Ultrafast Probabilistic Neuron in an Artificial Spin Ice for Robust Deep Neural Networks

Deep neural networks (DNNs) have proved to be remarkably successful in various domains, in particular for implementing complex functions and performing sophisticated tasks. However, their vulnerability to adversarial noise undermines their reliability for safety‐critical tasks. Despite attempts to i...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 11
Main Authors Liang, Zhongyu, Bu, Tong, Lyu, Zijian, Liu, Zhentao, Hrabec, Aleš, Wang, Leran, Dou, Yankun, Ding, Jianhao, Ge, Peipei, Yang, Wenyun, Huang, Tiejun, Yang, Jinbo, Heyderman, Laura J., Liu, Yunquan, Yu, Zhaofei, Luo, Zhaochu
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep neural networks (DNNs) have proved to be remarkably successful in various domains, in particular for implementing complex functions and performing sophisticated tasks. However, their vulnerability to adversarial noise undermines their reliability for safety‐critical tasks. Despite attempts to improve the robustness using algorithmic approaches, an effective hardware implementation is still lacking. Here an artificial probabilistic neuron device is proposed based on arrays of coupled nanomagnets, referred to as artificial spin ices, which return a nonlinear function with built‐in stochasticity in response to an ultrafast laser‐induced excitation. By exploiting solid‐state ionic gating, the magnetic coupling is electrically modulated, as a result of the magnetic anisotropy‐mediated competition of the symmetric exchange interaction and Dzyaloshinskii‐Moriya interaction, and hence the stochastic property of the neuron device at runtime can be tuned. Stochastic DNNs are then constructed with an output layer comprising several probabilistic neuron devices. Compared to conventional DNNs, the stochastic DNNs exhibit an order of magnitude greater resistance to adversarial noise, providing a significant improvement in robustness. This approach opens the way to more secure and reliable DNNs, enabling broader uses in real‐world applications. Conventional deep neural networks (DNNs) are vulnerable to adversarial noises. An artificial probabilistic neuron device is proposed based on arrays of coupled nanomagnets, referred to as artificial spin ices, which return a nonlinear function with built‐in stochasticity. Stochastic DNNs built with these devices exhibit an order of magnitude greater resistance to adversarial noise, providing a significant improvement in robustness.
AbstractList Deep neural networks (DNNs) have proved to be remarkably successful in various domains, in particular for implementing complex functions and performing sophisticated tasks. However, their vulnerability to adversarial noise undermines their reliability for safety‐critical tasks. Despite attempts to improve the robustness using algorithmic approaches, an effective hardware implementation is still lacking. Here an artificial probabilistic neuron device is proposed based on arrays of coupled nanomagnets, referred to as artificial spin ices, which return a nonlinear function with built‐in stochasticity in response to an ultrafast laser‐induced excitation. By exploiting solid‐state ionic gating, the magnetic coupling is electrically modulated, as a result of the magnetic anisotropy‐mediated competition of the symmetric exchange interaction and Dzyaloshinskii‐Moriya interaction, and hence the stochastic property of the neuron device at runtime can be tuned. Stochastic DNNs are then constructed with an output layer comprising several probabilistic neuron devices. Compared to conventional DNNs, the stochastic DNNs exhibit an order of magnitude greater resistance to adversarial noise, providing a significant improvement in robustness. This approach opens the way to more secure and reliable DNNs, enabling broader uses in real‐world applications.
Deep neural networks (DNNs) have proved to be remarkably successful in various domains, in particular for implementing complex functions and performing sophisticated tasks. However, their vulnerability to adversarial noise undermines their reliability for safety‐critical tasks. Despite attempts to improve the robustness using algorithmic approaches, an effective hardware implementation is still lacking. Here an artificial probabilistic neuron device is proposed based on arrays of coupled nanomagnets, referred to as artificial spin ices, which return a nonlinear function with built‐in stochasticity in response to an ultrafast laser‐induced excitation. By exploiting solid‐state ionic gating, the magnetic coupling is electrically modulated, as a result of the magnetic anisotropy‐mediated competition of the symmetric exchange interaction and Dzyaloshinskii‐Moriya interaction, and hence the stochastic property of the neuron device at runtime can be tuned. Stochastic DNNs are then constructed with an output layer comprising several probabilistic neuron devices. Compared to conventional DNNs, the stochastic DNNs exhibit an order of magnitude greater resistance to adversarial noise, providing a significant improvement in robustness. This approach opens the way to more secure and reliable DNNs, enabling broader uses in real‐world applications. Conventional deep neural networks (DNNs) are vulnerable to adversarial noises. An artificial probabilistic neuron device is proposed based on arrays of coupled nanomagnets, referred to as artificial spin ices, which return a nonlinear function with built‐in stochasticity. Stochastic DNNs built with these devices exhibit an order of magnitude greater resistance to adversarial noise, providing a significant improvement in robustness.
Author Heyderman, Laura J.
Huang, Tiejun
Luo, Zhaochu
Hrabec, Aleš
Ge, Peipei
Yang, Jinbo
Liu, Yunquan
Liu, Zhentao
Ding, Jianhao
Yu, Zhaofei
Liang, Zhongyu
Yang, Wenyun
Wang, Leran
Bu, Tong
Lyu, Zijian
Dou, Yankun
Author_xml – sequence: 1
  givenname: Zhongyu
  surname: Liang
  fullname: Liang, Zhongyu
  organization: Fuzhou University
– sequence: 2
  givenname: Tong
  surname: Bu
  fullname: Bu, Tong
  organization: Peking University
– sequence: 3
  givenname: Zijian
  surname: Lyu
  fullname: Lyu, Zijian
  organization: Peking University
– sequence: 4
  givenname: Zhentao
  surname: Liu
  fullname: Liu, Zhentao
  organization: PSI Center for Neutron and Muon Sciences
– sequence: 5
  givenname: Aleš
  surname: Hrabec
  fullname: Hrabec, Aleš
  organization: PSI Center for Neutron and Muon Sciences
– sequence: 6
  givenname: Leran
  surname: Wang
  fullname: Wang, Leran
  organization: Peking University
– sequence: 7
  givenname: Yankun
  surname: Dou
  fullname: Dou, Yankun
  organization: Shanxi University
– sequence: 8
  givenname: Jianhao
  surname: Ding
  fullname: Ding, Jianhao
  organization: Peking University
– sequence: 9
  givenname: Peipei
  surname: Ge
  fullname: Ge, Peipei
  organization: Shanxi University
– sequence: 10
  givenname: Wenyun
  surname: Yang
  fullname: Yang, Wenyun
  organization: Peking University
– sequence: 11
  givenname: Tiejun
  surname: Huang
  fullname: Huang, Tiejun
  organization: Peking University
– sequence: 12
  givenname: Jinbo
  surname: Yang
  fullname: Yang, Jinbo
  organization: Peking University
– sequence: 13
  givenname: Laura J.
  surname: Heyderman
  fullname: Heyderman, Laura J.
  email: laura.heyderman@psi.ch
  organization: PSI Center for Neutron and Muon Sciences
– sequence: 14
  givenname: Yunquan
  surname: Liu
  fullname: Liu, Yunquan
  email: yunquan.liu@pku.edu.cn
  organization: Shanxi University
– sequence: 15
  givenname: Zhaofei
  surname: Yu
  fullname: Yu, Zhaofei
  email: yuzf12@pku.edu.cn
  organization: Peking University
– sequence: 16
  givenname: Zhaochu
  orcidid: 0000-0002-7543-3244
  surname: Luo
  fullname: Luo, Zhaochu
  email: zhaochu.luo@pku.edu.cn
  organization: Peking University
BookMark eNqFkE1PAjEQhhuDiYBePTfxvNgvtrtHAqIkiEYl4dZ0-5EUl-3a7obw713E4NHTTGbeZyZ5BqBX-coAcIvRCCNE7qW2uxFBhGFOKbsAfZziNKGIZL1zjzdXYBDjFiHMOWV9sFmXTZBWxga-Bl_IwpUuNk7BlWmDr6CroKzgJDTOOuVkCd_rbrRQBlof4Jsv2o6cGVP_AN1-ZZq9D5_xGlxaWUZz81uHYD1_-Jg-JcuXx8V0skwU4YQl3CIlx8jKnEiT2kxLk0mSEqrTNOOqoJpaZljBx1xSneWKWpzl2mquZMGQpkNwd7pbB__VmtiIrW9D1b0UFPNxhiklpEuNTikVfIzBWFEHt5PhIDASR3viaE-c7XVAfgL2rjSHf9JiMps__7Hfr_d2Dg
Cites_doi 10.1038/s41563-018-0211-5
10.1038/s41586-019-1557-9
10.1016/j.neuroimage.2012.04.061
10.1103/RevModPhys.85.1473
10.1038/s42254-019-0118-3
10.1103/PhysRevLett.99.047601
10.1038/s41467-022-30305-8
10.1038/s41467-023-38286-y
10.1038/ncomms10275
10.1038/323533a0
10.1038/s41586-021-03819-2
10.1126/science.aaw4399
10.1038/s41586-020-2061-y
10.1038/s41586-023-06004-9
10.1007/BF01759054
10.1038/s41467-019-12035-6
10.1038/s41467-019-13103-7
10.1002/adma.202204569
10.1038/ncomms2108
10.1002/admi.202201283
10.1126/science.1253493
10.1038/s41586-022-04714-0
10.1038/s41467-023-41830-5
10.1038/s41566-020-00754-y
10.1038/s41565-022-01091-7
10.1126/science.aau7913
10.1002/smll.202003141
10.1088/1741-2560/13/5/051001
10.1049/ip-vis:20030362
10.1126/science.abh2076
10.1002/advs.202402182
10.1002/adma.202210216
10.1038/nrn2258
10.1109/TNNLS.2018.2874565
10.1038/nnano.2016.70
10.1103/RevModPhys.82.2731
10.1038/nature14539
10.1103/PhysRevLett.76.4250
10.1038/s41928-021-00593-x
10.1103/PhysRevApplied.17.024052
10.1038/nphys2613
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202417334
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202417334
ADFM202417334
Genre researchArticle
GrantInformation_xml – fundername: EU FET‐Open RIA project SpinENGINE
  funderid: 861618
– fundername: Fundamental Research Funds for the Central Universities
– fundername: Beijing Nova Program
  funderid: 20230484362
– fundername: Swiss National Science Foundation
  funderid: 200021_182013
– fundername: Emerging Engineering Interdisciplinary Project, Peking University
– fundername: National Key Research and Development Program of China
  funderid: 2022YFA1203904; 2022YFA1604301
– fundername: National Natural Science Foundation of China
  funderid: 52271160 92050201; 92250306; 62176003; 62088102; 62422601
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c2724-7f0ca50fa92ae6f8dae8a2623d6687cb3d3f4e4b757a3d89c3f189dfd7cab40d3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 21:26:50 EDT 2025
Tue Jul 01 05:24:14 EDT 2025
Tue Mar 11 09:30:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2724-7f0ca50fa92ae6f8dae8a2623d6687cb3d3f4e4b757a3d89c3f189dfd7cab40d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7543-3244
PQID 3175813322
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_3175813322
crossref_primary_10_1002_adfm_202417334
wiley_primary_10_1002_adfm_202417334_ADFM202417334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 35
2023; 14
2021; 4
2015; 521
2019; 10
2013; 85
2008; 9
2020; 16
2003; 150
2019; 18
2024; 11
2007; 99
1996; 76
2016; 13
2013; 9
1991; 6
2019; 363
2016; 11
2010; 82
2016; 7
2021; 15
1986; 323
2012; 3
2020; 2
2021; 596
2022; 9
2019
2022; 13
2018
2020; 579
2017
2018; 30
2021; 373
2015
2014
2022; 606
2012; 25
2023; 618
2019; 573
2014; 345
2022; 17
2012; 62
e_1_2_9_31_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
Krizhevsky A. (e_1_2_9_47_1) 2012; 25
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 579
  start-page: 214
  year: 2020
  publication-title: Nature
– volume: 596
  start-page: 583
  year: 2021
  publication-title: Nature
– volume: 9
  year: 2022
  publication-title: Adv. Mater. Inter.
– volume: 373
  start-page: 99
  year: 2021
  publication-title: Science
– volume: 10
  start-page: 5113
  year: 2019
  publication-title: Nat. Commun.
– volume: 9
  start-page: 375
  year: 2013
  publication-title: Nat. Phys.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 521
  start-page: 436
  year: 2015
  publication-title: Nature
– year: 2018
– volume: 76
  start-page: 4250
  year: 1996
  publication-title: Phys. Rev. Lett.
– year: 2014
– volume: 13
  start-page: 2571
  year: 2022
  publication-title: Nat. Commun.
– volume: 363
  start-page: 1435
  year: 2019
  publication-title: Science
– volume: 14
  start-page: 6367
  year: 2023
  publication-title: Nat. Commun.
– volume: 606
  start-page: 501
  year: 2022
  publication-title: Nature
– volume: 618
  start-page: 257
  year: 2023
  publication-title: Nature
– volume: 150
  start-page: 153
  year: 2003
  publication-title: IEEE Proc.‐Vision, Image Signal Process.
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 1473
  year: 2013
  publication-title: Rev. Mod. Phys.
– volume: 363
  start-page: 1287
  year: 2019
  publication-title: Science
– volume: 11
  start-page: 693
  year: 2016
  publication-title: Nat. Nanotech.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 82
  start-page: 2731
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 11
  year: 2024
  publication-title: Adv. Sci.
– volume: 2
  start-page: 13
  year: 2020
  publication-title: Nat. Rev. Phys.
– volume: 345
  start-page: 1337
  year: 2014
  publication-title: Science
– volume: 14
  start-page: 2562
  year: 2023
  publication-title: Nat. Commun.
– volume: 323
  start-page: 533
  year: 1986
  publication-title: Nature
– volume: 30
  start-page: 1920
  year: 2018
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 3
  start-page: 1100
  year: 2012
  publication-title: Nat. Commun.
– volume: 25
  start-page: 1090
  year: 2012
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 292
  year: 2008
  publication-title: Nat. Rev. Neurosci.
– volume: 10
  start-page: 4199
  year: 2019
  publication-title: Nat. Commun.
– volume: 17
  start-page: 460
  year: 2022
  publication-title: Nat. Nanotech.
– volume: 6
  start-page: 466
  year: 1991
  publication-title: Algorithmica
– volume: 18
  start-page: 35
  year: 2019
  publication-title: Nat. Mater.
– volume: 15
  start-page: 102
  year: 2021
  publication-title: Nat. Photon.
– volume: 573
  start-page: 390
  year: 2019
  publication-title: Nature
– volume: 17
  year: 2022
  publication-title: Phys. Rev. Appl.
– year: 2017
– year: 2019
– volume: 62
  start-page: 464
  year: 2012
  publication-title: Neuroimage
– year: 2015
– volume: 4
  start-page: 392
  year: 2021
  publication-title: Nat. Electron.
– volume: 13
  year: 2016
  publication-title: J. Neural Eng.
– ident: e_1_2_9_30_1
  doi: 10.1038/s41563-018-0211-5
– ident: e_1_2_9_20_1
  doi: 10.1038/s41586-019-1557-9
– ident: e_1_2_9_37_1
  doi: 10.1016/j.neuroimage.2012.04.061
– ident: e_1_2_9_16_1
  doi: 10.1103/RevModPhys.85.1473
– ident: e_1_2_9_18_1
  doi: 10.1038/s42254-019-0118-3
– ident: e_1_2_9_45_1
  doi: 10.1103/PhysRevLett.99.047601
– ident: e_1_2_9_14_1
  doi: 10.1038/s41467-022-30305-8
– ident: e_1_2_9_24_1
  doi: 10.1038/s41467-023-38286-y
– ident: e_1_2_9_39_1
  doi: 10.1038/ncomms10275
– ident: e_1_2_9_48_1
  doi: 10.1038/323533a0
– ident: e_1_2_9_2_1
  doi: 10.1038/s41586-021-03819-2
– ident: e_1_2_9_4_1
– ident: e_1_2_9_9_1
  doi: 10.1126/science.aaw4399
– ident: e_1_2_9_29_1
  doi: 10.1038/s41586-020-2061-y
– ident: e_1_2_9_5_1
– ident: e_1_2_9_3_1
  doi: 10.1038/s41586-023-06004-9
– ident: e_1_2_9_35_1
  doi: 10.1007/BF01759054
– ident: e_1_2_9_8_1
– ident: e_1_2_9_12_1
  doi: 10.1038/s41467-019-12035-6
– ident: e_1_2_9_49_1
– ident: e_1_2_9_13_1
  doi: 10.1038/s41467-019-13103-7
– volume: 25
  start-page: 1090
  year: 2012
  ident: e_1_2_9_47_1
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_9_22_1
– ident: e_1_2_9_10_1
  doi: 10.1002/adma.202204569
– ident: e_1_2_9_33_1
  doi: 10.1038/ncomms2108
– ident: e_1_2_9_34_1
  doi: 10.1002/admi.202201283
– ident: e_1_2_9_46_1
  doi: 10.1126/science.1253493
– ident: e_1_2_9_6_1
– ident: e_1_2_9_43_1
  doi: 10.1038/s41586-022-04714-0
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-023-41830-5
– ident: e_1_2_9_41_1
  doi: 10.1038/s41566-020-00754-y
– ident: e_1_2_9_7_1
– ident: e_1_2_9_23_1
  doi: 10.1038/s41565-022-01091-7
– ident: e_1_2_9_27_1
  doi: 10.1126/science.aau7913
– ident: e_1_2_9_17_1
  doi: 10.1002/smll.202003141
– ident: e_1_2_9_25_1
  doi: 10.1088/1741-2560/13/5/051001
– ident: e_1_2_9_36_1
  doi: 10.1049/ip-vis:20030362
– ident: e_1_2_9_44_1
  doi: 10.1126/science.abh2076
– ident: e_1_2_9_19_1
  doi: 10.1002/advs.202402182
– ident: e_1_2_9_42_1
  doi: 10.1002/adma.202210216
– ident: e_1_2_9_11_1
  doi: 10.1038/nrn2258
– ident: e_1_2_9_38_1
  doi: 10.1109/TNNLS.2018.2874565
– ident: e_1_2_9_15_1
  doi: 10.1038/nnano.2016.70
– ident: e_1_2_9_32_1
  doi: 10.1103/RevModPhys.82.2731
– ident: e_1_2_9_1_1
  doi: 10.1038/nature14539
– ident: e_1_2_9_31_1
  doi: 10.1103/PhysRevLett.76.4250
– ident: e_1_2_9_40_1
  doi: 10.1038/s41928-021-00593-x
– ident: e_1_2_9_21_1
  doi: 10.1103/PhysRevApplied.17.024052
– ident: e_1_2_9_26_1
  doi: 10.1038/nphys2613
SSID ssj0017734
Score 2.4763937
Snippet Deep neural networks (DNNs) have proved to be remarkably successful in various domains, in particular for implementing complex functions and performing...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Artificial neural networks
artificial spin ice
Magnetic anisotropy
nanomagnet
Neural networks
neuromorphic computing
probabilistic computing
Probability theory
Robustness
Spin ice
Task complexity
Ultrafast lasers
ultrafast spin dynamics
Title Ultrafast Probabilistic Neuron in an Artificial Spin Ice for Robust Deep Neural Networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202417334
https://www.proquest.com/docview/3175813322
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD7KQHf4vTKTkInrq1Sdq0x-EcU9iQ6aC3kp8gSjfW7uJfb9Ks3eZF0GNbXmhf8vq-TV8-AeCOhLEgjHEPR4J4hCWJxxOhPIG5CrjRvEjYqYHxJBrNyHMaplur-B0foplws5FRva9tgDNe9DbQUCa1XUluMhDF2AJBbcGWVUXThh8VUOp-K0eBLfAK0pra6KPervluVtpIzW3BWmWc4RFg9b26QpOP7qrkXfH1A-P4n4c5BodrOQr7bvycgD2Vn4KDLUjhGUhnn-WSaVaU8GVpot9W01q4M6y4Hjl8zyHLqxYcjAK-LsypJ6Gg0cNwOucrYzlQalEZmOsTV3lenIPZ8PHtYeSt92PwBKKIeFT7dgMFzRLEVKRjyVTMkNFPMopiKjiWWBNFOA0pwzJOBNZBnEgtqWCc-BJfgFY-z9UlgCJRGEtl9IUQRCOfsyCiinIL5AspVm1wX_dHtnDYjcwBllFmfZU1vmqDTt1d2Tr8isyKoth8fSPUBqjy-y-tZP3BcNwcXf3F6BrsI7s3cFWf1gGtcrlSN0awlPy2GpTf-BbjFA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JT8JAFMdfXA7qwd2Ios7BxFORzgyd9khEAgrEICTcmlkTo6kEysVP70xLWbyY6LFt3qSd9d83b34P4JbWQkk5Fx4JJPUojyJPRFJ7kgjtC6t5sXSugW4vaA3p06hWRBO6szA5H2LhcHMjI5uv3QB3Dun7JTWUK-OOktsliBFCN2HbpfV2-PxGf0GQ8hnLN5YD34V4-aOC21jF9-v26-vSUmyuStZszWkegCjeNg81ea_MUlGRXz9Ajv_6nEPYnytSVM-70BFs6OQY9lY4hScwGn6kE274NEUvEzsBuIBax3dGGdojQW8J4klWQs6jQK9je6stNbKSGPU_xcxaNrQeZwb2eS8PPp-ewrD5OHhoefOUDJ7EDFOPmarLoWB4hLkOTKi4Djm2EkoFQcikIIoYqqlgNcaJCiNJjB9GyigmuaBVRc5gK_lM9DkgGWlClLYSQ0pqcFVwP2CaCcfkqzGiS3BXNEg8zskbcc5YxrGrq3hRVyUoF-0Vz0fgNHa6KLQ_4BiXAGcV_0spcb3R7C6uLv5idAM7rUG3E3favedL2MUuVXAWrlaGrXQy01dWv6TiOuuh3zpg5zA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcf_gDRg7_F6dQcBE_VNsma9ijW4s8xpoPdSn6CKF3Zuot_vUm7zc2LoMe2vNC-5DXfpi-fB3BOW5GknAuPhJJ6lMexJ2KpPUmEDoTVvFi6pYHndnjXow_9Vn9uF3_Nh5gtuLnIqN7XLsALZa6-oaFcGbeT3M5AjBC6DKs09GNXvCHpzgBSAWP1f-UwcBleQX-KbfTx1aL94rT0rTXnFWs15aRbwKc3W2eavF-OS3EpP39wHP_zNNuwOdGj6LoeQDuwpPNd2JijFO5Bv_dRDrnhoxJ1hjb8XTqtozujCuyRo7cc8bxqoaZRoJfCnrqXGllBjLoDMbaWidZFZWCvt-vU89E-9NLb15s7b1KQwZOYYeox47sKCobHmOvQRIrriGMroFQYRkwKooihmgrWYpyoKJbEBFGsjGKSC-orcgAr-SDXh4BkrAlR2goMKanBvuBByDQTjsjXYkQ34GLaH1lRczeymrCMM-erbOarBjSn3ZVN4m-UOVUU2c9vjBuAK7__0kp2naTPs6OjvxidwVonSbOn-_bjMaxjVye4ylVrwko5HOsTK15KcVqNzy-WVuXf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Probabilistic+Neuron+in+an+Artificial+Spin+Ice+for+Robust+Deep+Neural+Networks&rft.jtitle=Advanced+functional+materials&rft.au=Liang%2C+Zhongyu&rft.au=Bu%2C+Tong&rft.au=Lyu%2C+Zijian&rft.au=Liu%2C+Zhentao&rft.date=2025-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=11&rft_id=info:doi/10.1002%2Fadfm.202417334&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202417334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon