/S0893-9659(01)80038-0 10.1007/s00208-024-02857-1 10.1088/1361-6544/ad1efb 10.1007/s00033-022-01922-6 10.1016/j.jde.2022.06.012 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s00526-025-03012-7 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1432-0835 |
ExternalDocumentID | 10_1007_s00526_025_03012_7 |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 202208310170 funderid: http://dx.doi.org/10.13039/501100004543 |
GroupedDBID | -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AAYXX CITATION ABRTQ JQ2 |
ID | FETCH-LOGICAL-c272t-15d2f34fc49f41215b99a8eb3e978e9685d8b63fd9799e5eeec92f8e1f0c4d063 |
IEDL.DBID | AGYKE |
ISSN | 0944-2669 |
IngestDate | Tue Sep 09 14:41:54 EDT 2025 Thu Jul 03 08:40:43 EDT 2025 Sun Jun 15 01:13:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 35J10 35J50 35J60 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c272t-15d2f34fc49f41215b99a8eb3e978e9685d8b63fd9799e5eeec92f8e1f0c4d063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6595-7693 |
PQID | 3200799449 |
PQPubID | 32028 |
ParticipantIDs | proquest_journals_3200799449 crossref_primary_10_1007_s00526_025_03012_7 springer_journals_10_1007_s00526_025_03012_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Calculus of variations and partial differential equations |
PublicationTitleAbbrev | Calc. Var |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | H Brézis (3012_CR14) 1983; 88 V Benci (3012_CR10) 1976; 13 L Nirenberg (3012_CR31) 1959; 13 J Bellazzini (3012_CR8) 2011; 62 L Zhao (3012_CR39) 2008; 346 V Benci (3012_CR9) 1987; 99 H Berestycki (3012_CR11) 1983; 82 T Bartsch (3012_CR4) 2024; 390 TJ Luo (3012_CR28) 2014; 416 J Liu (3012_CR27) 2015; 52 J Bellazzini (3012_CR6) 2013; 107 EH Lieb (3012_CR23) 2001 J Jeanjean (3012_CR19) 1997; 28 R Molle (3012_CR30) 2022; 333 XQ Peng (3012_CR33) 2023; 74 T Bartsch (3012_CR2) 2013; 100 L Jeanjean (3012_CR21) 2013; 64 PL Lions (3012_CR25) 1987; 109 3012_CR34 T Aubin (3012_CR1) 1976; 11 3012_CR13 G Talenti (3012_CR37) 1976; 110 3012_CR38 3012_CR17 T Bartsch (3012_CR5) 2005; 22 3012_CR18 N Li (3012_CR22) 2020; 488 NJ Mauser (3012_CR29) 2001; 14 XQ Peng (3012_CR32) 2021; 72 T Bartsch (3012_CR3) 2021; 46 P Pucci (3012_CR26) 2024; 37 J Borthwick (3012_CR12) 2024; 377 M Struwe (3012_CR36) 1996 ST Chen (3012_CR16) 2020; 481 D Ruiz (3012_CR35) 2006; 237 EH Lieb (3012_CR24) 1977; 23 G Cerami (3012_CR15) 2003; 17 J Bellazzini (3012_CR7) 2011; 261 L Jeanjean (3012_CR20) 2021; 303 |
References_xml | – volume: 107 start-page: 303 year: 2013 ident: 3012_CR6 publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/pds072 – volume: 62 start-page: 267 issue: 2 year: 2011 ident: 3012_CR8 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-010-0092-1 – volume: 99 start-page: 283 issue: 4 year: 1987 ident: 3012_CR9 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00282048 – ident: 3012_CR17 doi: 10.1017/CBO9780511551703 – volume: 416 start-page: 195 year: 2014 ident: 3012_CR28 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.02.038 – volume: 237 start-page: 655 year: 2006 ident: 3012_CR35 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2006.04.005 – volume: 28 start-page: 1633 issue: 10 year: 1997 ident: 3012_CR19 publication-title: Nonlinear Anal. doi: 10.1016/S0362-546X(96)00021-1 – volume: 64 start-page: 937 year: 2013 ident: 3012_CR21 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-012-0272-2 – volume: 11 start-page: 573 issue: 4 year: 1976 ident: 3012_CR1 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1214433725 – volume: 17 start-page: 257 issue: 3 year: 2003 ident: 3012_CR15 publication-title: Cal. Var. doi: 10.1007/s00526-002-0169-6 – volume: 82 start-page: 347 year: 1983 ident: 3012_CR11 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00250556 – volume: 88 start-page: 486 issue: 3 year: 1983 ident: 3012_CR14 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1983-0699419-3 – volume: 22 start-page: 259 year: 2005 ident: 3012_CR5 publication-title: Ann. Inst. Henri Poincaré Anal. Nonlinéaire doi: 10.1016/j.anihpc.2004.07.005 – volume-title: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems year: 1996 ident: 3012_CR36 – volume: 72 start-page: 198 year: 2021 ident: 3012_CR32 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-021-01633-4 – volume: 52 start-page: 565 year: 2015 ident: 3012_CR27 publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/s00526-014-0724-y – volume: 346 start-page: 155 year: 2008 ident: 3012_CR39 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2008.04.053 – volume: 46 start-page: 1729 year: 2021 ident: 3012_CR3 publication-title: Commun. Partial Differ. Equ. doi: 10.1080/03605302.2021.1893747 – volume: 13 start-page: 115 year: 1959 ident: 3012_CR31 publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. – volume: 109 start-page: 33 issue: 1 year: 1987 ident: 3012_CR25 publication-title: Commun. Math. Phys. doi: 10.1007/BF01205672 – volume: 261 start-page: 2486 issue: 9 year: 2011 ident: 3012_CR7 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2011.06.014 – ident: 3012_CR18 – volume: 100 start-page: 75 year: 2013 ident: 3012_CR2 publication-title: Arch. Math. doi: 10.1007/s00013-012-0468-x – ident: 3012_CR34 doi: 10.1090/cbms/065 – volume-title: Analysis, Graduate Studies in Mathematics year: 2001 ident: 3012_CR23 – volume: 110 start-page: 353 year: 1976 ident: 3012_CR37 publication-title: Ann. Mat. Pura Appl. (4) doi: 10.1007/BF02418013 – volume: 481 year: 2020 ident: 3012_CR16 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2019.123447 – volume: 488 year: 2020 ident: 3012_CR22 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2020.124071 – volume: 13 start-page: 832 issue: 3 year: 1976 ident: 3012_CR10 publication-title: Boll. Un. Mat. Ital. B – volume: 303 start-page: 277 year: 2021 ident: 3012_CR20 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2021.09.022 – volume: 23 start-page: 22 issue: 1 year: 1977 ident: 3012_CR24 publication-title: Adv. Math. doi: 10.1016/0001-8708(77)90108-6 – volume: 14 start-page: 759 issue: 6 year: 2001 ident: 3012_CR29 publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(01)80038-0 – volume: 390 start-page: 4813 issue: 3 year: 2024 ident: 3012_CR4 publication-title: Math. Ann. doi: 10.1007/s00208-024-02857-1 – ident: 3012_CR13 – volume: 377 start-page: 4481 issue: 6 year: 2024 ident: 3012_CR12 publication-title: Trans. Am. Math. Soc. – volume: 37 start-page: 23 issue: 3 year: 2024 ident: 3012_CR26 publication-title: Nonlinearity doi: 10.1088/1361-6544/ad1efb – volume: 74 start-page: 29 year: 2023 ident: 3012_CR33 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-022-01922-6 – ident: 3012_CR38 – volume: 333 start-page: 302 year: 2022 ident: 3012_CR30 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2022.06.012 |
SSID | ssj0015824 |
Score | 2.39009 |
Snippet | In this paper we prove the existence of normalized solutions
(
λ
,
u
)
⊂
(
0
,
∞
)
×
H
1
(
R
3
)
to the following Schrödinger–Poisson equation
-
Δ
u
+
V
(
x
)... In this paper we prove the existence of normalized solutions (λ,u)⊂(0,∞)×H1(R3) to the following Schrödinger–Poisson equation... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Analysis Calculus of Variations and Optimal Control; Optimization Control Lagrange multiplier Mathematical and Computational Physics Mathematics Mathematics and Statistics Poisson equation Systems Theory Theoretical |
Title | Normalized solutions of mass supercritical Schrödinger–Poisson equation with potential |
URI | https://link.springer.com/article/10.1007/s00526-025-03012-7 https://www.proquest.com/docview/3200799449 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5Bu8DAP6JQkAc2CGoTO43HCrVUoFZIEIlOUW2fBQKa0qQLE-_Au_ACvAlPgp0mQSAYmJPYyd05_u7O9x3AYdP1pUDjnbSE8ByqkTpC-MxBZblMqKCetAXO_YHfC-n5DbvJi8KS4rR7kZLM_tRlsVtGTeLY9qsWxhtcuAhV1gx4UIFq-2x40SmzByzImtkaz4U6ZgPiebHM76N835C-UOaPxGi233RXISzedH7M5P5klooT-fyDxPG_n7IGKzkAJe25xazDAo43YLlfsrcmmzAcWCD7cPeMipSmSWJNHg3SJslsglOZd0ggV_J2-v6mstk_Xl4vY6PIeEzwaU4hTmycl0zi1B5KGj1sQdjtXJ_2nLwFgyPdlps6TaZc7VEtKdfUElEIzkeBccDReJ_I_YCpQPieVjY7iAwRJXd1gE3dkFQZ-LMNlXE8xh0g2FBm8TPZ0B6jivvmMWMamo64NBhCYQ2OCj1EkznTRlRyKmcCi4zAokxgUasG9UJVUb7qksizgVdutM5rcFxI_uvy36Pt_u_2PVhyM-XZYEwdKul0hvsGm6TiIDfFA1gM3fYnH37eIQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagDMCA-BWFAh7YIFKbOGk8VoiqQFsh0Uplimr7LJBKU5p0YeIdeBdegDfhSTi7SSoQDMxJHOk72_edz_cdIac1N5ACMDqpC-E5TANzhAh8B5TRMmGCedIUOHe6QavPrgf-ICsKS_Lb7nlK0u7URbGblSZxTPtVQ-ORFy6TFSQDoelb0HcbRe7AD20rW4xbmIPuh2elMr-P8d0dLTjmj7So9TbNTbKR0UTamNt1iyzBeJusdwqN1WSH3HcN3Rw9voCixQSisaZPyIdpMpvAVGZ9DOidfJh-vCv7q8_Xt9sY4Y7HFJ7nQt_UnMbSSZyaq0PD0S7pNy97Fy0na5TgSLfupk7NV672mJaMa2bkIgTnwxDDZMAYEXgQ-ioUgaeVyeGBDwCSuzqEmq5KppCk7JHSOB7DPqFQVbhEfVnVns8UD_AzNKBmQy7R0ysok7Mcr2gy18OICuVji26E6EYW3aheJpUc0ihbG0nkmeNRjtbhZXKew7x4_PdoB_97_YSstnqddtS-6t4ckjXXWt0cn1RIKZ3O4AjZRCqO7eT5Aqt-wyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTsMwELWgSAgWiK8oFPCCHURtEyeNlxVQlU-rSlCprKLaHgskSEqbblhxB-7CBbgJJ2HspikgWLBO4khvxpk3nswbQg6rbiAFYHZSE8JzmAbmCBH4DiijZcIE86RpcG61g2aXXfT83pcufvu3-7QkOelpMCpNcVoeKF3OG9-sTIljRrEaSo8ccZ4s4Oe4ajy969bzOoIf2rG2mMMwB0MRz9pmfl_je2ia8c0fJVIbeRqrZCWjjLQ-sfEamYN4nSy3cr3V0Qa5bRvq-XD_DIrmzkQTTR-RG9PReABDmc00oNfybvj-puyrPl5eOwlCn8QUniai39SczNJBYtBA39wk3cbZzUnTyYYmONKtualT9ZWrPaYl45oZ6QjBeT_ElBkwXwQehL4KReBpZep54AOA5K4OoaorkikkLFukECcxbBMKFYXb1ZcV7flM8QAfQ2Nq1ucSo76CIjma4hUNJtoYUa6CbNGNEN3IohvViqQ0hTTK9sko8sxRKUfr8CI5nsI8u_z3ajv_u_2ALHZOG9HVeftylyy51ujmJKVECulwDHtILFKxb33nExHVx2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normalized+solutions+of+mass+supercritical+Schr%C3%B6dinger%E2%80%93Poisson+equation+with+potential&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Peng%2C+Xueqin&rft.au=Rizzi%2C+Matteo&rft.date=2025-06-01&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=64&rft.issue=5&rft_id=info:doi/10.1007%2Fs00526-025-03012-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00526_025_03012_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon |