Extensions of definable local homomorphisms in o‐minimal structures and semialgebraic groups

We state conditions for which a definable local homomorphism between two locally definable groups G$\mathcal {G}$, G′$\mathcal {G^{\prime }}$ can be uniquely extended when G$\mathcal {G}$ is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1]...

Full description

Saved in:
Bibliographic Details
Published inMathematical logic quarterly Vol. 70; no. 3; pp. 267 - 274
Main Author Barriga, Eliana
Format Journal Article
LanguageEnglish
Published Berlin Wiley Subscription Services, Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We state conditions for which a definable local homomorphism between two locally definable groups G$\mathcal {G}$, G′$\mathcal {G^{\prime }}$ can be uniquely extended when G$\mathcal {G}$ is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group G$G$ not necessarily abelian over a sufficiently saturated real closed field R$R$; namely, that the o‐minimal universal covering group G∼$\widetilde{G}$ of G$G$ is an open locally definable subgroup of H(R)0∼$\widetilde{H(R)^{0}}$ for some R$R$‐algebraic group H$H$ (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group G$G$ over R$R$, we describe G∼$\widetilde{G}$ as a locally definable extension of subgroups of the o‐minimal universal covering groups of commutative R$R$‐algebraic groups (Theorem 3.4).
AbstractList We state conditions for which a definable local homomorphism between two locally definable groups G$\mathcal {G}$, G′$\mathcal {G^{\prime }}$ can be uniquely extended when G$\mathcal {G}$ is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group G$G$ not necessarily abelian over a sufficiently saturated real closed field R$R$; namely, that the o‐minimal universal covering group G∼$\widetilde{G}$ of G$G$ is an open locally definable subgroup of H(R)0∼$\widetilde{H(R)^{0}}$ for some R$R$‐algebraic group H$H$ (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group G$G$ over R$R$, we describe G∼$\widetilde{G}$ as a locally definable extension of subgroups of the o‐minimal universal covering groups of commutative R$R$‐algebraic groups (Theorem 3.4).
We state conditions for which a definable local homomorphism between two locally definable groups G$\mathcal {G}$, G′$\mathcal {G^{\prime }}$ can be uniquely extended when G$\mathcal {G}$ is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group G$G$ not necessarily abelian over a sufficiently saturated real closed field R$R$; namely, that the o‐minimal universal covering group G∼$\widetilde{G}$ of G$G$ is an open locally definable subgroup of H(R)0∼$\widetilde{H(R)^{0}}$ for some R$R$‐algebraic group H$H$ (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group G$G$ over R$R$, we describe G∼$\widetilde{G}$ as a locally definable extension of subgroups of the o‐minimal universal covering groups of commutative R$R$‐algebraic groups (Theorem 3.4).
We state conditions for which a definable local homomorphism between two locally definable groups , can be uniquely extended when is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group not necessarily abelian over a sufficiently saturated real closed field ; namely, that the o‐minimal universal covering group of is an open locally definable subgroup of for some ‐algebraic group (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group over , we describe as a locally definable extension of subgroups of the o‐minimal universal covering groups of commutative ‐algebraic groups (Theorem 3.4).
Author Barriga, Eliana
Author_xml – sequence: 1
  givenname: Eliana
  orcidid: 0000-0002-3983-0576
  surname: Barriga
  fullname: Barriga, Eliana
  email: eliana.barriga@uexternado.edu.co
  organization: Universidad Externado de Colombia
BookMark eNqFkM1KAzEUhYNUsK1uXQdcT83PZDKzLKX-QEUE3RrSmTttykwyTTpodz6Cz-iTmFLRpdzF5cB37uGeERpYZwGhS0omlBB23epmO2GEcRJVfoKGVDCa8FySARqSImWJyGh2hkYhbCIiqCRD9Dp_34ENxtmAXY0rqI3VywZw40rd4LVr4_hubUIbsLHYfX18tsaaGIbDzvflrvcQsLYVDtAa3axg6bUp8cq7vgvn6LTWTYCLnz1GLzfz59ldsni8vZ9NF0nJJMsT4ACCspRrnmY1k2VaCcFkXeYFoVUBvJAHyVKWSi2XUAiZljKvcwm8qpjmY3R1vNt5t-0h7NTG9d7GSMUpTQuaCZlHanKkSu9C8FCrzsdP_F5Rog4dqkOH6rfDaCiOhjfTwP4fWj1MF09_3m_AHXlj
Cites_doi 10.1090/S0894-0347-07-00558-9
10.1016/j.jalgebra.2005.04.016
10.1016/S0168-0072(99)00016-0
10.1016/j.jalgebra.2010.11.001
10.1090/S0002-9939-07-08654-6
10.1007/s00029-013-0123-9
10.2178/jsl/1174668384
10.1016/0022-4049(88)90125-9
10.1215/ijm/1258138139
10.1515/9781400883851
10.1002/malq.200610051
10.1112/blms/28.1.7
10.1016/S0022-4049(03)00085-9
10.1016/j.apal.2009.03.003
10.1017/CBO9780511525919
10.1016/j.jalgebra.2008.07.010
10.1007/s00029-012-0091-5
10.1007/s11856-020-2014-z
ContentType Journal Article
Copyright 2024 The Author(s). Mathematical Logic Quarterly published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Mathematical Logic Quarterly published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
DOI 10.1002/malq.202300028
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1521-3870
EndPage 274
ExternalDocumentID 10_1002_malq_202300028
MALQ202300028
Genre article
GrantInformation_xml – fundername: Israel Science Foundation
  funderid: 1382/15; 181/16
GroupedDBID --Z
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
ID FETCH-LOGICAL-c2728-e3ee51243a346f27c4d5527fc8901d9e397527f24247a7be9574c78f87e3dd2a3
IEDL.DBID DR2
ISSN 0942-5616
IngestDate Wed Aug 13 04:04:40 EDT 2025
Tue Jul 01 03:47:36 EDT 2025
Sun Jul 06 04:45:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2728-e3ee51243a346f27c4d5527fc8901d9e397527f24247a7be9574c78f87e3dd2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3983-0576
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmalq.202300028
PQID 3114916578
PQPubID 1006439
PageCount 8
ParticipantIDs proquest_journals_3114916578
crossref_primary_10_1002_malq_202300028
wiley_primary_10_1002_malq_202300028_MALQ202300028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationSubtitle MLQ
PublicationTitle Mathematical logic quarterly
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 19
1996; 28
2011; 327
1998
2020; 238
2010; 161
2012; 18
2008; 21
2007; 72
2008; 136
1991
2000; 101
1988; 53
2007; 53
2008; 320
2005; 49
1946
2006; 301
2003; 185
e_1_2_6_10_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
Mimura M. (e_1_2_6_14_1) 1991
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 327
  start-page: 71
  year: 2011
  end-page: 106
  article-title: On central extensions and definably compact groups in o‐minimal structures
  publication-title: J. Algebra
– volume: 301
  start-page: 194
  issue: 1
  year: 2006
  end-page: 223
  article-title: Locally definable groups in o‐minimal structures
  publication-title: J. Algebra
– volume: 53
  start-page: 571
  issue: 6
  year: 2007
  end-page: 582
  article-title: The universal covering homomorphism in o‐minimal expansions of groups
  publication-title: Math. Log. Q.
– volume: 161
  start-page: 488
  issue: 4
  year: 2010
  end-page: 503
  article-title: Locally definable homotopy
  publication-title: Ann. Pure Appl. Log.
– volume: 18
  start-page: 885
  issue: 4
  year: 2012
  end-page: 903
  article-title: Definable quotients of locally definable groups
  publication-title: Selecta Math. (N.S.)
– volume: 28
  start-page: 7
  year: 1996
  end-page: 14
  article-title: On groups and rings definable in o–minimal expansions of real closed fields
  publication-title: Bull. Lond. Math. Soc.
– volume: 53
  start-page: 239
  issue: 3
  year: 1988
  end-page: 255
  article-title: On groups and fields definable in ‐minimal structures
  publication-title: J. Pure Appl. Algebra
– volume: 185
  start-page: 103
  issue: 1‐3
  year: 2003
  end-page: 145
  article-title: Solvable groups definable in o‐minimal structures
  publication-title: J. Pure Appl. Algebra
– volume: 136
  start-page: 1087
  issue: 3
  year: 2008
  end-page: 1091
  article-title: Minimal bounded index subgroup for dependent theories
  publication-title: Proc. Amer. Math. Soc.
– volume: 49
  start-page: 1299
  issue: 4
  year: 2005
  end-page: 1321
  article-title: On torsion‐free groups in o‐minimal structures
  publication-title: Illinois J. Math.
– volume: 238
  start-page: 121
  year: 2020
  end-page: 166
  article-title: Definably compact groups definable in real closed fields
  publication-title: Israel J. Math.
– volume: 19
  start-page: 719
  issue: 3
  year: 2013
  end-page: 736
  article-title: Discrete subgroups of locally definable groups
  publication-title: Selecta Math. (N.S.)
– year: 1946
– volume: 21
  start-page: 563
  issue: 2
  year: 2008
  end-page: 596
  article-title: Groups, measures, and the NIP
  publication-title: J. Amer. Math. Soc.
– volume: 101
  start-page: 1
  issue: 1
  year: 2000
  end-page: 27
  article-title: Definable homomorphisms of abelian groups in o‐minimal structures
  publication-title: Ann. Pure Appl. Log.
– year: 1991
– volume: 320
  start-page: 3079
  issue: 7
  year: 2008
  end-page: 3080
  article-title: Corrigendum to: “Locally definable groups in o‐minimal structures” [J. Algebra (2006), no. 1, 194–223, mr2230327] by M. J. Edmundo
  publication-title: J. Algebra
– year: 1998
– volume: 72
  start-page: 67
  issue: 1
  year: 2007
  end-page: 80
  article-title: Type‐definable and invariant groups in o‐minimal structures
  publication-title: J. Symb. Log.
– ident: e_1_2_6_11_1
  doi: 10.1090/S0894-0347-07-00558-9
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jalgebra.2005.04.016
– volume-title: Topology of Lie Groups, I and II
  year: 1991
  ident: e_1_2_6_14_1
– ident: e_1_2_6_16_1
  doi: 10.1016/S0168-0072(99)00016-0
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jalgebra.2010.11.001
– ident: e_1_2_6_19_1
  doi: 10.1090/S0002-9939-07-08654-6
– ident: e_1_2_6_5_1
  doi: 10.1007/s00029-013-0123-9
– ident: e_1_2_6_13_1
  doi: 10.2178/jsl/1174668384
– ident: e_1_2_6_18_1
  doi: 10.1016/0022-4049(88)90125-9
– ident: e_1_2_6_17_1
  doi: 10.1215/ijm/1258138139
– ident: e_1_2_6_6_1
  doi: 10.1515/9781400883851
– ident: e_1_2_6_9_1
  doi: 10.1002/malq.200610051
– ident: e_1_2_6_15_1
  doi: 10.1112/blms/28.1.7
– ident: e_1_2_6_7_1
  doi: 10.1016/S0022-4049(03)00085-9
– ident: e_1_2_6_3_1
  doi: 10.1016/j.apal.2009.03.003
– ident: e_1_2_6_20_1
  doi: 10.1017/CBO9780511525919
– ident: e_1_2_6_2_1
  doi: 10.1016/j.jalgebra.2008.07.010
– ident: e_1_2_6_10_1
  doi: 10.1007/s00029-012-0091-5
– ident: e_1_2_6_4_1
  doi: 10.1007/s11856-020-2014-z
SSID ssj0005170
Score 2.3134508
Snippet We state conditions for which a definable local homomorphism between two locally definable groups G$\mathcal {G}$, G′$\mathcal {G^{\prime }}$ can be uniquely...
We state conditions for which a definable local homomorphism between two locally definable groups , can be uniquely extended when is simply connected...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 267
SubjectTerms Homomorphisms
Subgroups
Theorems
Title Extensions of definable local homomorphisms in o‐minimal structures and semialgebraic groups
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmalq.202300028
https://www.proquest.com/docview/3114916578
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagEwz8Iwql8oDElP7YTpyMFWpVIYoAUakTkWM7IoImoLQSYuIReEaehLPTpi0LEihLPNhxznfnz9bddwidCUkE0y4ccoKWcpikgRNEYFex63tMtCjnnslGHlx7_SG7HLmjpSz-gh-ivHAzlmH9tTFwEeXNBWnoWDy_Nkzxb3tDBE7YBGwZVHS34I9y27ZaHBxhYDJe25uzNrZIc7X76q60gJrLgNXuOL1tJOZzLQJNnhrTSdSQ7z9oHP_zMztoawZHcafQn120ptM9tDkouVzzffTQfbNR7qCeOIux0nGRb4XtNogfszE8sFpJPs5xkuLs6-PTEJbAx3DBTjuFIz0WqcK5HiemrgjMNJHYJpTkB2jY695f9J1ZVQZHEk58R1OtASUwKijzYsIlU4bFLZY-QAsVaAA4pmnSTrjgkQ5cziT3Y59rqhQR9BBV0izVRwj7Uaw9V5laSYxRTQItDd1dm3GuIs1ZFZ3PVyV8Kcg3woJmmYRGYmEpsSqqzRctnBlhHlIYCdAv-KQqIlb6v4wSDjpXt2Xr-C-dTtAGvLMiRLCGKiBmfQqwZRLV0TphN3WroN9VJeZs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_4cVAPfovTqTkInjq3JG3a49CNqdtAUfBkaZMUh65TOkE8-Sf4N_qX-JKum_MiKD2lkDR9H8kv4b3fAziMJI24dvGQE1SVwyULnCBGv0pc3-NRlQnhmWzkTtdr3fDzW7eIJjS5MDk_xPjCzXiGXa-Ng5sL6eMJa2g_enyumOrf9opoFuZNWW9Dn396NWGQcmu2XhweYnA6Xs0reBur9Hi6__S-NAGb3yGr3XOaKxAXs81DTR4qL8O4It9-EDn-63dWYXmESEk9N6E1mNHpOix1xnSu2QbcNV5toDtaKBkkROkkT7kidick94M-PqiwXtbPSC8lg8_3D8NZgh8jOUHtC57qSZQqkul-z5QWwan2JLE5Jdkm3DQb1yctZ1SYwZFUUN_RTGsECpxFjHsJFZIrQ-SWSB_RhQo0YhzTNJknIhKxDlzBpfATX2imFI3YFsylg1RvA_HjRHuuMuWSOGeaBloaxrsaF0LFWvASHBVqCZ9y_o0wZ1qmoZFYOJZYCcqF1sKRH2Yhw5EQAOOyVAJqxf_LKGGn3r4ct3b-0ukAFlrXnXbYPute7MIivud5xGAZ5lDkeg9RzDDet3b6BVb76bE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA06QfRB_MTp1DwIPtVtSdq0j0M3pm5jgoM9WdIkxYJtJ1Xw0Z_gb_SXeJPu80mQPqWQEE5zc0_Se89F6FJIIph24ZATNJTDJA2cIAK7il3fY6JBOfdMNnJ_4HVH7H7sjpey-Et9iPmFm7EMu18bA5-ouL4QDU3F69u1Kf5tb4jW0Yb542eCuggbLoI8mrZcHJxhYDZe05vJNjZIfbX_qltacM1lxmpdTmcX7Uy5Im6VH3cPrelsH23350KrxQF6bn_aEHRYOziPsdJxmQyFrY_CL3kKD0CZFGmBkwznP1_fRk0EpoVL6dgPOG9jkSlc6DQxRT8Ak0Rim-1RHKJRp_1003WmJRMcSTjxHU21BhfOqKDMiwmXTBmJtVj64PdVoIF9mKbJCeGCRzpwOZPcj32uqVJE0CNUyfJMHyPsR7H2XGUKGTFGNQm0NFp0Tca5ijRnVXQ1QyyclMoYYamBTEKDbTjHtopqM0DDqYUUIYWRgJrChlFFxIL8xyhhv9V7nLdO_tPpAm0Obzth727wcIq24DUrQ_lqqAKI6zOgF-_RuV1Bvw1Yxv4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extensions+of+definable+local+homomorphisms+in+o%E2%80%90minimal+structures+and+semialgebraic+groups&rft.jtitle=Mathematical+logic+quarterly&rft.au=Barriga%2C+Eliana&rft.date=2024-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0942-5616&rft.eissn=1521-3870&rft.volume=70&rft.issue=3&rft.spage=267&rft.epage=274&rft_id=info:doi/10.1002%2Fmalq.202300028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-5616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-5616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-5616&client=summon