Colloidal Nanoplatelets‐Based Soft Matter Technology for Photonic Interconnected Networks: Low‐Threshold Lasing and Polygonal Self‐Coupling Microlasers

Soft matter‐based microlasers are widely regarded as excellent building blocks for realizing photonic interconnected networks in optoelectronic chips, owing to their flexibility and functional network topology. However, the potential of these devices is hindered by challenges such as poor lasing sta...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 18; no. 1
Main Authors Duan, Rui, Thung, Yi Tian, Zhang, Zitong, Durmusoglu, Emek Goksu, He, Yichen, Xiao, Lian, Lee, Calvin Xiu Xian, Lew, Wen Siang, Zhang, Lin, Li, Hanyang, Yang, Jun, Demir, Hilmi Volkan, Sun, Handong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soft matter‐based microlasers are widely regarded as excellent building blocks for realizing photonic interconnected networks in optoelectronic chips, owing to their flexibility and functional network topology. However, the potential of these devices is hindered by challenges such as poor lasing stability, high lasing threshold, and gaps in knowledge regarding cavity interconnection characteristics. In this study, the first demonstration of a high‐quality, low‐threshold nanoplatelets (NPLs)‐based polymer microfiber laser fabricated using capillary immersion techniques and its photonic interconnected networks are presented. CdSe/CdS@Cd1‐xZnxS core/buffer shell@graded‐shell NPLs with high optical gain characteristics are adopted as the gain medium. The study achieves a lasing threshold below 14.8 µJ cm−2, a single‐mode quality (Q)‐factor of ≈5500, and robust lasing stability in the fabricated NPLs‐based microfibers. Furthermore, the study pioneers the exploration of polygonal self‐coupling microlasers and the optical characteristics of their interconnected fiber network. Based on the signal generation mechanism observed in the photonic networks, an interconnected NPLs‐based fiber network structure achieving single‐mode lasing emission and laser mode modulation is successfully designed. The work contributes a novel method for realizing microlasers fabricated via soft‐matter technologies and provides a key foundation and new insights for unit design and programming for future photonic network systems. The optical characteristics of high‐quality, low‐threshold nanoplatelets‐based soft matter microfiber lasers and their interconnected optical networks are investigated. This work provides a preliminary foundation and new insights for unit design and programming for future photonic network systems.
AbstractList Abstract Soft matter‐based microlasers are widely regarded as excellent building blocks for realizing photonic interconnected networks in optoelectronic chips, owing to their flexibility and functional network topology. However, the potential of these devices is hindered by challenges such as poor lasing stability, high lasing threshold, and gaps in knowledge regarding cavity interconnection characteristics. In this study, the first demonstration of a high‐quality, low‐threshold nanoplatelets (NPLs)‐based polymer microfiber laser fabricated using capillary immersion techniques and its photonic interconnected networks are presented. CdSe/CdS@Cd 1‐x Zn x S core/buffer shell@graded‐shell NPLs with high optical gain characteristics are adopted as the gain medium. The study achieves a lasing threshold below 14.8 µJ cm −2 , a single‐mode quality ( Q )‐factor of ≈5500, and robust lasing stability in the fabricated NPLs‐based microfibers. Furthermore, the study pioneers the exploration of polygonal self‐coupling microlasers and the optical characteristics of their interconnected fiber network. Based on the signal generation mechanism observed in the photonic networks, an interconnected NPLs‐based fiber network structure achieving single‐mode lasing emission and laser mode modulation is successfully designed. The work contributes a novel method for realizing microlasers fabricated via soft‐matter technologies and provides a key foundation and new insights for unit design and programming for future photonic network systems.
Soft matter‐based microlasers are widely regarded as excellent building blocks for realizing photonic interconnected networks in optoelectronic chips, owing to their flexibility and functional network topology. However, the potential of these devices is hindered by challenges such as poor lasing stability, high lasing threshold, and gaps in knowledge regarding cavity interconnection characteristics. In this study, the first demonstration of a high‐quality, low‐threshold nanoplatelets (NPLs)‐based polymer microfiber laser fabricated using capillary immersion techniques and its photonic interconnected networks are presented. CdSe/CdS@Cd1‐xZnxS core/buffer shell@graded‐shell NPLs with high optical gain characteristics are adopted as the gain medium. The study achieves a lasing threshold below 14.8 µJ cm−2, a single‐mode quality (Q)‐factor of ≈5500, and robust lasing stability in the fabricated NPLs‐based microfibers. Furthermore, the study pioneers the exploration of polygonal self‐coupling microlasers and the optical characteristics of their interconnected fiber network. Based on the signal generation mechanism observed in the photonic networks, an interconnected NPLs‐based fiber network structure achieving single‐mode lasing emission and laser mode modulation is successfully designed. The work contributes a novel method for realizing microlasers fabricated via soft‐matter technologies and provides a key foundation and new insights for unit design and programming for future photonic network systems.
Soft matter‐based microlasers are widely regarded as excellent building blocks for realizing photonic interconnected networks in optoelectronic chips, owing to their flexibility and functional network topology. However, the potential of these devices is hindered by challenges such as poor lasing stability, high lasing threshold, and gaps in knowledge regarding cavity interconnection characteristics. In this study, the first demonstration of a high‐quality, low‐threshold nanoplatelets (NPLs)‐based polymer microfiber laser fabricated using capillary immersion techniques and its photonic interconnected networks are presented. CdSe/CdS@Cd1‐xZnxS core/buffer shell@graded‐shell NPLs with high optical gain characteristics are adopted as the gain medium. The study achieves a lasing threshold below 14.8 µJ cm−2, a single‐mode quality (Q)‐factor of ≈5500, and robust lasing stability in the fabricated NPLs‐based microfibers. Furthermore, the study pioneers the exploration of polygonal self‐coupling microlasers and the optical characteristics of their interconnected fiber network. Based on the signal generation mechanism observed in the photonic networks, an interconnected NPLs‐based fiber network structure achieving single‐mode lasing emission and laser mode modulation is successfully designed. The work contributes a novel method for realizing microlasers fabricated via soft‐matter technologies and provides a key foundation and new insights for unit design and programming for future photonic network systems. The optical characteristics of high‐quality, low‐threshold nanoplatelets‐based soft matter microfiber lasers and their interconnected optical networks are investigated. This work provides a preliminary foundation and new insights for unit design and programming for future photonic network systems.
Author Sun, Handong
Zhang, Zitong
Durmusoglu, Emek Goksu
Yang, Jun
Demir, Hilmi Volkan
Thung, Yi Tian
Zhang, Lin
Xiao, Lian
Lew, Wen Siang
Duan, Rui
He, Yichen
Lee, Calvin Xiu Xian
Li, Hanyang
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0009-0006-9197-5728
  surname: Duan
  fullname: Duan, Rui
  email: rui.duan@ntu.edu.sg
  organization: Nanyang Technological University
– sequence: 2
  givenname: Yi Tian
  surname: Thung
  fullname: Thung, Yi Tian
  organization: Nanyang Technological University
– sequence: 3
  givenname: Zitong
  surname: Zhang
  fullname: Zhang, Zitong
  organization: Xi'an Modern Chemistry Research Institute
– sequence: 4
  givenname: Emek Goksu
  orcidid: 0000-0001-6840-8342
  surname: Durmusoglu
  fullname: Durmusoglu, Emek Goksu
  organization: Nanyang Technological University
– sequence: 5
  givenname: Yichen
  surname: He
  fullname: He, Yichen
  organization: Tianjin University
– sequence: 6
  givenname: Lian
  surname: Xiao
  fullname: Xiao, Lian
  organization: Nanyang Technological University
– sequence: 7
  givenname: Calvin Xiu Xian
  orcidid: 0000-0002-5426-2482
  surname: Lee
  fullname: Lee, Calvin Xiu Xian
  organization: Nanyang Technological University
– sequence: 8
  givenname: Wen Siang
  orcidid: 0000-0002-5161-741X
  surname: Lew
  fullname: Lew, Wen Siang
  organization: Nanyang Technological University
– sequence: 9
  givenname: Lin
  orcidid: 0000-0003-0545-1110
  surname: Zhang
  fullname: Zhang, Lin
  organization: Tianjin University
– sequence: 10
  givenname: Hanyang
  orcidid: 0000-0001-9744-6006
  surname: Li
  fullname: Li, Hanyang
  organization: Harbin Engineering University
– sequence: 11
  givenname: Jun
  surname: Yang
  fullname: Yang, Jun
  organization: Guangdong University of Technology
– sequence: 12
  givenname: Hilmi Volkan
  orcidid: 0000-0003-1793-112X
  surname: Demir
  fullname: Demir, Hilmi Volkan
  email: hvdemir@ntu.edu.sg
  organization: Bilkent University
– sequence: 13
  givenname: Handong
  orcidid: 0000-0002-2261-7103
  surname: Sun
  fullname: Sun, Handong
  email: hdsun@ntu.edu.sg
  organization: Nanyang Technological University
BookMark eNqFUc1uEzEQtlCR6N-VsyXOCbZje3e5QcRPpW0bteG8crzjZIvxLLajKDcegRfg5XiSOkrVHpnLjDTfn_SdkZOAAQh5y9mUMybe-xHjVDAxY6yS6hU55bWeTeq6aU6e75q9IWcpPTCmyuhT8neO3uPQG09vTMDRmwwecvr3-88nk6Cn9-gyvTY5Q6RLsJuAHtd76jDSxQYzhsHSq1C-FkMAmwvlBvIO44_0gba4K0LLTYS0Qd_T1qQhrKkJPV2g368xFN978K6g5rgd_eF7PdiIvpjHdEFeO-MTXD7tc_L9y-fl_Nukvf16Nf_YTqyohJo4LWwFbtVrqVYrI6VQXIMCayq34rW0vQEudSX7mdWqakDL2mjr2ExKYGWdk3dH3THiry2k3D3gNpZwqRMNVzUXqtIFNT2iSr6UIrhujMNPE_cdZ92hgu5QQfdcQSE0R8Ju8LD_D7prF7d3L9xHNG2T5g
Cites_doi 10.1016/j.snb.2020.127672
10.1038/s41467-017-00198-z
10.1002/smll.200801165
10.1021/ja807724e
10.1002/adma.201503573
10.1039/C8NR01838C
10.1038/nmat4231
10.1021/jz401970p
10.1021/acs.nanolett.9b05270
10.1002/adma.201905824
10.1073/pnas.1408453111
10.1002/lpor.201200074
10.1021/acsnano.9b05313
10.1002/adom.201500232
10.1016/j.matt.2020.07.008
10.1103/PhysRevB.91.121302
10.1038/s41586-019-1157-8
10.1038/nmat3145
10.1038/nnano.2014.213
10.1021/acsphotonics.1c01453
10.1038/nmat1884
10.1002/adma.202108884
10.1021/acsnano.5b01927
10.1002/adom.201900192
10.1021/mz500663t
10.1038/s41467-018-08132-7
10.1002/adma.201700821
10.1117/1.AP.4.4.046003
10.1038/nature02193
10.1038/s41565-017-0041-7
10.1002/aelm.202000965
10.1021/ph400084s
10.1021/acsnano.5b02509
10.1021/acs.jpclett.1c02623
10.1038/s41598-019-53437-2
10.1038/s41377-021-00471-3
10.1038/ncomms2971
10.1063/5.0094798
10.1038/s41467-017-01506-3
10.1016/j.xcrp.2020.100308
10.1021/nl1040308
10.1021/acs.jpclett.0c03836
10.1002/adfm.201907417
10.1021/nn3014855
10.1002/lpor.202200849
10.1038/nnano.2008.232
10.1002/lpor.202100034
10.1126/sciadv.1700225
10.1073/pnas.1408283111
10.1039/c3nr01276j
10.1002/adma.202007131
10.1021/nl500775p
10.1002/adma.201402995
10.1002/adom.201900057
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202300745
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202300745
LPOR202300745
Genre article
GrantInformation_xml – fundername: Agency for Science, Technology and Research
  funderid: AME‐IRG‐A20E5c0083
– fundername: EDB‐IPP
  funderid: REQ0165097
– fundername: National Research Foundation Singapore
  funderid: NRF‐CRP23‐2019‐0007
– fundername: Singapore Agency for Science, Technology and Research (A*STAR) MTC program
  funderid: M21J9b0085
– fundername: Ministry of Education, Singapore
– fundername: Academic Research Fund Tier 1
  funderid: MOE‐RG62/20; MOE‐RG139/22
– fundername: TUBITAK
  funderid: 119N343; 120N076; 121C266; 121N395; 20AG001
– fundername: TUBA and TUBITAK 2247‐A National Leader Researchers Program
  funderid: 121C266
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c2725-f62c7efbd645bba442516e5eca7fb184cdae14674d3c6579e648a6cf0344e0f03
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Thu Oct 10 16:33:59 EDT 2024
Fri Aug 23 01:49:23 EDT 2024
Sat Aug 24 00:46:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2725-f62c7efbd645bba442516e5eca7fb184cdae14674d3c6579e648a6cf0344e0f03
ORCID 0000-0002-2261-7103
0009-0006-9197-5728
0000-0003-0545-1110
0000-0003-1793-112X
0000-0002-5426-2482
0000-0002-5161-741X
0000-0001-6840-8342
0000-0001-9744-6006
PQID 2915812576
PQPubID 1016358
PageCount 9
ParticipantIDs proquest_journals_2915812576
crossref_primary_10_1002_lpor_202300745
wiley_primary_10_1002_lpor_202300745_LPOR202300745
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2021; 7
2017; 8
2019; 9
2015; 14
2013; 4
2017; 3
2015; 3
2021; 2
2023; 17
2020; 20
2019; 10
2019; 13
2014; 26
2011; 11
2011; 10
2017; 29
2008; 3
2019; 569
2020; 32
2013; 7
2014; 111
2015; 9
2013; 5
2020; 308
2014; 1
2022; 120
2021; 15
2021; 10
2015; 27
2020; 3
2003; 426
2014; 3
2021; 12
2021; 33
2022; 4
2020; 30
2022; 9
2022; 34
2007; 6
2014; 14
2009; 5
2015; 91
2012; 6
2014; 9
2018; 10
2008; 130
2018; 13
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 26
  start-page: 8096
  year: 2014
  publication-title: Adv. Mater.
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 2177
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  year: 2021
  publication-title: Cell Rep Phys Sci
– volume: 9
  start-page: 9475
  year: 2015
  publication-title: ACS Nano
– volume: 6
  start-page: 6751
  year: 2012
  publication-title: ACS Nano
– volume: 3
  start-page: 614
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 15
  year: 2021
  publication-title: Laser Photonics Rev.
– volume: 4
  year: 2022
  publication-title: Adv. Photonics
– volume: 111
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 10
  start-page: 42
  year: 2021
  publication-title: Light: Sci. Appl.
– volume: 10
  start-page: 9466
  year: 2018
  publication-title: Nanoscale
– volume: 8
  start-page: 143
  year: 2017
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 4
  start-page: 3574
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 1122
  year: 2011
  publication-title: Nano Lett.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1136
  year: 2015
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 133
  year: 2013
  publication-title: Laser Photonics Rev.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 4
  start-page: 1971
  year: 2013
  publication-title: Nat. Commun.
– volume: 426
  start-page: 816
  year: 2003
  publication-title: Nature
– volume: 12
  start-page: 9086
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 2772
  year: 2014
  publication-title: Nano Lett.
– volume: 8
  start-page: 1256
  year: 2017
  publication-title: Nat. Commun.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 3
  start-page: 1266
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 20
  start-page: 4102
  year: 2020
  publication-title: Nano Lett.
– volume: 10
  start-page: 226
  year: 2019
  publication-title: Nat. Commun.
– volume: 308
  year: 2020
  publication-title: Sens. Actuators, B
– volume: 10
  start-page: 936
  year: 2011
  publication-title: Nat. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 14
  start-page: 484
  year: 2015
  publication-title: Nat. Mater.
– volume: 9
  start-page: 891
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 260
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 6
  start-page: 357
  year: 2007
  publication-title: Nat. Mater.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 5
  start-page: 562
  year: 2009
  publication-title: Small
– volume: 27
  start-page: 7101
  year: 2015
  publication-title: Adv. Mater.
– volume: 1
  start-page: 11
  year: 2014
  publication-title: ACS Photonics
– volume: 3
  start-page: 371
  year: 2020
  publication-title: Matter
– volume: 569
  start-page: 208
  year: 2019
  publication-title: Nature
– volume: 9
  start-page: 5041
  year: 2015
  publication-title: ACS Nano
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 17
  year: 2023
  publication-title: Laser Photonics Rev.
– volume: 5
  start-page: 6297
  year: 2013
  publication-title: Nanoscale
– volume: 130
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1180
  year: 2022
  publication-title: ACS Photonics
– volume: 120
  year: 2022
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_7_10_1
  doi: 10.1016/j.snb.2020.127672
– ident: e_1_2_7_53_1
  doi: 10.1038/s41467-017-00198-z
– ident: e_1_2_7_23_1
  doi: 10.1002/smll.200801165
– ident: e_1_2_7_32_1
  doi: 10.1021/ja807724e
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201503573
– ident: e_1_2_7_52_1
  doi: 10.1039/C8NR01838C
– ident: e_1_2_7_47_1
  doi: 10.1038/nmat4231
– ident: e_1_2_7_45_1
  doi: 10.1021/jz401970p
– ident: e_1_2_7_54_1
  doi: 10.1021/acs.nanolett.9b05270
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201905824
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.1408453111
– ident: e_1_2_7_27_1
  doi: 10.1002/lpor.201200074
– ident: e_1_2_7_36_1
  doi: 10.1021/acsnano.9b05313
– ident: e_1_2_7_4_1
  doi: 10.1002/adom.201500232
– ident: e_1_2_7_7_1
  doi: 10.1016/j.matt.2020.07.008
– ident: e_1_2_7_43_1
  doi: 10.1103/PhysRevB.91.121302
– ident: e_1_2_7_14_1
  doi: 10.1038/s41586-019-1157-8
– ident: e_1_2_7_31_1
  doi: 10.1038/nmat3145
– ident: e_1_2_7_49_1
  doi: 10.1038/nnano.2014.213
– ident: e_1_2_7_15_1
  doi: 10.1021/acsphotonics.1c01453
– ident: e_1_2_7_13_1
  doi: 10.1038/nmat1884
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.202108884
– ident: e_1_2_7_41_1
  doi: 10.1021/acsnano.5b01927
– ident: e_1_2_7_17_1
  doi: 10.1002/adom.201900192
– ident: e_1_2_7_26_1
  doi: 10.1021/mz500663t
– ident: e_1_2_7_19_1
  doi: 10.1038/s41467-018-08132-7
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201700821
– ident: e_1_2_7_2_1
  doi: 10.1117/1.AP.4.4.046003
– ident: e_1_2_7_22_1
  doi: 10.1038/nature02193
– ident: e_1_2_7_11_1
  doi: 10.1038/s41565-017-0041-7
– ident: e_1_2_7_37_1
  doi: 10.1002/aelm.202000965
– ident: e_1_2_7_28_1
  doi: 10.1021/ph400084s
– ident: e_1_2_7_51_1
  doi: 10.1021/acsnano.5b02509
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.jpclett.1c02623
– ident: e_1_2_7_29_1
  doi: 10.1038/s41598-019-53437-2
– ident: e_1_2_7_6_1
  doi: 10.1038/s41377-021-00471-3
– ident: e_1_2_7_12_1
  doi: 10.1038/ncomms2971
– ident: e_1_2_7_34_1
  doi: 10.1063/5.0094798
– ident: e_1_2_7_16_1
  doi: 10.1038/s41467-017-01506-3
– ident: e_1_2_7_46_1
  doi: 10.1016/j.xcrp.2020.100308
– ident: e_1_2_7_20_1
  doi: 10.1021/nl1040308
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.jpclett.0c03836
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.201907417
– ident: e_1_2_7_40_1
  doi: 10.1021/nn3014855
– ident: e_1_2_7_48_1
  doi: 10.1002/lpor.202200849
– ident: e_1_2_7_24_1
  doi: 10.1038/nnano.2008.232
– ident: e_1_2_7_50_1
  doi: 10.1002/lpor.202100034
– ident: e_1_2_7_1_1
  doi: 10.1126/sciadv.1700225
– ident: e_1_2_7_9_1
  doi: 10.1073/pnas.1408283111
– ident: e_1_2_7_21_1
  doi: 10.1039/c3nr01276j
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.202007131
– ident: e_1_2_7_42_1
  doi: 10.1021/nl500775p
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201402995
– ident: e_1_2_7_25_1
  doi: 10.1002/adom.201900057
SSID ssj0055556
Score 2.4385052
Snippet Soft matter‐based microlasers are widely regarded as excellent building blocks for realizing photonic interconnected networks in optoelectronic chips, owing to...
Abstract Soft matter‐based microlasers are widely regarded as excellent building blocks for realizing photonic interconnected networks in optoelectronic chips,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms colloidal nanoplatelets
compositional engineering
Coupling
Laser modes
Lasing
Microfibers
Microlasers
Network topologies
Optical properties
Optoelectronics
photonic interconnected networks
Photonics
Platelets (materials)
Polygons
self‐coupling microlasers
Signal generation
single‐mode lasing
Stability
Title Colloidal Nanoplatelets‐Based Soft Matter Technology for Photonic Interconnected Networks: Low‐Threshold Lasing and Polygonal Self‐Coupling Microlasers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202300745
https://www.proquest.com/docview/2915812576
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF7EkxfrL1ar7EHwlNpus5voTcVSpK1FK3gL-1vFkhTTInryEXwBX84ncSZJW_UiaC5JYDckO7Mz30x2viVk32hQHOssBDl14_nChZ5yzHpCmMDUTKisw0Cx0xWtG__ilt9-qeLP-SFmCTecGZm9xgkuVXo4Jw0dAj6t4ubf6AWxyhzZ9BAVXc34ozgcWXlRKBoehHq1KWtjjR1-7_7dK82h5lfAmnmcZonI6bvmC00eqpOxquqXHzSO__mYFbJcwFF6kuvPKlmw8RopFdCUFhM_XSfvmGBI7g20BXucjIYAUUHi6cfr2yn4QWgK5px2MrJOOk_XU4DEtHeXjJGAl2bZR40razTgXNrNV6Cnx7SdPMGD-qBWKf4No22JGQwqY0N7yfB5gNECvbZDB63OkgkWEQ9oB5cSAvYH_LpBbprn_bOWV-zs4GkWMO45wTRoiDLC50pJHwxHXVhutQycgphTG2nRhPumoQUPjqzwQym0Q35CW4PTJlmMk9huEWolq2ttuHUBBDs6lFIKzp1oSC3BdskyOZhKNhrlBB5RTtXMIhz1aDbqZVKZCj4qJnIasaM6BwwEUVmZsEyCvzwlavcur2Z323_ptEOW4NrPEz0Vsjh-nNhdgD5jtZep9ycRXgQr
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VeoALlFJEeJQ9VOrJIdl414ZboUVp66QRBImbtU-oGsUIJ6rKqT-hf6B_jl_CjB8J9FIJfLFs7Vr27jy-Gc9-C_DOGhQc5x0GOW0bhNLHgfbcBVLayLZsrJ2nQLHXl93z8MuFqKsJaS1MyQ8xS7iRZhT2mhScEtL7c9bQEQLUJu3-TW5QLMBL1HlBuvnxdMYgJfAoFhjFshNgsNeqeRtbfP9x_8d-aQ42H0LWwuecrIKu37YsNfnRnE5009z-Q-T4rM95BSsVImUfShFagxdu_BpWK3TKKt3P1-Ev5Riy7xbboknOrkeIUnHS87vff47QFWJTtOisV_B1snnGniEqZoOrbEIcvKxIQBoqrjEIdVm_LELPD1mS_cQHDVGycvohxhJFSQymxpYNstGvSwoY2JkbeWx1nE1pHfEl61E1IcJ_hLBv4Pzk0_C4G1SbOwSGR1wEXnKDQqKtDIXWKkTb0ZZOOKMirzHsNFY5suKh7RgpogMnw1hJ44mi0LXwtAGL42zsNoE5xdvGWOF8hPGOiZVSUggvO8ooNF-qAe_rqU2vSw6PtGRr5imNejob9Qbs1DOfVrqcp_ygLRAGYWDWAF5M4X-ekiaDb6ezq62ndNqDpe6wl6TJ5_7XbVjG-2GZ99mBxcnN1O0iEprot4Ws3wNGPAhL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB61VEK9FMpDhALdAxInh2TjXRtuQIhSSELEQ-JmrfcBqFEc4UQVPfUn8Af4c_wSZmznxaVS64tla9eyd-fxzXj2W4Bdo1FwrLMY5FSN50sXerHj1pPSBKZiwtg6ChTbHdm88c9uxe3MKv6cH2KScCPNyOw1KfjAuP0paWgP8WmZNv8mLyg-widf1jiFX_XLCYGUwCNbXxTKmoexXmVM21jh-_P9593SFGvOItbM5TSWQI1fNq80-VkeDeOy_v2Ox_F_vmYZvhR4lB3lAvQVPtj-CiwV2JQVmp-uwgtlGJIHg23RICeDHmJUnPL09c_zMTpCbIr2nLUztk42zdczxMSse58MiYGXZelHTaU1GoEu6-Ql6OkhayW_8EHXKFcp_Q5jLUUpDKb6hnWT3tMdhQvsyvYctjpJRrSK-I61qZYQwT8C2DW4aZxenzS9YmsHT_OAC89JrlFEYiN9EcfKR8tRlVZYrQIXY9CpjbJkw31T01IEB1b6oZLaEUGhreBpHRb6Sd9uALOKV7U2wroAox0dKqWkEE7WlFZovFQJ9sYzGw1yBo8o52rmEY16NBn1EmyNJz4qNDmN-EFVIAjCsKwEPJvBvzwlanUvLidXm__S6TssduuNqPWjc_4NPuNtP0_6bMHC8HFktxEGDeOdTNLfADkhBvo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colloidal+Nanoplatelets%E2%80%90Based+Soft+Matter+Technology+for+Photonic+Interconnected+Networks%3A+Low%E2%80%90Threshold+Lasing+and+Polygonal+Self%E2%80%90Coupling+Microlasers&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Duan%2C+Rui&rft.au=Yi+Tian+Thung&rft.au=Zhang%2C+Zitong&rft.au=Durmusoglu%2C+Emek+Goksu&rft.date=2024-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1002%2Flpor.202300745&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon