BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1

Bone morphogenetic proteins play important roles in connective tissue morphogenesis. In this study, we used human multipotential mesenchymal cells as a target to analyze the effect of bone morphogenetic proteins on chondrogenesis. We also analyzed the effect of proinflammatory cytokine interleukin‐1...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 189; no. 3; pp. 275 - 284
Main Authors Majumdar, Manas Kumar, Wang, Eunice, Morris, Elisabeth Ann
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.12.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bone morphogenetic proteins play important roles in connective tissue morphogenesis. In this study, we used human multipotential mesenchymal cells as a target to analyze the effect of bone morphogenetic proteins on chondrogenesis. We also analyzed the effect of proinflammatory cytokine interleukin‐1 on chondrogenic‐differentiated cells and the interaction of IL‐1β with bone morphogenetic proteins. Cells placed in a 3‐dimensional matrix of alginate beads and cultured in a serum‐free media with bone morphogenetic protein‐2 and ‐9 induced expression of type II collagen (Col2A1) mRNA and increased expression of aggrecan and cartilage oligomeric matrix protein suggesting chondrogenic differentiation of the cells. The transcription factor Sox‐9 that regulates both Col2A1 and aggrecan gene expression showed increased expression with BMP treatment. Chondrogenic differentiated cells treated with interleukin‐1 decreased Sox‐9, Col2A1 and aggrecan gene expression. Removal of interleukin‐1 and further addition of bone morphogenetic proteins resulted in returned expression of chondrogenic markers. Chondrogenic differentiated cells cultured in the presence of different concentrations of bone morphogenetic proteins and interleukin‐1 showed that bone morphogenetic proteins were able to partially block the suppressive effect of interleukin‐1. This study shows that bone morphogenetic proteins play an important role in chondrogenesis and may prove to be potential therapeutics in cartilage repair. © 2001 Wiley‐Liss, Inc.
AbstractList Bone morphogenetic proteins play important roles in connective tissue morphogenesis. In this study, we used human multipotential mesenchymal cells as a target to analyze the effect of bone morphogenetic proteins on chondrogenesis. We also analyzed the effect of proinflammatory cytokine interleukin-1 on chondrogenic-differentiated cells and the interaction of IL-1beta with bone morphogenetic proteins. Cells placed in a 3-dimensional matrix of alginate beads and cultured in a serum-free media with bone morphogenetic protein-2 and -9 induced expression of type II collagen (Col2A1) mRNA and increased expression of aggrecan and cartilage oligomeric matrix protein suggesting chondrogenic differentiation of the cells. The transcription factor Sox-9 that regulates both Col2A1 and aggrecan gene expression showed increased expression with BMP treatment. Chondrogenic differentiated cells treated with interleukin-1 decreased Sox-9, Col2A1 and aggrecan gene expression. Removal of interleukin-1 and further addition of bone morphogenetic proteins resulted in returned expression of chondrogenic markers. Chondrogenic differentiated cells cultured in the presence of different concentrations of bone morphogenetic proteins and interleukin-1 showed that bone morphogenetic proteins were able to partially block the suppressive effect of interleukin-1. This study shows that bone morphogenetic proteins play an important role in chondrogenesis and may prove to be potential therapeutics in cartilage repair.
Abstract Bone morphogenetic proteins play important roles in connective tissue morphogenesis. In this study, we used human multipotential mesenchymal cells as a target to analyze the effect of bone morphogenetic proteins on chondrogenesis. We also analyzed the effect of proinflammatory cytokine interleukin‐1 on chondrogenic‐differentiated cells and the interaction of IL‐1β with bone morphogenetic proteins. Cells placed in a 3‐dimensional matrix of alginate beads and cultured in a serum‐free media with bone morphogenetic protein‐2 and ‐9 induced expression of type II collagen ( Col2A1 ) mRNA and increased expression of aggrecan and cartilage oligomeric matrix protein suggesting chondrogenic differentiation of the cells. The transcription factor Sox‐9 that regulates both Col2A1 and aggrecan gene expression showed increased expression with BMP treatment. Chondrogenic differentiated cells treated with interleukin‐1 decreased Sox‐9, Col2A1 and aggrecan gene expression. Removal of interleukin‐1 and further addition of bone morphogenetic proteins resulted in returned expression of chondrogenic markers. Chondrogenic differentiated cells cultured in the presence of different concentrations of bone morphogenetic proteins and interleukin‐1 showed that bone morphogenetic proteins were able to partially block the suppressive effect of interleukin‐1. This study shows that bone morphogenetic proteins play an important role in chondrogenesis and may prove to be potential therapeutics in cartilage repair. © 2001 Wiley‐Liss, Inc.
Bone morphogenetic proteins play important roles in connective tissue morphogenesis. In this study, we used human multipotential mesenchymal cells as a target to analyze the effect of bone morphogenetic proteins on chondrogenesis. We also analyzed the effect of proinflammatory cytokine interleukin‐1 on chondrogenic‐differentiated cells and the interaction of IL‐1β with bone morphogenetic proteins. Cells placed in a 3‐dimensional matrix of alginate beads and cultured in a serum‐free media with bone morphogenetic protein‐2 and ‐9 induced expression of type II collagen (Col2A1) mRNA and increased expression of aggrecan and cartilage oligomeric matrix protein suggesting chondrogenic differentiation of the cells. The transcription factor Sox‐9 that regulates both Col2A1 and aggrecan gene expression showed increased expression with BMP treatment. Chondrogenic differentiated cells treated with interleukin‐1 decreased Sox‐9, Col2A1 and aggrecan gene expression. Removal of interleukin‐1 and further addition of bone morphogenetic proteins resulted in returned expression of chondrogenic markers. Chondrogenic differentiated cells cultured in the presence of different concentrations of bone morphogenetic proteins and interleukin‐1 showed that bone morphogenetic proteins were able to partially block the suppressive effect of interleukin‐1. This study shows that bone morphogenetic proteins play an important role in chondrogenesis and may prove to be potential therapeutics in cartilage repair. © 2001 Wiley‐Liss, Inc.
Author Wang, Eunice
Morris, Elisabeth Ann
Majumdar, Manas Kumar
Author_xml – sequence: 1
  givenname: Manas Kumar
  surname: Majumdar
  fullname: Majumdar, Manas Kumar
  email: mmajumdar@genetics.com
  organization: Genetics Institute, Inc., Cambridge, Massachusetts
– sequence: 2
  givenname: Eunice
  surname: Wang
  fullname: Wang, Eunice
  organization: Genetics Institute, Inc., Cambridge, Massachusetts
– sequence: 3
  givenname: Elisabeth Ann
  surname: Morris
  fullname: Morris, Elisabeth Ann
  organization: Genetics Institute, Inc., Cambridge, Massachusetts
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11748585$$D View this record in MEDLINE/PubMed
BookMark eNp1kEFP3DAQha0KBAvl0D9Q-dpDih3HcXxsVxSoFthKII6WsSeNaWJHdrawv6F_ut5daE-c5mnmvU-ad4T2fPCA0AdKPlNCytNHM24Ff4dmlEhRVDUv99Asr2gheUUP0VFKj4QQKRk7QIeUiqrhDZ-hP1-vlkWJtbd4oyQeYxjCBAmbLngbw0_wzmDr2hYi-MnpyQWPQ4u71aA9Hlb95MYc2Jx6PEACb7r1kLWBvk9bcvgN0YR8w1MH2PnOPbgpxDWGTDXThna5KOh7tN_qPsHJyzxGd9_ObucXxeLm_HL-ZVGYUpS80LYVVhMhuZEEBJNSMK25sSz_zkjDaWkaZuuqrkpigNnSCGoraWhjKBDDjtGnHdfEkFKEVo3RDTquFSVq06PKhW4Fz96PO--4ehjA_ne-NJgNpzvDk-th_TZJfZ8vX5HFLuHSBM__Ejr-UrVggqv763M1J7dyWf8g6oL9BTRQkUk
CitedBy_id crossref_primary_10_1007_s11010_013_1827_z
crossref_primary_10_2174_1574888X17666220420134619
crossref_primary_10_1016_j_metabol_2022_155139
crossref_primary_10_1089_ten_tea_2008_0357
crossref_primary_10_1186_s12917_018_1425_0
crossref_primary_10_3892_etm_2018_5849
crossref_primary_10_1016_j_biomaterials_2007_03_002
crossref_primary_10_3390_ijms20184475
crossref_primary_10_1016_j_biomaterials_2018_11_014
crossref_primary_10_1111_eos_12792
crossref_primary_10_1002_adhm_201600187
crossref_primary_10_3390_genes11020118
crossref_primary_10_1902_jop_2009_090290
crossref_primary_10_1111_j_1440_1681_2005_04231_x
crossref_primary_10_1089_ten_tea_2008_0368
crossref_primary_10_1016_S0165_2478_02_00065_2
crossref_primary_10_1016_j_idc_2005_07_005
crossref_primary_10_1007_s00011_012_0450_x
crossref_primary_10_1002_jor_20635
crossref_primary_10_1002_art_24152
crossref_primary_10_1002_jor_20516
crossref_primary_10_1016_j_biopha_2018_04_185
crossref_primary_10_1002_bit_20828
crossref_primary_10_1016_j_gep_2022_119288
crossref_primary_10_1371_journal_pone_0077613
crossref_primary_10_1007_s00784_017_2069_3
crossref_primary_10_1016_j_rvsc_2004_04_005
crossref_primary_10_1038_s41467_018_08278_4
crossref_primary_10_1007_s12015_013_9464_1
crossref_primary_10_1016_j_cellsig_2012_12_003
crossref_primary_10_1210_en_2008_0655
crossref_primary_10_1089_ten_2006_12_ft_96
crossref_primary_10_1002_btpr_1808
crossref_primary_10_1089_ten_2006_12_1419
crossref_primary_10_3390_ijms232012583
crossref_primary_10_1089_ten_tea_2008_0466
crossref_primary_10_1016_j_joca_2009_04_023
crossref_primary_10_1089_ten_tea_2022_0049
crossref_primary_10_1158_0008_5472_CAN_09_2912
crossref_primary_10_3390_biomedicines9111666
crossref_primary_10_1007_s12195_012_0248_5
crossref_primary_10_1155_2013_284873
crossref_primary_10_1016_S0001_4079_19_33203_0
crossref_primary_10_3390_ijms23136983
crossref_primary_10_1042_BST20140031
crossref_primary_10_1016_j_joca_2012_08_009
crossref_primary_10_1089_107632703768247377
crossref_primary_10_1016_j_gendis_2015_09_003
crossref_primary_10_1016_j_patbio_2007_09_010
crossref_primary_10_1002_jcp_20775
crossref_primary_10_1002_ptr_3733
crossref_primary_10_1016_j_biomaterials_2012_08_045
crossref_primary_10_1111_j_1432_0436_2003_07109003_x
crossref_primary_10_1007_s00249_007_0139_1
crossref_primary_10_1097_00001433_200210000_00005
crossref_primary_10_1038_sj_gt_3302201
crossref_primary_10_2106_00004623_200308000_00017
crossref_primary_10_1089_ten_2006_12_ft_152
crossref_primary_10_1186_1475_2859_13_29
crossref_primary_10_1073_pnas_0500031102
crossref_primary_10_1186_1471_2474_14_216
crossref_primary_10_1371_journal_pone_0179729
crossref_primary_10_1002_jgm_2644
crossref_primary_10_1111_eos_12249
crossref_primary_10_1002_art_11328
crossref_primary_10_1016_j_jbiomech_2009_09_018
crossref_primary_10_3390_bioengineering10060741
crossref_primary_10_1089_ten_tea_2009_0189
crossref_primary_10_1016_j_berh_2006_06_003
crossref_primary_10_1089_tea_2007_0272
crossref_primary_10_1002_bit_22426
crossref_primary_10_1089_ten_tea_2008_0099
crossref_primary_10_1227_NEU_0b013e318235d65f
crossref_primary_10_3389_fcvm_2022_924873
crossref_primary_10_1021_acsbiomaterials_8b00532
crossref_primary_10_1007_s13346_015_0236_0
crossref_primary_10_1016_j_biomaterials_2011_05_002
crossref_primary_10_1007_s12195_015_0387_6
crossref_primary_10_1016_j_bbadis_2013_05_016
crossref_primary_10_1097_01_bor_0000198005_88568_df
crossref_primary_10_1002_jcb_22290
crossref_primary_10_1016_j_nec_2005_06_004
crossref_primary_10_1016_j_diff_2016_03_005
crossref_primary_10_1371_journal_pone_0136229
crossref_primary_10_1038_ncprheum0216
crossref_primary_10_1242_jcs_061556
crossref_primary_10_1292_jvms_18_0202
crossref_primary_10_1016_S0945_053X_03_00049_0
crossref_primary_10_1007_s00784_016_1963_4
crossref_primary_10_1038_nbt795
crossref_primary_10_1016_j_spinee_2013_11_034
crossref_primary_10_1016_j_scr_2014_05_005
crossref_primary_10_1016_j_joca_2005_07_015
crossref_primary_10_1016_j_joca_2005_07_012
crossref_primary_10_3724_SP_J_1005_2008_00953
crossref_primary_10_1002_jcp_25651
crossref_primary_10_1242_dev_200249
crossref_primary_10_1007_s10439_008_9562_4
crossref_primary_10_1089_ten_tea_2012_0411
crossref_primary_10_1089_ten_tea_2011_0083
crossref_primary_10_1007_s00264_011_1301_z
crossref_primary_10_1182_blood_2006_07_034124
crossref_primary_10_1002_jcb_20211
crossref_primary_10_1155_2021_9778207
crossref_primary_10_1089_hum_2010_173
crossref_primary_10_1089_ten_tea_2011_0400
crossref_primary_10_1016_j_joca_2015_07_008
crossref_primary_10_1111_jpi_12098
crossref_primary_10_1089_ten_tec_2012_0142
crossref_primary_10_1002_jcp_20977
crossref_primary_10_1097_01_scs_0000186307_09171_20
crossref_primary_10_1016_j_bonr_2023_101723
crossref_primary_10_1002_jcp_21282
crossref_primary_10_1016_S0142_9612_03_00493_9
crossref_primary_10_4236_abb_2013_410A4004
crossref_primary_10_1016_j_arthro_2015_07_012
crossref_primary_10_1080_21691401_2020_1809439
crossref_primary_10_1111_j_1365_2052_2005_01347_x
crossref_primary_10_1292_jvms_17_0084
crossref_primary_10_1016_j_orthres_2004_12_009
crossref_primary_10_1002_jcp_27257
crossref_primary_10_1089_ten_2006_12_877
crossref_primary_10_30607_kvj_1081105
crossref_primary_10_1016_j_joca_2022_07_012
crossref_primary_10_1089_ten_tec_2018_0295
crossref_primary_10_1016_j_biomaterials_2007_09_005
crossref_primary_10_4252_wjsc_v12_i9_922
crossref_primary_10_1074_jbc_M305312200
crossref_primary_10_1002_jor_20156
crossref_primary_10_1016_S0040_8166_02_00106_4
crossref_primary_10_1074_jbc_M503328200
crossref_primary_10_3389_fcell_2020_605120
crossref_primary_10_1111_dgd_12049
crossref_primary_10_4252_wjsc_v8_i1_1
crossref_primary_10_1089_ten_tea_2012_0103
crossref_primary_10_1002_jcb_21319
crossref_primary_10_1002_btpr_2629
crossref_primary_10_1002_jor_24061
crossref_primary_10_1007_s12033_012_9522_y
crossref_primary_10_1007_s00011_018_1131_1
crossref_primary_10_1016_j_jcms_2013_01_037
crossref_primary_10_1016_j_joca_2016_01_006
crossref_primary_10_1111_j_1365_2613_2010_00707_x
crossref_primary_10_1111_j_1745_7254_2007_00553_x
crossref_primary_10_1007_s00018_015_2115_8
crossref_primary_10_1016_j_job_2020_01_004
crossref_primary_10_1089_scd_2019_0209
crossref_primary_10_1016_S0304_3835_03_00015_6
crossref_primary_10_3390_bioengineering10040454
crossref_primary_10_1016_j_scr_2013_02_002
crossref_primary_10_1007_s10529_022_03280_9
crossref_primary_10_3390_ijms15045199
crossref_primary_10_1111_gtc_12887
crossref_primary_10_1038_sj_gt_3302155
crossref_primary_10_5966_sctm_2013_0207
crossref_primary_10_1007_s13238_012_2107_5
crossref_primary_10_1089_scd_2013_0301
crossref_primary_10_3390_cells9030582
crossref_primary_10_1016_S0020_1383_09_70006_3
crossref_primary_10_2329_perio_61_9
crossref_primary_10_1002_term_288
crossref_primary_10_1007_s10616_005_3751_x
crossref_primary_10_1016_j_copbio_2004_08_001
crossref_primary_10_1007_s12079_016_0334_x
crossref_primary_10_1002_art_24352
crossref_primary_10_1517_17425247_5_5_543
crossref_primary_10_2139_ssrn_4200534
crossref_primary_10_1002_jbm_a_31656
crossref_primary_10_1002_bdrc_20167
crossref_primary_10_1007_s00432_011_1047_4
crossref_primary_10_1089_clo_2008_0027
crossref_primary_10_1196_annals_1346_006
crossref_primary_10_1089_10763270360728215
crossref_primary_10_1016_j_bone_2009_11_005
crossref_primary_10_1097_BTK_0b013e31819b2cf2
crossref_primary_10_1016_j_joca_2007_03_015
crossref_primary_10_1038_sj_mt_6300192
crossref_primary_10_1016_j_compositesb_2023_110805
crossref_primary_10_1016_j_joca_2018_03_007
crossref_primary_10_1002_jcp_26100
crossref_primary_10_1016_j_biomaterials_2007_01_010
crossref_primary_10_1002_jor_20508
crossref_primary_10_1016_j_jds_2024_04_004
crossref_primary_10_3390_cells1040994
crossref_primary_10_1088_1758_5090_ab1436
crossref_primary_10_1016_j_bone_2008_07_240
crossref_primary_10_1002_jcb_10467
crossref_primary_10_1089_ten_teb_2009_0705
crossref_primary_10_1002_jor_20068
crossref_primary_10_1089_ten_2006_12_2253
crossref_primary_10_4236_jbise_2013_68A1004
crossref_primary_10_1163_092050609X12518804794703
crossref_primary_10_1038_sj_gt_3302075
crossref_primary_10_1089_ten_tea_2008_0273
crossref_primary_10_1002_bdrc_20189
crossref_primary_10_3389_fcell_2022_856261
crossref_primary_10_1016_j_joca_2005_09_002
Cites_doi 10.1210/en.130.3.1318
10.1046/j.1432-0436.1999.6420067.x
10.1002/1097-4652(200010)185:1<98::AID-JCP9>3.0.CO;2-1
10.1006/dbio.1996.8487
10.2106/00004623-200002000-00001
10.1126/science.279.5356.1528
10.1002/art.1780290402
10.2106/00004623-199812000-00004
10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J
10.1016/0925-4773(96)00540-0
10.1146/annurev.biochem.67.1.753
10.1016/0955-0674(89)90070-7
10.1089/ten.1998.4.415
10.1073/pnas.87.6.2220
10.1359/jbmr.1999.14.10.1734
10.1002/(SICI)1097-0177(199708)209:4<377::AID-AJA5>3.0.CO;2-F
10.1101/gad.3.11.1657
10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7
10.1128/MCB.17.4.2336
10.1247/csf.25.195
10.1007/BF00541245
10.1038/ng0697-174
10.1016/0168-9525(94)90014-0
10.1126/science.289.5477.313
10.1016/S0006-291X(05)80208-6
10.1016/8756-3282(92)90364-3
10.1074/jbc.275.24.17937
10.1016/S0959-437X(97)80147-5
10.2106/00004623-199274050-00005
10.1016/S0945-053X(99)00042-6
10.1101/gad.10.13.1580
10.1002/jor.1100090504
10.1016/S8756-3282(96)00259-1
10.1016/0049-0172(90)90044-G
10.1097/00003086-199910001-00020
10.1002/art.1780290215
10.1074/jbc.273.24.14989
10.1002/(SICI)1097-4652(199602)166:2<351::AID-JCP13>3.0.CO;2-E
10.1038/nbt0398-247
10.1016/S1048-6666(97)80029-8
10.1093/emboj/17.19.5718
10.1002/jor.1100160403
10.1128/MCB.19.1.107
10.2106/00004623-199812000-00011
10.1172/JCI113823
10.1016/0167-4889(90)90145-4
10.1074/jbc.275.5.3687
10.1016/S8756-3282(96)00138-X
10.1016/S8756-3282(96)00258-X
10.1242/dev.124.6.1109
10.1073/pnas.85.24.9484
ContentType Journal Article
Copyright Copyright © 2001 Wiley‐Liss, Inc.
Copyright 2001 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2001 Wiley‐Liss, Inc.
– notice: Copyright 2001 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1002/jcp.10025
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 284
ExternalDocumentID 10_1002_jcp_10025
11748585
JCP10025
ark_67375_WNG_C0T9P6Q0_H
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEFU
ABEML
ABHUG
ABIJN
ABJNI
ABPPZ
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AETEA
AEUQT
AEUYR
AFBPY
AFDAS
AFFPM
AFGKR
AFMIJ
AFPWT
AFRAH
AFVGU
AFZJQ
AGHSJ
AGJLS
AHBTC
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XFK
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZA5
ZGI
ZXP
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ID FETCH-LOGICAL-c2725-adf7da0795c90e739973aa5cd3109308512c83d646420ce3d2c71d49c18c1e0c3
IEDL.DBID DR2
ISSN 0021-9541
IngestDate Thu Sep 26 19:47:51 EDT 2024
Sat Sep 28 07:41:30 EDT 2024
Sat Aug 24 00:50:05 EDT 2024
Wed Jan 17 05:01:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright 2001 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2725-adf7da0795c90e739973aa5cd3109308512c83d646420ce3d2c71d49c18c1e0c3
Notes ark:/67375/WNG-C0T9P6Q0-H
ArticleID:JCP10025
istex:86209D403AEE61B0493838D60919295531CF8D7B
PMID 11748585
PageCount 10
ParticipantIDs crossref_primary_10_1002_jcp_10025
pubmed_primary_11748585
wiley_primary_10_1002_jcp_10025_JCP10025
istex_primary_ark_67375_WNG_C0T9P6Q0_H
PublicationCentury 2000
PublicationDate December 2001
PublicationDateYYYYMMDD 2001-12-01
PublicationDate_xml – month: 12
  year: 2001
  text: December 2001
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J. Cell. Physiol
PublicationYear 2001
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B. 1997. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17: 2336-2346.
Caplan AI. 1991. Mesenchymal stem cells. J Orthop Res 9: 641-650.
Pevny LH, Lovell-Badge R. 1997. Sox genes find their feet. Curr Opin Genet Dev 7: 338-344.
Gimble JM, Robinson CE, Wu X, Kelly KA. 1996. The function of adipocyte in the bone marrow stroma: an update. Bone 19: 421-428.
Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. 1998. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Engineering 4: 415-428.
Zhao Q, Eberspaecher H, Lefebvre V, De Crombrugghe B. 1997. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn 209: 377-386.
Ferrari G, Angelis GC, Coletta M, Paolucci E, Stornaiuolo A, Mavilio F. 1998. Muscle regeration by bone marrow-derived myogenic progenitors. Science 279: 1528-1530.
Goldring MB, Birkhead J, Sandell LJ, Kimura T, Krane SM. 1988. Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest 82: 2026-2037.
Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnston B. 1998. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. The Journal of Bone and Joint Surjery 80: 1745-1757.
Sellers R, Zhang R, Glasson S, Kim H, Peluso D, D'Augusta D, Beckwith K, Morris E. 2000. Repair of Articular cartilage one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am 82-A: 151-160.
Yasko AW, Lane JM, Fellinger EJ, Rosen V, Wozney JM, Wang EA. 1992. The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats. [published erratum appears in J Bone Joint Surg Am 1992 Aug;74(7):1111]. J Bone Joint Surg Am 74: 659-670.
Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ. 1998. Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair. Journal of Orthpedic Research 16: 406-413.
Macias D, Ganan Y, Sampath TK, Piedra ME, Ros MA, Hurle JM. 1997. Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124: 1109-1117.
Duprez D, Bell EJ, Richardson MK, Archer CW, Wolpert L, Brickell PM, Francis-West PH. 1996. Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech Dev 57: 145-157.
Hogan BL. 1996. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10: 1580-1594.
Majumdar M, Thiede M, Mosca J, Moorman M, Gerson S. 1998. Phenotypic and functional comparison of cultures of bone marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176: 57-66.
Solursh M. 1989. Differentiation of cartilage and bone. Curr Opin Cell Biol 1: 989-994.
Fontana A, Hengartner H, Weber E, Fehr K, Grob PJ, Cohen G. 1982. Interleukin 1 activity in the synovial fluid of patients with rheumatoid arthritis. Rheumatol Int 2: 49-53.
Zhou L, Lefebvre V, Zhang Z, Eberspaecher H, De Crombrugghe B. 1998. Three high mobility group-like sequences within a 48-base pair enhancer of the Col2A1 gene are required for cartilage-specific expression in vivo. J Biol Chem 273: 14989-17999.
Akiyama H, Shukunami C, Nakamura T, Hiraki Y. 2000. Differential expressions of BMP family genes during chondrogenic differentiation of mouse ATDC5 cells. Cell Struct Funct 25: 195-204.
Lyons KM, Pelton RW, Hogan BL. 1989. Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev 3: 1657-1668.
Ng LJ, Wheatley S, Muscat GE, Conway-Campbell J, Bowles J, Wright E, Bell DM, Tam PP, Cheah KS, Koopman P. 1997. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183: 108-121.
O'Driscoll SW. 1999. Articular cartilage regeneration using periosteum. Clin Orthop S186-S203.
Zehentner BK, Dony C, Burtscher H. 1999. The transcription factor Sox9 is involved in BMP-2 signaling. J Bone Miner Res 14: 1734-1741.
Miller AF, Harvey SA, Thies RS, Olson MS. 2000. Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. J Biol Chem 275: 17937-17945.
Haynesworth SE, Goshima J, Goldberg VM, Calplan AI. 1992. Characterization of cells with osteogenic potential from the human bone marrow. Bone 13: 81-95.
Linkhart TA, Mohan S, Baylink DJ. 1996. Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 19: 1S-12S.
Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS. 1997. SOX9 directly regulates the type-II collagen gene. Nat Genet 16: 174-178.
Murakami S, Lefebvre V, de Crombrugghe B. 2000. Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha. J Biol Chem 275: 3687-3692.
Suh J-k, Aoren A, Muzzonigro TS, Disilvestro M, Fu FH. 1997. Injury and repair of articular cartilage: related scientific issues. Operative Techniques in Orthopaedics 7: 270-278.
Kamachi Y, Cheah KS, Kondoh H. 1999. Mechanism of regulatory target selection by the SOX high-mobility-group domain proteins as revealed by comparison of SOX1/2/3 and SOX9. Mol Cell Biol 19: 107-120.
Buckwalter J, Mankin H. 1998a. Atricular cartilage repair and transplantation. Arthritis Rheum 42: 1331-1342.
Lefebvre V, Li P, de Crombrugghe B. 1998. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17: 5718-5733.
Murphy JM, Heinegard R, McIntosh A, Sterchi D, Barry FP. 1999. Distribution of cartilage molecules in the developing mouse joint. Matrix Biol 18: 487-497.
O'Driscoll SW. 1998. The healing and regeneration of articular cartilage. J Bone Joint Surg Am 80: 1795-1812.
Yocum DE, Allen JB, Wahl SM, Calandra GB, Wilder RL. 1986. Inhibition by cyclosporin A of streptococcal cell wall-induced arthritis and hepatic granulomas in rats. Arthritis Rheum 29: 262-273.
Schlaak JF, Pfers I, Meyer Zum Buschenfelde KH, Marker-Hermann E. 1996. Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol 14: 155-162.
Lopez-Coviella I, Berse B, Krauss R, Thies RS, Blusztajn JK. 2000. Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9. Science 289: 313-316.
Hardingham T, Bayliss M. 1990. Proteoglycans of articular cartilage: changes in aging and in joint disease. Semin Arthritis Rheum 20: 12-33.
Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM. 1988. Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci USA 85: 9484-9488.
Massague J. 1998. TGF-beta signal transduction. Annu Rev Biochem 67: 753-791.
Majumdar MK, Banks V, Peluso DP, Morris EA. 2000. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 185: 98-106.
Lum ZP, Hakala BE, Mort JS, Recklies AD. 1996. Modulation of the catabolic effects of interleukin-1 beta on human articular chondrocytes by transforming growth factor-beta. J Cell Physiol 166: 351-359.
Thies RS, Bauduy M, Ashton BA, Kurtzberg L, Wozney JM, Rosen V. 1992. Recombinant human bone morphogenetic protein-2 induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology 130: 1318-1324.
Denker AE, Haas AR, Nicoll SB, Tuan RS. 1999. Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation 64: 67-76.
Katagiri T, Yamaguchi A, Ikeda T, Yoshiki S, Wozney JM, Rosen V, Wang EA, Tanaka H, Omura S, Suda T. 1990. The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun 172: 295-299.
Miossec P, Dinarello CA, Ziff M. 1986. Interleukin-1 lymphocyte chemotactic activity in rheumatoid arthritis synovial fluid. Arthritis Rheum 29: 461-470.
Reddi AH. 1998. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 16: 247-252.
Yamashita H, Ten Dijke P, Heldin CH, Miyazono K. 1996. Bone morphogenetic protein receptors. Bone 19: 569-574.
Lefebvre V, Peeters-Joris C, Vaes G. 1990. Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochim Biophys Acta 1052: 366-378.
Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P, Luxenberg DP, McQuaid D, Moutsatsoj IK, Noue J, Wozney JM, 1990. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA 87: 2220-2224.
Kingsley DM. 1994. What do BMPs do in mammals? Clues from the mouse short-ear mutation. Trends Genet 10: 16-21.
1989; 3
1989; 1
1996; 19
2000; 25
1999; 64
1992; 13
1996; 166
1998; 279
2000; 275
1998; 80
1996; 14
1996; 57
1998; 176
1991; 9
1996; 10
1998; 67
1997; 7
1999
1992; 74
1998; 273
1997; 124
1998; 16
1990; 1052
1990; 20
1998; 17
1990; 87
1990
2000; 289
1992; 130
1982; 2
1997; 183
1999; 19
1999; 18
1999; 14
2000; 82‐A
1997; 17
1986; 29
1997; 16
2000; 185
1998b
1988; 85
1997; 209
1988; 82
1998; 4
1998a; 42
1990; 172
1994; 10
e_1_2_6_51_1
Buckwalter JA (e_1_2_6_6_1) 1990
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
Schlaak JF (e_1_2_6_41_1) 1996; 14
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 10
  start-page: 16
  year: 1994
  end-page: 21
  article-title: What do BMPs do in mammals? Clues from the mouse short‐ear mutation
  publication-title: Trends Genet
– volume: 17
  start-page: 2336
  year: 1997
  end-page: 2346
  article-title: SOX9 is a potent activator of the chondrocyte‐specific enhancer of the pro alpha1(II) collagen gene
  publication-title: Mol Cell Biol
– volume: 74
  start-page: 659
  year: 1992
  end-page: 670
  article-title: The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP‐2). A radiographic, histological, and biomechanical study in rats
  publication-title: J Bone Joint Surg Am
– volume: 13
  start-page: 81
  year: 1992
  end-page: 95
  article-title: Characterization of cells with osteogenic potential from the human bone marrow
  publication-title: Bone
– volume: 185
  start-page: 98
  year: 2000
  end-page: 106
  article-title: Isolation, characterization, and chondrogenic potential of human bone marrow‐derived multipotential stromal cells
  publication-title: J Cell Physiol
– volume: 64
  start-page: 67
  year: 1999
  end-page: 76
  article-title: Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein‐2 in high‐density micromass cultures
  publication-title: Differentiation
– volume: 57
  start-page: 145
  year: 1996
  end-page: 157
  article-title: Overexpression of BMP‐2 and BMP‐4 alters the size and shape of developing skeletal elements in the chick limb
  publication-title: Mech Dev
– volume: 1
  start-page: 989
  year: 1989
  end-page: 994
  article-title: Differentiation of cartilage and bone
  publication-title: Curr Opin Cell Biol
– volume: 183
  start-page: 108
  year: 1997
  end-page: 121
  article-title: SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse
  publication-title: Dev Biol
– volume: 19
  start-page: 107
  year: 1999
  end-page: 120
  article-title: Mechanism of regulatory target selection by the SOX high‐mobility‐group domain proteins as revealed by comparison of SOX1/2/3 and SOX9
  publication-title: Mol Cell Biol
– year: 1990
– volume: 67
  start-page: 753
  year: 1998
  end-page: 791
  article-title: TGF‐beta signal transduction
  publication-title: Annu Rev Biochem
– volume: 130
  start-page: 1318
  year: 1992
  end-page: 1324
  article-title: Recombinant human bone morphogenetic protein‐2 induces osteoblastic differentiation in W‐20‐17 stromal cells
  publication-title: Endocrinology
– volume: 80
  start-page: 1795
  year: 1998
  end-page: 1812
  article-title: The healing and regeneration of articular cartilage
  publication-title: J Bone Joint Surg Am
– volume: 289
  start-page: 313
  year: 2000
  end-page: 316
  article-title: Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP‐9
  publication-title: Science
– volume: 273
  start-page: 14989
  year: 1998
  end-page: 17999
  article-title: Three high mobility group‐like sequences within a 48‐base pair enhancer of the Col2A1 gene are required for cartilage‐specific expression in vivo
  publication-title: J Biol Chem
– volume: 3
  start-page: 1657
  year: 1989
  end-page: 1668
  article-title: Patterns of expression of murine Vgr‐1 and BMP‐2a RNA suggest that transforming growth factor‐beta‐like genes coordinately regulate aspects of embryonic development
  publication-title: Genes Dev
– volume: 85
  start-page: 9484
  year: 1988
  end-page: 9488
  article-title: Purification and characterization of other distinct bone‐inducing factors
  publication-title: Proc Natl Acad Sci USA
– volume: 29
  start-page: 262
  year: 1986
  end-page: 273
  article-title: Inhibition by cyclosporin A of streptococcal cell wall‐induced arthritis and hepatic granulomas in rats
  publication-title: Arthritis Rheum
– volume: 14
  start-page: 1734
  year: 1999
  end-page: 1741
  article-title: The transcription factor Sox9 is involved in BMP‐2 signaling
  publication-title: J Bone Miner Res
– volume: 16
  start-page: 247
  year: 1998
  end-page: 252
  article-title: Role of morphogenetic proteins in skeletal tissue engineering and regeneration
  publication-title: Nat Biotechnol
– volume: 209
  start-page: 377
  year: 1997
  end-page: 386
  article-title: Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis
  publication-title: Dev Dyn
– volume: 87
  start-page: 2220
  year: 1990
  end-page: 2224
  article-title: Recombinant human bone morphogenetic protein induces bone formation
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 1580
  year: 1996
  end-page: 1594
  article-title: Bone morphogenetic proteins: multifunctional regulators of vertebrate development
  publication-title: Genes Dev
– volume: 172
  start-page: 295
  year: 1990
  end-page: 299
  article-title: The non‐osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein‐2
  publication-title: Biochem Biophys Res Commun
– volume: 29
  start-page: 461
  year: 1986
  end-page: 470
  article-title: Interleukin‐1 lymphocyte chemotactic activity in rheumatoid arthritis synovial fluid
  publication-title: Arthritis Rheum
– volume: 7
  start-page: 338
  year: 1997
  end-page: 344
  article-title: Sox genes find their feet
  publication-title: Curr Opin Genet Dev
– volume: 18
  start-page: 487
  year: 1999
  end-page: 497
  article-title: Distribution of cartilage molecules in the developing mouse joint
  publication-title: Matrix Biol
– volume: 176
  start-page: 57
  year: 1998
  end-page: 66
  article-title: Phenotypic and functional comparison of cultures of bone marrow‐derived mesenchymal stem cells (MSCs) and stromal cells
  publication-title: J Cell Physiol
– volume: 279
  start-page: 1528
  year: 1998
  end-page: 1530
  article-title: Muscle regeration by bone marrow‐derived myogenic progenitors
  publication-title: Science
– volume: 80
  start-page: 1745
  year: 1998
  end-page: 1757
  article-title: The chondrogenic potential of human bone‐marrow‐derived mesenchymal progenitor cells
  publication-title: The Journal of Bone and Joint Surjery
– volume: 20
  start-page: 12
  year: 1990
  end-page: 33
  article-title: Proteoglycans of articular cartilage: changes in aging and in joint disease
  publication-title: Semin Arthritis Rheum
– volume: 25
  start-page: 195
  year: 2000
  end-page: 204
  article-title: Differential expressions of BMP family genes during chondrogenic differentiation of mouse ATDC5 cells
  publication-title: Cell Struct Funct
– volume: 4
  start-page: 415
  year: 1998
  end-page: 428
  article-title: Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow
  publication-title: Tissue Engineering
– volume: 275
  start-page: 17937
  year: 2000
  end-page: 17945
  article-title: Bone morphogenetic protein‐9. An autocrine/paracrine cytokine in the liver
  publication-title: J Biol Chem
– volume: 9
  start-page: 641
  year: 1991
  end-page: 650
  article-title: Mesenchymal stem cells
  publication-title: J Orthop Res
– volume: 19
  start-page: 569
  year: 1996
  end-page: 574
  article-title: Bone morphogenetic protein receptors
  publication-title: Bone
– volume: 14
  start-page: 155
  year: 1996
  end-page: 162
  article-title: Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies
  publication-title: Clin Exp Rheumatol
– volume: 275
  start-page: 3687
  year: 2000
  end-page: 3692
  article-title: Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin‐1 and tumor necrosis factor‐alpha
  publication-title: J Biol Chem
– volume: 17
  start-page: 5718
  year: 1998
  end-page: 5733
  article-title: A new long form of Sox5 (L‐Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene
  publication-title: EMBO J
– volume: 42
  start-page: 1331
  year: 1998a
  end-page: 1342
  article-title: Atricular cartilage repair and transplantation
  publication-title: Arthritis Rheum
– start-page: S186
  year: 1999
  end-page: S203
  article-title: Articular cartilage regeneration using periosteum
  publication-title: Clin Orthop
– year: 1998b
– volume: 16
  start-page: 406
  year: 1998
  end-page: 413
  article-title: Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair
  publication-title: Journal of Orthpedic Research
– volume: 166
  start-page: 351
  year: 1996
  end-page: 359
  article-title: Modulation of the catabolic effects of interleukin‐1 beta on human articular chondrocytes by transforming growth factor‐beta
  publication-title: J Cell Physiol
– volume: 82
  start-page: 2026
  year: 1988
  end-page: 2037
  article-title: Interleukin 1 suppresses expression of cartilage‐specific types II and IX collagens and increases types I and III collagens in human chondrocytes
  publication-title: J Clin Invest
– volume: 7
  start-page: 270
  year: 1997
  end-page: 278
  article-title: Injury and repair of articular cartilage: related scientific issues
  publication-title: Operative Techniques in Orthopaedics
– volume: 82‐A
  start-page: 151
  year: 2000
  end-page: 160
  article-title: Repair of Articular cartilage one year after treatment with recombinant human bone morphogenetic protein‐2 (rhBMP‐2)
  publication-title: J Bone Joint Surg Am
– volume: 2
  start-page: 49
  year: 1982
  end-page: 53
  article-title: Interleukin 1 activity in the synovial fluid of patients with rheumatoid arthritis
  publication-title: Rheumatol Int
– volume: 19
  start-page: 421
  year: 1996
  end-page: 428
  article-title: The function of adipocyte in the bone marrow stroma: an update
  publication-title: Bone
– volume: 124
  start-page: 1109
  year: 1997
  end-page: 1117
  article-title: Role of BMP‐2 and OP‐1 (BMP‐7) in programmed cell death and skeletogenesis during chick limb development
  publication-title: Development
– volume: 19
  start-page: 1S
  year: 1996
  end-page: 12S
  article-title: Growth factors for bone growth and repair: IGF, TGF beta and BMP
  publication-title: Bone
– volume: 16
  start-page: 174
  year: 1997
  end-page: 178
  article-title: SOX9 directly regulates the type‐II collagen gene
  publication-title: Nat Genet
– volume: 1052
  start-page: 366
  year: 1990
  end-page: 378
  article-title: Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes
  publication-title: Biochim Biophys Acta
– ident: e_1_2_6_45_1
  doi: 10.1210/en.130.3.1318
– ident: e_1_2_6_8_1
  doi: 10.1046/j.1432-0436.1999.6420067.x
– ident: e_1_2_6_30_1
  doi: 10.1002/1097-4652(200010)185:1<98::AID-JCP9>3.0.CO;2-1
– ident: e_1_2_6_36_1
  doi: 10.1006/dbio.1996.8487
– ident: e_1_2_6_42_1
  doi: 10.2106/00004623-200002000-00001
– ident: e_1_2_6_10_1
  doi: 10.1126/science.279.5356.1528
– ident: e_1_2_6_33_1
  doi: 10.1002/art.1780290402
– ident: e_1_2_6_51_1
  doi: 10.2106/00004623-199812000-00004
– ident: e_1_2_6_4_1
  doi: 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J
– ident: e_1_2_6_9_1
  doi: 10.1016/0925-4773(96)00540-0
– ident: e_1_2_6_31_1
  doi: 10.1146/annurev.biochem.67.1.753
– ident: e_1_2_6_43_1
  doi: 10.1016/0955-0674(89)90070-7
– ident: e_1_2_6_28_1
  doi: 10.1089/ten.1998.4.415
– ident: e_1_2_6_47_1
  doi: 10.1073/pnas.87.6.2220
– ident: e_1_2_6_53_1
  doi: 10.1359/jbmr.1999.14.10.1734
– ident: e_1_2_6_54_1
  doi: 10.1002/(SICI)1097-0177(199708)209:4<377::AID-AJA5>3.0.CO;2-F
– ident: e_1_2_6_26_1
  doi: 10.1101/gad.3.11.1657
– ident: e_1_2_6_29_1
  doi: 10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7
– ident: e_1_2_6_21_1
  doi: 10.1128/MCB.17.4.2336
– ident: e_1_2_6_2_1
  doi: 10.1247/csf.25.195
– ident: e_1_2_6_11_1
  doi: 10.1007/BF00541245
– ident: e_1_2_6_3_1
  doi: 10.1038/ng0697-174
– volume: 14
  start-page: 155
  year: 1996
  ident: e_1_2_6_41_1
  article-title: Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies
  publication-title: Clin Exp Rheumatol
  contributor:
    fullname: Schlaak JF
– ident: e_1_2_6_19_1
  doi: 10.1016/0168-9525(94)90014-0
– ident: e_1_2_6_24_1
  doi: 10.1126/science.289.5477.313
– ident: e_1_2_6_18_1
  doi: 10.1016/S0006-291X(05)80208-6
– ident: e_1_2_6_15_1
  doi: 10.1016/8756-3282(92)90364-3
– ident: e_1_2_6_32_1
  doi: 10.1074/jbc.275.24.17937
– ident: e_1_2_6_39_1
  doi: 10.1016/S0959-437X(97)80147-5
– ident: e_1_2_6_49_1
  doi: 10.2106/00004623-199274050-00005
– ident: e_1_2_6_35_1
  doi: 10.1016/S0945-053X(99)00042-6
– ident: e_1_2_6_16_1
  doi: 10.1101/gad.10.13.1580
– ident: e_1_2_6_7_1
  doi: 10.1002/jor.1100090504
– ident: e_1_2_6_48_1
  doi: 10.1016/S8756-3282(96)00259-1
– ident: e_1_2_6_14_1
  doi: 10.1016/0049-0172(90)90044-G
– ident: e_1_2_6_38_1
  doi: 10.1097/00003086-199910001-00020
– ident: e_1_2_6_50_1
  doi: 10.1002/art.1780290215
– ident: e_1_2_6_55_1
  doi: 10.1074/jbc.273.24.14989
– ident: e_1_2_6_25_1
  doi: 10.1002/(SICI)1097-4652(199602)166:2<351::AID-JCP13>3.0.CO;2-E
– ident: e_1_2_6_40_1
  doi: 10.1038/nbt0398-247
– ident: e_1_2_6_44_1
  doi: 10.1016/S1048-6666(97)80029-8
– volume-title: “Articular cartilage and knee joint function: basic science and arthroscopy.”
  year: 1990
  ident: e_1_2_6_6_1
  contributor:
    fullname: Buckwalter JA
– ident: e_1_2_6_5_1
– ident: e_1_2_6_22_1
  doi: 10.1093/emboj/17.19.5718
– ident: e_1_2_6_52_1
  doi: 10.1002/jor.1100160403
– ident: e_1_2_6_17_1
  doi: 10.1128/MCB.19.1.107
– ident: e_1_2_6_37_1
  doi: 10.2106/00004623-199812000-00011
– ident: e_1_2_6_13_1
  doi: 10.1172/JCI113823
– ident: e_1_2_6_20_1
  doi: 10.1016/0167-4889(90)90145-4
– ident: e_1_2_6_34_1
  doi: 10.1074/jbc.275.5.3687
– ident: e_1_2_6_23_1
  doi: 10.1016/S8756-3282(96)00138-X
– ident: e_1_2_6_12_1
  doi: 10.1016/S8756-3282(96)00258-X
– ident: e_1_2_6_27_1
  doi: 10.1242/dev.124.6.1109
– ident: e_1_2_6_46_1
  doi: 10.1073/pnas.85.24.9484
SSID ssj0009933
Score 1.6858921
Snippet Bone morphogenetic proteins play important roles in connective tissue morphogenesis. In this study, we used human multipotential mesenchymal cells as a target...
Abstract Bone morphogenetic proteins play important roles in connective tissue morphogenesis. In this study, we used human multipotential mesenchymal cells as...
SourceID crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 275
SubjectTerms Aggrecans
Biomarkers - analysis
Bone Morphogenetic Protein 2
Bone Morphogenetic Proteins - pharmacology
Cell Differentiation
Cells, Cultured
Chondrocytes - physiology
Chondrogenesis
Collagen Type II - biosynthesis
Collagen Type II - genetics
Drug Antagonism
Extracellular Matrix Proteins
Growth Differentiation Factor 2
Growth Differentiation Factors
High Mobility Group Proteins - biosynthesis
High Mobility Group Proteins - genetics
Humans
Interleukin-1 - pharmacology
Kinetics
Lectins, C-Type
Mesoderm - physiology
Proteoglycans - biosynthesis
Proteoglycans - genetics
RNA, Messenger - biosynthesis
SOX9 Transcription Factor
Stem Cells - drug effects
Stem Cells - physiology
Transcription Factors - biosynthesis
Transcription Factors - genetics
Transforming Growth Factor beta
Title BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1
URI https://api.istex.fr/ark:/67375/WNG-C0T9P6Q0-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.10025
https://www.ncbi.nlm.nih.gov/pubmed/11748585
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UiuCLl9bLeiOIFF-mTTIzmwk-1cW6Fi2rtNgHYcht6Vp3unS34PrkT9C_6C_xnGRntwqC-DIcmCQzSU6Sc5Iv3wF46kU1FGWlM2U1OihBhcwKiw8rhRdKeJPYPg-6_aNi_7g8XoPn7V2YxA-x3HCjkRHnaxrgxk53VqShn9wkinTBnIj0yCB6v6KO0osw8hGCUBaiZRXicmeZ87e16Ao165dLC9FlYzWuNns34GP7nwlkcrp9MbPb7usfFI7_WZGbcH1hhbLdpDa3YC00G7C526AHPp6zLRZxoXHDfQOupnCV80348eLt4Oe375KZxrMkazaJeL4wZTiPEvkBKuTIsTbuyiz1PDsbshgNkCUAI2agV5_ZmC4_uZP5GGU6Q5jGsglWirXAQtE8ZaPmZGRHBAZgCX1Cpb1-g18Xt-Fo7-Vhr58tQjpkTipZZsYPlTdc6dJpHhRaRyo3pnSeCEpzMv-kq3LfLdAt4i7kXjrUl0I7UTkRuMvvwHpz1oR7wLpOCqOCL31RFcZxba31PDdaF5qcxA48aTu3niTmjjpxNMsamzwKmGgrdvsyhTk_JaibKusPB6_qHj_Ug-47Xvc7cDfpxaos9OXoULUDz2Lv_v0j9X5vEIX7_570AVyLaLcInHkI67Pzi_AIzZ-ZfRz1_Bc-JQKR
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVgguPFoeAQoWQhWXbe3ddbyWemkjSlrSKKBU9IJWfkUNJduoTSXCiZ9Q_iK_hLGdTQoSEuKyGmlt79oe2zP2528AXllWDBgvZCK0RAfFCZdopvGhU2aZYFZFts9us32UHxzz4yXYru_CRH6I-YabHxlhvvYD3G9Iby1YQz-bcRD5DVjB4c6DQ_VhQR4lZ4HkAwiB56zmFaLp1jzrb6vRim_Yr9eWouvmalhv9u7Cp_pPI8zkdPNyojfNtz9IHP-3KvfgzswQJTtRc-7DkqtWYW2nQid8NCUbJEBDw577KtyMESuna_Bj97D38_tVSlRlSZQlGQdIn7sgOJV6_gPUyaEhdeiVSex8cjYgISAgiRhGzOBffSEjf__JnExHKPtjhItQtkeWYjWwULRQybA6GeqhxwOQCEDxpe138OvsARztvem32sksqkNiUpHyRNmBsIoKyY2kTqCBJDKluLGeozTzFmBqisw2c_SMqHGZTQ2qTC4NKwxz1GQPYbk6q9xjIE2TMiWc5TYvcmWo1Fpbmikpc-n9xAa8rHu3HEfyjjLSNKclNnkQMNFG6Pd5CnV-6tFugpcfu2_LFu3LXvM9LdsNeBQVY1EWunP-XLUBr0P3_v0j5UGrF4Qn_570Bdxq9w87ZWe_--4p3A7gt4CjeQbLk_NLt47W0EQ_D0r_C2keBrM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VViAuPFoe4WkhVHHZ1vY-vBankhLSUqKAWrUHpJVfUUPJNmpTiXDiJ8Bf5JcwtrNJQUJCXFYjre1d22N7xv78DcBzy8oBy0uZCC3RQXHCJZppfGjOLBPMqsj22Su6B9nuUX60BC-buzCRH2K-4eZHRpiv_QAf28HmgjT0kxkHMb8CK1mRcq_S2x8W3FFyFkc-YBDyjDW0QpRvzrP-thit-Hb9cmklumythuWmcxM-Nj8aUSYnGxcTvWG-_sHh-J81uQU3ZmYo2Yp6cxuWXL0Ka1s1uuCjKVknARgadtxX4WqMVzldgx-v3vV_fvvOiaotibIk4wDoc-cEJ1LPfoAaOTSkCbwyiV1PTgckhAMkEcGIGfyrz2Tkbz-Z4-kIZX-IcB7K9rhSrAUWivYpGdbHQz30aAAS4Se-tJ09_Dq7Awed1_vtbjKL6ZAYLnieKDsQVlEhcyOpE2geiVSp3FjPUJp6-4-bMrVFhn4RNS613KDCZNKw0jBHTXoXluvT2t0HUhjOlHA2t1mZKUOl1trSVEmZSe8ltuBZ07nVOFJ3VJGkmVfY5EHAROuh2-cp1NmJx7qJvDrsvanadF_2i_e06rbgXtSLRVnozPlT1Ra8CL37949Uu-1-EB78e9KncK2_3an2dnpvH8L1gHwLIJpHsDw5u3CP0RSa6CdB5X8BWqAFYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BMP%E2%80%902+and+BMP%E2%80%909+promotes+chondrogenic+differentiation+of+human+multipotential+mesenchymal+cells+and+overcomes+the+inhibitory+effect+of+IL%E2%80%901&rft.jtitle=Journal+of+cellular+physiology&rft.au=Majumdar%2C+Manas+Kumar&rft.au=Wang%2C+Eunice&rft.au=Morris%2C+Elisabeth+Ann&rft.date=2001-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=189&rft.issue=3&rft.spage=275&rft.epage=284&rft_id=info:doi/10.1002%2Fjcp.10025&rft.externalDBID=10.1002%252Fjcp.10025&rft.externalDocID=JCP10025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon