Epithelial-derived TGF-β2 modulates basal and wound-healing subepithelial matrix homeostasis

The epithelium influences the mesenchyme during dynamic processes such as embryogenesis, wound healing, fibrosis, and carcinogenesis. Since transforming growth factor-β (TGF-β) modulates these processes, we hypothesized that epithelial-derived TGF-β also plays a critical role in maintaining the extr...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Lung cellular and molecular physiology Vol. 291; no. 6; pp. L1277 - L1285
Main Authors Thompson, H. Garrett R., Mih, Justin D., Krasieva, Tatiana B., Tromberg, Bruce J., George, Steven C.
Format Journal Article
LanguageEnglish
Published 01.12.2006
Online AccessGet full text

Cover

Loading…
Abstract The epithelium influences the mesenchyme during dynamic processes such as embryogenesis, wound healing, fibrosis, and carcinogenesis. Since transforming growth factor-β (TGF-β) modulates these processes, we hypothesized that epithelial-derived TGF-β also plays a critical role in maintaining the extracellular matrix at basal conditions. We utilized an in vitro model of the epithelial-mesenchymal trophic unit in the human airways to determine the role of epithelial-derived TGF-β in modulating the extracellular matrix under basal and wound-healing conditions. When differentiated at an air-liquid interface, the human bronchial epithelium produces active TGF-β2 at a concentration of 50–70 pg/ml, whereas TGF-β1 is undetectable. TGF-β2 increases two- to threefold following scrape injury in a dose-dependent fashion and significantly enhances both α-smooth muscle actin expression in the underlying collagen-embedded fibroblasts and secretion of tenascin-C into the matrix. Multiphoton microscopy demonstrates substantially enhanced second harmonic generation from fibrillar collagen in the matrix. Pretreatment of the matrix with either sirolimus (2.5 nM) or paclitaxel (10 nM) abolishes the increases in both TGF-β2 and second harmonic generation in response to epithelial injury. In the absence of the epithelium, exogenous active TGF-β2 (0–400 pg/ml) produces a biphasic response in the second harmonic signal with a minimum occurring at the epithelial-derived basal level. We conclude that epithelial-derived TGF-β2 is secreted in response to injury, significantly alters the bulk optical properties of the extracellular matrix, and its tight regulation may be required for normal collagen homeostasis.
AbstractList The epithelium influences the mesenchyme during dynamic processes such as embryogenesis, wound healing, fibrosis, and carcinogenesis. Since transforming growth factor-β (TGF-β) modulates these processes, we hypothesized that epithelial-derived TGF-β also plays a critical role in maintaining the extracellular matrix at basal conditions. We utilized an in vitro model of the epithelial-mesenchymal trophic unit in the human airways to determine the role of epithelial-derived TGF-β in modulating the extracellular matrix under basal and wound-healing conditions. When differentiated at an air-liquid interface, the human bronchial epithelium produces active TGF-β2 at a concentration of 50–70 pg/ml, whereas TGF-β1 is undetectable. TGF-β2 increases two- to threefold following scrape injury in a dose-dependent fashion and significantly enhances both α-smooth muscle actin expression in the underlying collagen-embedded fibroblasts and secretion of tenascin-C into the matrix. Multiphoton microscopy demonstrates substantially enhanced second harmonic generation from fibrillar collagen in the matrix. Pretreatment of the matrix with either sirolimus (2.5 nM) or paclitaxel (10 nM) abolishes the increases in both TGF-β2 and second harmonic generation in response to epithelial injury. In the absence of the epithelium, exogenous active TGF-β2 (0–400 pg/ml) produces a biphasic response in the second harmonic signal with a minimum occurring at the epithelial-derived basal level. We conclude that epithelial-derived TGF-β2 is secreted in response to injury, significantly alters the bulk optical properties of the extracellular matrix, and its tight regulation may be required for normal collagen homeostasis.
Author Thompson, H. Garrett R.
George, Steven C.
Mih, Justin D.
Tromberg, Bruce J.
Krasieva, Tatiana B.
Author_xml – sequence: 1
  givenname: H. Garrett R.
  surname: Thompson
  fullname: Thompson, H. Garrett R.
– sequence: 2
  givenname: Justin D.
  surname: Mih
  fullname: Mih, Justin D.
– sequence: 3
  givenname: Tatiana B.
  surname: Krasieva
  fullname: Krasieva, Tatiana B.
– sequence: 4
  givenname: Bruce J.
  surname: Tromberg
  fullname: Tromberg, Bruce J.
– sequence: 5
  givenname: Steven C.
  surname: George
  fullname: George, Steven C.
BookMark eNo9kEtOwzAURS1UJNrCBhh5Ay7PbmLHQ1S1BakSkzJE0Yvz3KZykipO-GyLhbAmWkCM7pXuZ3AmbNS0DTF2K2EmZaru8HAMQ7ObAUBqZgpAX7DxKVBCppCMTh4SEKAhvWKTGA_n3qk0Zi_LY9XvKVQYREld9Uol365X4utT8both4A9RV5gxMCxKflbOzSl2BOGqtnxOBT0v-c19l31zvdtTW3sMVbxml16DJFu_nTKnlfL7eJBbJ7Wj4v7jXDKKC2cLoyyYBNDjpzXKqEkk2mWWefm2ko0KRTglZckPVjMNKHxXqGxVmpn5lOmfn9d18bYkc-PXVVj95FLyM-A8j9A-Q-g_Axo_g2EwF7L
CitedBy_id crossref_primary_10_1165_rcmb_2008_0358OC
crossref_primary_10_1089_wound_2012_0406
crossref_primary_10_1016_j_tox_2017_02_011
crossref_primary_10_1186_scrt376
crossref_primary_10_1529_biophysj_107_120006
crossref_primary_10_1016_S2213_2600_14_70002_5
crossref_primary_10_1080_02656736_2017_1316875
crossref_primary_10_1016_j_biopha_2023_114218
crossref_primary_10_1152_japplphysiol_00739_2011
crossref_primary_10_3389_fmed_2020_00191
crossref_primary_10_1016_j_bbrc_2011_07_054
crossref_primary_10_1016_j_coche_2013_12_004
crossref_primary_10_1186_1465_9921_10_9
crossref_primary_10_1038_ng_941
crossref_primary_10_1016_j_jhsa_2008_09_017
crossref_primary_10_1097_TP_0000000000000892
crossref_primary_10_1152_ajplung_00262_2016
crossref_primary_10_1111_j_1600_065X_2011_01030_x
crossref_primary_10_1016_j_fsi_2019_12_062
crossref_primary_10_1089_ten_tea_2007_0279
crossref_primary_10_3389_fmed_2017_00093
crossref_primary_10_1080_08958378_2019_1606367
crossref_primary_10_1002_humu_21449
crossref_primary_10_1111_j_1365_2796_2007_01837_x
crossref_primary_10_1177_1535370214525295
crossref_primary_10_1016_j_jaci_2023_06_005
crossref_primary_10_1111_j_1464_410X_2012_11466_x
crossref_primary_10_1186_s12906_017_1891_0
crossref_primary_10_3390_ijms25063560
crossref_primary_10_18632_aging_103064
crossref_primary_10_1152_ajplung_00062_2007
crossref_primary_10_1016_j_lfs_2023_121539
crossref_primary_10_1117_1_3322296
crossref_primary_10_3389_fcell_2023_1268621
crossref_primary_10_1152_ajplung_00464_2010
crossref_primary_10_1369_0022155415570968
crossref_primary_10_1529_biophysj_106_097998
crossref_primary_10_1371_journal_pone_0118459
crossref_primary_10_1016_j_actbio_2010_07_004
crossref_primary_10_1016_j_ejpb_2012_12_014
crossref_primary_10_1002_emmm_201100627
crossref_primary_10_1378_chest_12_1944
crossref_primary_10_3390_cells9071694
crossref_primary_10_1111_j_1365_2222_2008_03017_x
crossref_primary_10_1007_s10911_007_9056_2
crossref_primary_10_5402_2011_210982
crossref_primary_10_1165_rcmb_2012_0368OC
crossref_primary_10_1186_1465_9921_9_27
crossref_primary_10_1038_s41598_022_22746_4
crossref_primary_10_1371_journal_pone_0120284
crossref_primary_10_1089_ten_tec_2012_0157
crossref_primary_10_1016_j_jaci_2011_11_035
crossref_primary_10_1016_j_ydbio_2008_09_029
crossref_primary_10_1111_his_12368
Cites_doi 10.1016/0014-4800(87)90077-3
10.1080/019021401300317125
10.1165/ajrcmb.21.6.3807
10.1016/j.jaci.2004.09.034
10.1165/rcmb.2002-0121OC
10.1016/S0016-5085(99)70406-3
10.1126/science.7008197
10.1002/jcp.20359
10.1067/mai.2003.128
10.1364/AO.39.001194
10.1177/002215540205000313
10.1089/107632701753213219
10.1096/fj.14.10.1362
10.1067/mai.2003.25
10.1016/S0091-6749(00)90066-6
10.1046/j.1365-2222.2000.00095.x
10.1016/S1350-9462(98)00017-2
10.1161/01.RES.0000118599.25944.D5
10.1073/pnas.172368799
10.1152/ajplung.1998.274.1.L119
10.1126/science.1090922
10.1146/annurev.ph.48.030186.001455
10.1016/S0014-4827(02)00015-0
10.1385/IJGC:31:1-3:41
10.1165/ajrcmb.26.4.4784
10.1164/ajrccm/150.5_Pt_2.S27
10.1089/107632701300062813
10.1016/S0014-4827(02)00049-6
10.1016/j.ejphar.2005.09.042
10.1073/pnas.111133298
10.1177/002215540004800909
10.1242/dev.124.13.2659
10.1002/dvdy.20334
10.1016/0003-2697(76)90527-3
10.1016/j.archoralbio.2004.05.007
10.1097/01.LAB.0000101911.53973.90
10.1165/rcmb.2002-0249OC
10.1164/ajrccm.161.3.9809115
10.1136/bmj.331.7514.443
10.1165/ajrcmb.25.3.4437
10.1097/00063198-200301000-00002
10.1016/S0030-4018(00)00504-6
10.1529/biophysj.104.047308
10.1177/003335490512000506
10.1016/S0140-6736(89)90067-6
10.1038/sj.onc.1208685
10.1152/ajplung.1995.269.3.L377
10.1083/jcb.107.6.2757
10.1016/S0002-9440(10)62954-9
10.1042/cs0890611
10.1152/ajplung.00005.2003
10.1124/jpet.104.079616
10.1165/ajrcmb/1.1.13
10.1146/annurev.cb.05.110189.000443
10.1159/000063616
10.1378/chest.125.3.1063
10.1152/ajplung.00144.2002
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1152/ajplung.00057.2006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1522-1504
EndPage L1285
ExternalDocumentID 10_1152_ajplung_00057_2006
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
8M5
AAYXX
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
C1A
CITATION
DIK
E3Z
EBS
EJD
EMOBN
F5P
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHF
RHI
RPL
RPRKH
TR2
W8F
WH7
WOQ
XSW
YSK
ID FETCH-LOGICAL-c2726-c6b7290947ececf624e4815889cc3691a750b0f2f1e1f09a86ea7ff2a79916c73
ISSN 1040-0605
IngestDate Fri Aug 23 00:23:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2726-c6b7290947ececf624e4815889cc3691a750b0f2f1e1f09a86ea7ff2a79916c73
OpenAccessLink https://escholarship.org/content/qt4gf360w8/qt4gf360w8.pdf?t=ooyuvv
ParticipantIDs crossref_primary_10_1152_ajplung_00057_2006
PublicationCentury 2000
PublicationDate 2006-12-00
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-00
PublicationDecade 2000
PublicationTitle American journal of physiology. Lung cellular and molecular physiology
PublicationYear 2006
References R61
R60
R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R19
  doi: 10.1016/0014-4800(87)90077-3
– ident: R22
  doi: 10.1080/019021401300317125
– ident: R21
  doi: 10.1165/ajrcmb.21.6.3807
– ident: R3
  doi: 10.1016/j.jaci.2004.09.034
– ident: R51
  doi: 10.1165/rcmb.2002-0121OC
– ident: R59
  doi: 10.1016/S0016-5085(99)70406-3
– ident: R4
  doi: 10.1126/science.7008197
– ident: R7
  doi: 10.1002/jcp.20359
– ident: R14
  doi: 10.1067/mai.2003.128
– ident: R18
  doi: 10.1364/AO.39.001194
– ident: R30
  doi: 10.1177/002215540205000313
– ident: R57
  doi: 10.1089/107632701753213219
– ident: R41
  doi: 10.1096/fj.14.10.1362
– ident: R52
– ident: R12
– ident: R29
  doi: 10.1067/mai.2003.25
– ident: R28
  doi: 10.1016/S0091-6749(00)90066-6
– ident: R27
  doi: 10.1046/j.1365-2222.2000.00095.x
– ident: R56
  doi: 10.1016/S1350-9462(98)00017-2
– ident: R60
  doi: 10.1161/01.RES.0000118599.25944.D5
– ident: R61
  doi: 10.1073/pnas.172368799
– ident: R35
  doi: 10.1152/ajplung.1998.274.1.L119
– ident: R5
  doi: 10.1126/science.1090922
– ident: R10
  doi: 10.1146/annurev.ph.48.030186.001455
– ident: R23
  doi: 10.1016/S0014-4827(02)00015-0
– ident: R34
  doi: 10.1385/IJGC:31:1-3:41
– ident: R2
– ident: R53
  doi: 10.1165/ajrcmb.26.4.4784
– ident: R43
  doi: 10.1164/ajrccm/150.5_Pt_2.S27
– ident: R1
  doi: 10.1089/107632701300062813
– ident: R25
  doi: 10.1016/S0014-4827(02)00049-6
– ident: R39
  doi: 10.1016/j.ejphar.2005.09.042
– ident: R48
  doi: 10.1073/pnas.111133298
– ident: R31
  doi: 10.1177/002215540004800909
– ident: R46
  doi: 10.1242/dev.124.13.2659
– ident: R40
  doi: 10.1002/dvdy.20334
– ident: R8
  doi: 10.1016/0003-2697(76)90527-3
– ident: R37
  doi: 10.1016/j.archoralbio.2004.05.007
– ident: R16
  doi: 10.1097/01.LAB.0000101911.53973.90
– ident: R54
  doi: 10.1165/rcmb.2002-0249OC
– ident: R38
  doi: 10.1164/ajrccm.161.3.9809115
– ident: R42
  doi: 10.1136/bmj.331.7514.443
– ident: R44
  doi: 10.1165/ajrcmb.25.3.4437
– ident: R50
  doi: 10.1097/00063198-200301000-00002
– ident: R58
– ident: R26
  doi: 10.1016/S0030-4018(00)00504-6
– ident: R55
  doi: 10.1529/biophysj.104.047308
– ident: R17
  doi: 10.1177/003335490512000506
– ident: R45
  doi: 10.1016/S0140-6736(89)90067-6
– ident: R11
  doi: 10.1038/sj.onc.1208685
– ident: R36
  doi: 10.1152/ajplung.1995.269.3.L377
– ident: R33
  doi: 10.1083/jcb.107.6.2757
– ident: R49
  doi: 10.1016/S0002-9440(10)62954-9
– ident: R9
  doi: 10.1042/cs0890611
– ident: R13
  doi: 10.1152/ajplung.00005.2003
– ident: R6
  doi: 10.1124/jpet.104.079616
– ident: R47
  doi: 10.1165/ajrcmb/1.1.13
– ident: R20
  doi: 10.1146/annurev.cb.05.110189.000443
– ident: R32
  doi: 10.1159/000063616
– ident: R24
  doi: 10.1378/chest.125.3.1063
– ident: R15
  doi: 10.1152/ajplung.00144.2002
SSID ssj0005006
Score 2.1688724
Snippet The epithelium influences the mesenchyme during dynamic processes such as embryogenesis, wound healing, fibrosis, and carcinogenesis. Since transforming growth...
SourceID crossref
SourceType Aggregation Database
StartPage L1277
Title Epithelial-derived TGF-β2 modulates basal and wound-healing subepithelial matrix homeostasis
Volume 291
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVGRQg2qLQgCgV5QdlYCYnzXnaGaau2IECp1A0aOR5bLZoko3mUx2fxIXwBH8O1k3jcDkiUTZQ40XWSe3Qf9n0g9JKlQcED6jsJV0W1Reo5jMuxk8k0jnkYgERUjuLbd_HRWXh8Hp33er-sqKXlonD59z_mlfwPV2EM-KqyZG_BWUMUBuAc-AtH4DAc_4nHw6nKqJjARM4Y5rsC4zE_PHD2BsO9PqWqy41qziXmBHRVWxPgi2qj5CjzUC8kLAthaJBSlev_Si7qUtRgNM4v57bpavZ2rGITel1EL8y75HSp0nfFZKIDW9VcZdd613puPRAFVJ9LDpuIYfLRNQi4vGiyRkAGVeSNGT-ZwYuJK23z5kzJJ0b65m4-q8suYk3Dlhy7NxY2VkEijSxWwY5e7DWb3qKVz-A7gw0b2gKcZr6FVFscn_q0bRIjuuumQdC64ohUIVr2eTqBn6WKWkaJ3pdaqckuNOCG9jQxjdqbiuiopTHSNEZNPfg7FMSgkr8nH1a17CNPd341n9mldEX09fp7WGaTZf_km-hB67jg_QaFD1FPVFtoe79ii7r8hl_h94bFW-huvzu7N-gaCm6jT-twxQquP39QbKCKNVQxwAdfgyq-BlXcQBVbUH2Ezg6G-eDIabt7OJwmNHZ4XIBj52VhIrjgMqahUIWD0jTjPIgzn4EtW3iSSl_40stYGguWSElZolwangSP0UZVV-IJwjIIC5ZGaTaOkhAIFpzKJKA8ZTQTAJYdRLqfN5o2RVxGf2fX01s9_QzdX4F3F20sZkvxHOzURfFCs_s3pLiWTw
link.rule.ids 315,783,787,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epithelial-derived+TGF-%CE%B22+modulates+basal+and+wound-healing+subepithelial+matrix+homeostasis&rft.jtitle=American+journal+of+physiology.+Lung+cellular+and+molecular+physiology&rft.au=Thompson%2C+H.+Garrett+R.&rft.au=Mih%2C+Justin+D.&rft.au=Krasieva%2C+Tatiana+B.&rft.au=Tromberg%2C+Bruce+J.&rft.date=2006-12-01&rft.issn=1040-0605&rft.eissn=1522-1504&rft.volume=291&rft.issue=6&rft.spage=L1277&rft.epage=L1285&rft_id=info:doi/10.1152%2Fajplung.00057.2006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_ajplung_00057_2006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0605&client=summon