Extensions of definable local homomorphisms in o‐minimal structures and semialgebraic groups
We state conditions for which a definable local homomorphism between two locally definable groups G$\mathcal {G}$, G′$\mathcal {G^{\prime }}$ can be uniquely extended when G$\mathcal {G}$ is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1]...
Saved in:
Published in | Mathematical logic quarterly Vol. 70; no. 3; pp. 267 - 274 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin
Wiley Subscription Services, Inc
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We state conditions for which a definable local homomorphism between two locally definable groups G$\mathcal {G}$, G′$\mathcal {G^{\prime }}$ can be uniquely extended when G$\mathcal {G}$ is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group G$G$ not necessarily abelian over a sufficiently saturated real closed field R$R$; namely, that the o‐minimal universal covering group G∼$\widetilde{G}$ of G$G$ is an open locally definable subgroup of H(R)0∼$\widetilde{H(R)^{0}}$ for some R$R$‐algebraic group H$H$ (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group G$G$ over R$R$, we describe G∼$\widetilde{G}$ as a locally definable extension of subgroups of the o‐minimal universal covering groups of commutative R$R$‐algebraic groups (Theorem 3.4). |
---|---|
AbstractList | We state conditions for which a definable local homomorphism between two locally definable groups G$\mathcal {G}$, G′$\mathcal {G^{\prime }}$ can be uniquely extended when G$\mathcal {G}$ is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group G$G$ not necessarily abelian over a sufficiently saturated real closed field R$R$; namely, that the o‐minimal universal covering group G∼$\widetilde{G}$ of G$G$ is an open locally definable subgroup of H(R)0∼$\widetilde{H(R)^{0}}$ for some R$R$‐algebraic group H$H$ (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group G$G$ over R$R$, we describe G∼$\widetilde{G}$ as a locally definable extension of subgroups of the o‐minimal universal covering groups of commutative R$R$‐algebraic groups (Theorem 3.4). We state conditions for which a definable local homomorphism between two locally definable groups G$\mathcal {G}$, G′$\mathcal {G^{\prime }}$ can be uniquely extended when G$\mathcal {G}$ is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group G$G$ not necessarily abelian over a sufficiently saturated real closed field R$R$; namely, that the o‐minimal universal covering group G∼$\widetilde{G}$ of G$G$ is an open locally definable subgroup of H(R)0∼$\widetilde{H(R)^{0}}$ for some R$R$‐algebraic group H$H$ (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group G$G$ over R$R$, we describe G∼$\widetilde{G}$ as a locally definable extension of subgroups of the o‐minimal universal covering groups of commutative R$R$‐algebraic groups (Theorem 3.4). We state conditions for which a definable local homomorphism between two locally definable groups , can be uniquely extended when is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group not necessarily abelian over a sufficiently saturated real closed field ; namely, that the o‐minimal universal covering group of is an open locally definable subgroup of for some ‐algebraic group (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group over , we describe as a locally definable extension of subgroups of the o‐minimal universal covering groups of commutative ‐algebraic groups (Theorem 3.4). |
Author | Barriga, Eliana |
Author_xml | – sequence: 1 givenname: Eliana orcidid: 0000-0002-3983-0576 surname: Barriga fullname: Barriga, Eliana email: eliana.barriga@uexternado.edu.co organization: Universidad Externado de Colombia |
BookMark | eNqFkM1KAzEUhYNUsK1uXQdcT83PZDKzLKX-QEUE3RrSmTttykwyTTpodz6Cz-iTmFLRpdzF5cB37uGeERpYZwGhS0omlBB23epmO2GEcRJVfoKGVDCa8FySARqSImWJyGh2hkYhbCIiqCRD9Dp_34ENxtmAXY0rqI3VywZw40rd4LVr4_hubUIbsLHYfX18tsaaGIbDzvflrvcQsLYVDtAa3axg6bUp8cq7vgvn6LTWTYCLnz1GLzfz59ldsni8vZ9NF0nJJMsT4ACCspRrnmY1k2VaCcFkXeYFoVUBvJAHyVKWSi2XUAiZljKvcwm8qpjmY3R1vNt5t-0h7NTG9d7GSMUpTQuaCZlHanKkSu9C8FCrzsdP_F5Rog4dqkOH6rfDaCiOhjfTwP4fWj1MF09_3m_AHXlj |
Cites_doi | 10.1090/S0894-0347-07-00558-9 10.1016/j.jalgebra.2005.04.016 10.1016/S0168-0072(99)00016-0 10.1016/j.jalgebra.2010.11.001 10.1090/S0002-9939-07-08654-6 10.1007/s00029-013-0123-9 10.2178/jsl/1174668384 10.1016/0022-4049(88)90125-9 10.1215/ijm/1258138139 10.1515/9781400883851 10.1002/malq.200610051 10.1112/blms/28.1.7 10.1016/S0022-4049(03)00085-9 10.1016/j.apal.2009.03.003 10.1017/CBO9780511525919 10.1016/j.jalgebra.2008.07.010 10.1007/s00029-012-0091-5 10.1007/s11856-020-2014-z |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Mathematical Logic Quarterly published by Wiley‐VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Mathematical Logic Quarterly published by Wiley‐VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/malq.202300028 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1521-3870 |
EndPage | 274 |
ExternalDocumentID | 10_1002_malq_202300028 MALQ202300028 |
Genre | article |
GrantInformation_xml | – fundername: Israel Science Foundation funderid: 1382/15; 181/16 |
GroupedDBID | --Z -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XPP XV2 ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION |
ID | FETCH-LOGICAL-c2728-e3ee51243a346f27c4d5527fc8901d9e397527f24247a7be9574c78f87e3dd2a3 |
IEDL.DBID | DR2 |
ISSN | 0942-5616 |
IngestDate | Wed Aug 13 04:04:40 EDT 2025 Tue Jul 01 03:47:36 EDT 2025 Sun Jul 06 04:45:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2728-e3ee51243a346f27c4d5527fc8901d9e397527f24247a7be9574c78f87e3dd2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3983-0576 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmalq.202300028 |
PQID | 3114916578 |
PQPubID | 1006439 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3114916578 crossref_primary_10_1002_malq_202300028 wiley_primary_10_1002_malq_202300028_MALQ202300028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationSubtitle | MLQ |
PublicationTitle | Mathematical logic quarterly |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 19 1996; 28 2011; 327 1998 2020; 238 2010; 161 2012; 18 2008; 21 2007; 72 2008; 136 1991 2000; 101 1988; 53 2007; 53 2008; 320 2005; 49 1946 2006; 301 2003; 185 e_1_2_6_10_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 Mimura M. (e_1_2_6_14_1) 1991 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 327 start-page: 71 year: 2011 end-page: 106 article-title: On central extensions and definably compact groups in o‐minimal structures publication-title: J. Algebra – volume: 301 start-page: 194 issue: 1 year: 2006 end-page: 223 article-title: Locally definable groups in o‐minimal structures publication-title: J. Algebra – volume: 53 start-page: 571 issue: 6 year: 2007 end-page: 582 article-title: The universal covering homomorphism in o‐minimal expansions of groups publication-title: Math. Log. Q. – volume: 161 start-page: 488 issue: 4 year: 2010 end-page: 503 article-title: Locally definable homotopy publication-title: Ann. Pure Appl. Log. – volume: 18 start-page: 885 issue: 4 year: 2012 end-page: 903 article-title: Definable quotients of locally definable groups publication-title: Selecta Math. (N.S.) – volume: 28 start-page: 7 year: 1996 end-page: 14 article-title: On groups and rings definable in o–minimal expansions of real closed fields publication-title: Bull. Lond. Math. Soc. – volume: 53 start-page: 239 issue: 3 year: 1988 end-page: 255 article-title: On groups and fields definable in ‐minimal structures publication-title: J. Pure Appl. Algebra – volume: 185 start-page: 103 issue: 1‐3 year: 2003 end-page: 145 article-title: Solvable groups definable in o‐minimal structures publication-title: J. Pure Appl. Algebra – volume: 136 start-page: 1087 issue: 3 year: 2008 end-page: 1091 article-title: Minimal bounded index subgroup for dependent theories publication-title: Proc. Amer. Math. Soc. – volume: 49 start-page: 1299 issue: 4 year: 2005 end-page: 1321 article-title: On torsion‐free groups in o‐minimal structures publication-title: Illinois J. Math. – volume: 238 start-page: 121 year: 2020 end-page: 166 article-title: Definably compact groups definable in real closed fields publication-title: Israel J. Math. – volume: 19 start-page: 719 issue: 3 year: 2013 end-page: 736 article-title: Discrete subgroups of locally definable groups publication-title: Selecta Math. (N.S.) – year: 1946 – volume: 21 start-page: 563 issue: 2 year: 2008 end-page: 596 article-title: Groups, measures, and the NIP publication-title: J. Amer. Math. Soc. – volume: 101 start-page: 1 issue: 1 year: 2000 end-page: 27 article-title: Definable homomorphisms of abelian groups in o‐minimal structures publication-title: Ann. Pure Appl. Log. – year: 1991 – volume: 320 start-page: 3079 issue: 7 year: 2008 end-page: 3080 article-title: Corrigendum to: “Locally definable groups in o‐minimal structures” [J. Algebra (2006), no. 1, 194–223, mr2230327] by M. J. Edmundo publication-title: J. Algebra – year: 1998 – volume: 72 start-page: 67 issue: 1 year: 2007 end-page: 80 article-title: Type‐definable and invariant groups in o‐minimal structures publication-title: J. Symb. Log. – ident: e_1_2_6_11_1 doi: 10.1090/S0894-0347-07-00558-9 – ident: e_1_2_6_8_1 doi: 10.1016/j.jalgebra.2005.04.016 – volume-title: Topology of Lie Groups, I and II year: 1991 ident: e_1_2_6_14_1 – ident: e_1_2_6_16_1 doi: 10.1016/S0168-0072(99)00016-0 – ident: e_1_2_6_12_1 doi: 10.1016/j.jalgebra.2010.11.001 – ident: e_1_2_6_19_1 doi: 10.1090/S0002-9939-07-08654-6 – ident: e_1_2_6_5_1 doi: 10.1007/s00029-013-0123-9 – ident: e_1_2_6_13_1 doi: 10.2178/jsl/1174668384 – ident: e_1_2_6_18_1 doi: 10.1016/0022-4049(88)90125-9 – ident: e_1_2_6_17_1 doi: 10.1215/ijm/1258138139 – ident: e_1_2_6_6_1 doi: 10.1515/9781400883851 – ident: e_1_2_6_9_1 doi: 10.1002/malq.200610051 – ident: e_1_2_6_15_1 doi: 10.1112/blms/28.1.7 – ident: e_1_2_6_7_1 doi: 10.1016/S0022-4049(03)00085-9 – ident: e_1_2_6_3_1 doi: 10.1016/j.apal.2009.03.003 – ident: e_1_2_6_20_1 doi: 10.1017/CBO9780511525919 – ident: e_1_2_6_2_1 doi: 10.1016/j.jalgebra.2008.07.010 – ident: e_1_2_6_10_1 doi: 10.1007/s00029-012-0091-5 – ident: e_1_2_6_4_1 doi: 10.1007/s11856-020-2014-z |
SSID | ssj0005170 |
Score | 2.3134508 |
Snippet | We state conditions for which a definable local homomorphism between two locally definable groups G$\mathcal {G}$, G′$\mathcal {G^{\prime }}$ can be uniquely... We state conditions for which a definable local homomorphism between two locally definable groups , can be uniquely extended when is simply connected... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 267 |
SubjectTerms | Homomorphisms Subgroups Theorems |
Title | Extensions of definable local homomorphisms in o‐minimal structures and semialgebraic groups |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmalq.202300028 https://www.proquest.com/docview/3114916578 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagEwz8Iwql8oDElP7YTpyMFWpVIYoAUakTkWM7IoImoLQSYuIReEaehLPTpi0LEihLPNhxznfnz9bddwidCUkE0y4ccoKWcpikgRNEYFex63tMtCjnnslGHlx7_SG7HLmjpSz-gh-ivHAzlmH9tTFwEeXNBWnoWDy_Nkzxb3tDBE7YBGwZVHS34I9y27ZaHBxhYDJe25uzNrZIc7X76q60gJrLgNXuOL1tJOZzLQJNnhrTSdSQ7z9oHP_zMztoawZHcafQn120ptM9tDkouVzzffTQfbNR7qCeOIux0nGRb4XtNogfszE8sFpJPs5xkuLs6-PTEJbAx3DBTjuFIz0WqcK5HiemrgjMNJHYJpTkB2jY695f9J1ZVQZHEk58R1OtASUwKijzYsIlU4bFLZY-QAsVaAA4pmnSTrjgkQ5cziT3Y59rqhQR9BBV0izVRwj7Uaw9V5laSYxRTQItDd1dm3GuIs1ZFZ3PVyV8Kcg3woJmmYRGYmEpsSqqzRctnBlhHlIYCdAv-KQqIlb6v4wSDjpXt2Xr-C-dTtAGvLMiRLCGKiBmfQqwZRLV0TphN3WroN9VJeZs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_4cVAPfovTqTkInjq3JG3a49CNqdtAUfBkaZMUh65TOkE8-Sf4N_qX-JKum_MiKD2lkDR9H8kv4b3fAziMJI24dvGQE1SVwyULnCBGv0pc3-NRlQnhmWzkTtdr3fDzW7eIJjS5MDk_xPjCzXiGXa-Ng5sL6eMJa2g_enyumOrf9opoFuZNWW9Dn396NWGQcmu2XhweYnA6Xs0reBur9Hi6__S-NAGb3yGr3XOaKxAXs81DTR4qL8O4It9-EDn-63dWYXmESEk9N6E1mNHpOix1xnSu2QbcNV5toDtaKBkkROkkT7kidick94M-PqiwXtbPSC8lg8_3D8NZgh8jOUHtC57qSZQqkul-z5QWwan2JLE5Jdkm3DQb1yctZ1SYwZFUUN_RTGsECpxFjHsJFZIrQ-SWSB_RhQo0YhzTNJknIhKxDlzBpfATX2imFI3YFsylg1RvA_HjRHuuMuWSOGeaBloaxrsaF0LFWvASHBVqCZ9y_o0wZ1qmoZFYOJZYCcqF1sKRH2Yhw5EQAOOyVAJqxf_LKGGn3r4ct3b-0ukAFlrXnXbYPute7MIivud5xGAZ5lDkeg9RzDDet3b6BVb76bE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA06QfRB_MTp1DwIPtVtSdq0j0M3pm5jgoM9WdIkxYJtJ1Xw0Z_gb_SXeJPu80mQPqWQEE5zc0_Se89F6FJIIph24ZATNJTDJA2cIAK7il3fY6JBOfdMNnJ_4HVH7H7sjpey-Et9iPmFm7EMu18bA5-ouL4QDU3F69u1Kf5tb4jW0Yb542eCuggbLoI8mrZcHJxhYDZe05vJNjZIfbX_qltacM1lxmpdTmcX7Uy5Im6VH3cPrelsH23350KrxQF6bn_aEHRYOziPsdJxmQyFrY_CL3kKD0CZFGmBkwznP1_fRk0EpoVL6dgPOG9jkSlc6DQxRT8Ak0Rim-1RHKJRp_1003WmJRMcSTjxHU21BhfOqKDMiwmXTBmJtVj64PdVoIF9mKbJCeGCRzpwOZPcj32uqVJE0CNUyfJMHyPsR7H2XGUKGTFGNQm0NFp0Tca5ijRnVXQ1QyyclMoYYamBTEKDbTjHtopqM0DDqYUUIYWRgJrChlFFxIL8xyhhv9V7nLdO_tPpAm0Obzth727wcIq24DUrQ_lqqAKI6zOgF-_RuV1Bvw1Yxv4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extensions+of+definable+local+homomorphisms+in+o%E2%80%90minimal+structures+and+semialgebraic+groups&rft.jtitle=Mathematical+logic+quarterly&rft.au=Barriga%2C+Eliana&rft.date=2024-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0942-5616&rft.eissn=1521-3870&rft.volume=70&rft.issue=3&rft.spage=267&rft.epage=274&rft_id=info:doi/10.1002%2Fmalq.202300028&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-5616&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-5616&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-5616&client=summon |