Ultrafast Probabilistic Neuron in an Artificial Spin Ice for Robust Deep Neural Networks
Deep neural networks (DNNs) have proved to be remarkably successful in various domains, in particular for implementing complex functions and performing sophisticated tasks. However, their vulnerability to adversarial noise undermines their reliability for safety‐critical tasks. Despite attempts to i...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep neural networks (DNNs) have proved to be remarkably successful in various domains, in particular for implementing complex functions and performing sophisticated tasks. However, their vulnerability to adversarial noise undermines their reliability for safety‐critical tasks. Despite attempts to improve the robustness using algorithmic approaches, an effective hardware implementation is still lacking. Here an artificial probabilistic neuron device is proposed based on arrays of coupled nanomagnets, referred to as artificial spin ices, which return a nonlinear function with built‐in stochasticity in response to an ultrafast laser‐induced excitation. By exploiting solid‐state ionic gating, the magnetic coupling is electrically modulated, as a result of the magnetic anisotropy‐mediated competition of the symmetric exchange interaction and Dzyaloshinskii‐Moriya interaction, and hence the stochastic property of the neuron device at runtime can be tuned. Stochastic DNNs are then constructed with an output layer comprising several probabilistic neuron devices. Compared to conventional DNNs, the stochastic DNNs exhibit an order of magnitude greater resistance to adversarial noise, providing a significant improvement in robustness. This approach opens the way to more secure and reliable DNNs, enabling broader uses in real‐world applications.
Conventional deep neural networks (DNNs) are vulnerable to adversarial noises. An artificial probabilistic neuron device is proposed based on arrays of coupled nanomagnets, referred to as artificial spin ices, which return a nonlinear function with built‐in stochasticity. Stochastic DNNs built with these devices exhibit an order of magnitude greater resistance to adversarial noise, providing a significant improvement in robustness. |
---|---|
AbstractList | Deep neural networks (DNNs) have proved to be remarkably successful in various domains, in particular for implementing complex functions and performing sophisticated tasks. However, their vulnerability to adversarial noise undermines their reliability for safety‐critical tasks. Despite attempts to improve the robustness using algorithmic approaches, an effective hardware implementation is still lacking. Here an artificial probabilistic neuron device is proposed based on arrays of coupled nanomagnets, referred to as artificial spin ices, which return a nonlinear function with built‐in stochasticity in response to an ultrafast laser‐induced excitation. By exploiting solid‐state ionic gating, the magnetic coupling is electrically modulated, as a result of the magnetic anisotropy‐mediated competition of the symmetric exchange interaction and Dzyaloshinskii‐Moriya interaction, and hence the stochastic property of the neuron device at runtime can be tuned. Stochastic DNNs are then constructed with an output layer comprising several probabilistic neuron devices. Compared to conventional DNNs, the stochastic DNNs exhibit an order of magnitude greater resistance to adversarial noise, providing a significant improvement in robustness. This approach opens the way to more secure and reliable DNNs, enabling broader uses in real‐world applications. Deep neural networks (DNNs) have proved to be remarkably successful in various domains, in particular for implementing complex functions and performing sophisticated tasks. However, their vulnerability to adversarial noise undermines their reliability for safety‐critical tasks. Despite attempts to improve the robustness using algorithmic approaches, an effective hardware implementation is still lacking. Here an artificial probabilistic neuron device is proposed based on arrays of coupled nanomagnets, referred to as artificial spin ices, which return a nonlinear function with built‐in stochasticity in response to an ultrafast laser‐induced excitation. By exploiting solid‐state ionic gating, the magnetic coupling is electrically modulated, as a result of the magnetic anisotropy‐mediated competition of the symmetric exchange interaction and Dzyaloshinskii‐Moriya interaction, and hence the stochastic property of the neuron device at runtime can be tuned. Stochastic DNNs are then constructed with an output layer comprising several probabilistic neuron devices. Compared to conventional DNNs, the stochastic DNNs exhibit an order of magnitude greater resistance to adversarial noise, providing a significant improvement in robustness. This approach opens the way to more secure and reliable DNNs, enabling broader uses in real‐world applications. Conventional deep neural networks (DNNs) are vulnerable to adversarial noises. An artificial probabilistic neuron device is proposed based on arrays of coupled nanomagnets, referred to as artificial spin ices, which return a nonlinear function with built‐in stochasticity. Stochastic DNNs built with these devices exhibit an order of magnitude greater resistance to adversarial noise, providing a significant improvement in robustness. |
Author | Heyderman, Laura J. Huang, Tiejun Luo, Zhaochu Hrabec, Aleš Ge, Peipei Yang, Jinbo Liu, Yunquan Liu, Zhentao Ding, Jianhao Yu, Zhaofei Liang, Zhongyu Yang, Wenyun Wang, Leran Bu, Tong Lyu, Zijian Dou, Yankun |
Author_xml | – sequence: 1 givenname: Zhongyu surname: Liang fullname: Liang, Zhongyu organization: Fuzhou University – sequence: 2 givenname: Tong surname: Bu fullname: Bu, Tong organization: Peking University – sequence: 3 givenname: Zijian surname: Lyu fullname: Lyu, Zijian organization: Peking University – sequence: 4 givenname: Zhentao surname: Liu fullname: Liu, Zhentao organization: PSI Center for Neutron and Muon Sciences – sequence: 5 givenname: Aleš surname: Hrabec fullname: Hrabec, Aleš organization: PSI Center for Neutron and Muon Sciences – sequence: 6 givenname: Leran surname: Wang fullname: Wang, Leran organization: Peking University – sequence: 7 givenname: Yankun surname: Dou fullname: Dou, Yankun organization: Shanxi University – sequence: 8 givenname: Jianhao surname: Ding fullname: Ding, Jianhao organization: Peking University – sequence: 9 givenname: Peipei surname: Ge fullname: Ge, Peipei organization: Shanxi University – sequence: 10 givenname: Wenyun surname: Yang fullname: Yang, Wenyun organization: Peking University – sequence: 11 givenname: Tiejun surname: Huang fullname: Huang, Tiejun organization: Peking University – sequence: 12 givenname: Jinbo surname: Yang fullname: Yang, Jinbo organization: Peking University – sequence: 13 givenname: Laura J. surname: Heyderman fullname: Heyderman, Laura J. email: laura.heyderman@psi.ch organization: PSI Center for Neutron and Muon Sciences – sequence: 14 givenname: Yunquan surname: Liu fullname: Liu, Yunquan email: yunquan.liu@pku.edu.cn organization: Shanxi University – sequence: 15 givenname: Zhaofei surname: Yu fullname: Yu, Zhaofei email: yuzf12@pku.edu.cn organization: Peking University – sequence: 16 givenname: Zhaochu orcidid: 0000-0002-7543-3244 surname: Luo fullname: Luo, Zhaochu email: zhaochu.luo@pku.edu.cn organization: Peking University |
BookMark | eNqFkE1PAjEQhhuDiYBePTfxvNgvtrtHAqIkiEYl4dZ0-5EUl-3a7obw713E4NHTTGbeZyZ5BqBX-coAcIvRCCNE7qW2uxFBhGFOKbsAfZziNKGIZL1zjzdXYBDjFiHMOWV9sFmXTZBWxga-Bl_IwpUuNk7BlWmDr6CroKzgJDTOOuVkCd_rbrRQBlof4Jsv2o6cGVP_AN1-ZZq9D5_xGlxaWUZz81uHYD1_-Jg-JcuXx8V0skwU4YQl3CIlx8jKnEiT2kxLk0mSEqrTNOOqoJpaZljBx1xSneWKWpzl2mquZMGQpkNwd7pbB__VmtiIrW9D1b0UFPNxhiklpEuNTikVfIzBWFEHt5PhIDASR3viaE-c7XVAfgL2rjSHf9JiMps__7Hfr_d2Dg |
Cites_doi | 10.1038/s41563-018-0211-5 10.1038/s41586-019-1557-9 10.1016/j.neuroimage.2012.04.061 10.1103/RevModPhys.85.1473 10.1038/s42254-019-0118-3 10.1103/PhysRevLett.99.047601 10.1038/s41467-022-30305-8 10.1038/s41467-023-38286-y 10.1038/ncomms10275 10.1038/323533a0 10.1038/s41586-021-03819-2 10.1126/science.aaw4399 10.1038/s41586-020-2061-y 10.1038/s41586-023-06004-9 10.1007/BF01759054 10.1038/s41467-019-12035-6 10.1038/s41467-019-13103-7 10.1002/adma.202204569 10.1038/ncomms2108 10.1002/admi.202201283 10.1126/science.1253493 10.1038/s41586-022-04714-0 10.1038/s41467-023-41830-5 10.1038/s41566-020-00754-y 10.1038/s41565-022-01091-7 10.1126/science.aau7913 10.1002/smll.202003141 10.1088/1741-2560/13/5/051001 10.1049/ip-vis:20030362 10.1126/science.abh2076 10.1002/advs.202402182 10.1002/adma.202210216 10.1038/nrn2258 10.1109/TNNLS.2018.2874565 10.1038/nnano.2016.70 10.1103/RevModPhys.82.2731 10.1038/nature14539 10.1103/PhysRevLett.76.4250 10.1038/s41928-021-00593-x 10.1103/PhysRevApplied.17.024052 10.1038/nphys2613 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202417334 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202417334 ADFM202417334 |
Genre | researchArticle |
GrantInformation_xml | – fundername: EU FET‐Open RIA project SpinENGINE funderid: 861618 – fundername: Fundamental Research Funds for the Central Universities – fundername: Beijing Nova Program funderid: 20230484362 – fundername: Swiss National Science Foundation funderid: 200021_182013 – fundername: Emerging Engineering Interdisciplinary Project, Peking University – fundername: National Key Research and Development Program of China funderid: 2022YFA1203904; 2022YFA1604301 – fundername: National Natural Science Foundation of China funderid: 52271160 92050201; 92250306; 62176003; 62088102; 62422601 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LH4 LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c2724-7f0ca50fa92ae6f8dae8a2623d6687cb3d3f4e4b757a3d89c3f189dfd7cab40d3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 21:26:50 EDT 2025 Tue Jul 01 05:24:14 EDT 2025 Tue Mar 11 09:30:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2724-7f0ca50fa92ae6f8dae8a2623d6687cb3d3f4e4b757a3d89c3f189dfd7cab40d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7543-3244 |
PQID | 3175813322 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3175813322 crossref_primary_10_1002_adfm_202417334 wiley_primary_10_1002_adfm_202417334_ADFM202417334 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 35 2023; 14 2021; 4 2015; 521 2019; 10 2013; 85 2008; 9 2020; 16 2003; 150 2019; 18 2024; 11 2007; 99 1996; 76 2016; 13 2013; 9 1991; 6 2019; 363 2016; 11 2010; 82 2016; 7 2021; 15 1986; 323 2012; 3 2020; 2 2021; 596 2022; 9 2019 2022; 13 2018 2020; 579 2017 2018; 30 2021; 373 2015 2014 2022; 606 2012; 25 2023; 618 2019; 573 2014; 345 2022; 17 2012; 62 e_1_2_9_31_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 Krizhevsky A. (e_1_2_9_47_1) 2012; 25 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 579 start-page: 214 year: 2020 publication-title: Nature – volume: 596 start-page: 583 year: 2021 publication-title: Nature – volume: 9 year: 2022 publication-title: Adv. Mater. Inter. – volume: 373 start-page: 99 year: 2021 publication-title: Science – volume: 10 start-page: 5113 year: 2019 publication-title: Nat. Commun. – volume: 9 start-page: 375 year: 2013 publication-title: Nat. Phys. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 521 start-page: 436 year: 2015 publication-title: Nature – year: 2018 – volume: 76 start-page: 4250 year: 1996 publication-title: Phys. Rev. Lett. – year: 2014 – volume: 13 start-page: 2571 year: 2022 publication-title: Nat. Commun. – volume: 363 start-page: 1435 year: 2019 publication-title: Science – volume: 14 start-page: 6367 year: 2023 publication-title: Nat. Commun. – volume: 606 start-page: 501 year: 2022 publication-title: Nature – volume: 618 start-page: 257 year: 2023 publication-title: Nature – volume: 150 start-page: 153 year: 2003 publication-title: IEEE Proc.‐Vision, Image Signal Process. – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 85 start-page: 1473 year: 2013 publication-title: Rev. Mod. Phys. – volume: 363 start-page: 1287 year: 2019 publication-title: Science – volume: 11 start-page: 693 year: 2016 publication-title: Nat. Nanotech. – volume: 16 year: 2020 publication-title: Small – volume: 82 start-page: 2731 year: 2010 publication-title: Rev. Mod. Phys. – volume: 11 year: 2024 publication-title: Adv. Sci. – volume: 2 start-page: 13 year: 2020 publication-title: Nat. Rev. Phys. – volume: 345 start-page: 1337 year: 2014 publication-title: Science – volume: 14 start-page: 2562 year: 2023 publication-title: Nat. Commun. – volume: 323 start-page: 533 year: 1986 publication-title: Nature – volume: 30 start-page: 1920 year: 2018 publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 3 start-page: 1100 year: 2012 publication-title: Nat. Commun. – volume: 25 start-page: 1090 year: 2012 publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 292 year: 2008 publication-title: Nat. Rev. Neurosci. – volume: 10 start-page: 4199 year: 2019 publication-title: Nat. Commun. – volume: 17 start-page: 460 year: 2022 publication-title: Nat. Nanotech. – volume: 6 start-page: 466 year: 1991 publication-title: Algorithmica – volume: 18 start-page: 35 year: 2019 publication-title: Nat. Mater. – volume: 15 start-page: 102 year: 2021 publication-title: Nat. Photon. – volume: 573 start-page: 390 year: 2019 publication-title: Nature – volume: 17 year: 2022 publication-title: Phys. Rev. Appl. – year: 2017 – year: 2019 – volume: 62 start-page: 464 year: 2012 publication-title: Neuroimage – year: 2015 – volume: 4 start-page: 392 year: 2021 publication-title: Nat. Electron. – volume: 13 year: 2016 publication-title: J. Neural Eng. – ident: e_1_2_9_30_1 doi: 10.1038/s41563-018-0211-5 – ident: e_1_2_9_20_1 doi: 10.1038/s41586-019-1557-9 – ident: e_1_2_9_37_1 doi: 10.1016/j.neuroimage.2012.04.061 – ident: e_1_2_9_16_1 doi: 10.1103/RevModPhys.85.1473 – ident: e_1_2_9_18_1 doi: 10.1038/s42254-019-0118-3 – ident: e_1_2_9_45_1 doi: 10.1103/PhysRevLett.99.047601 – ident: e_1_2_9_14_1 doi: 10.1038/s41467-022-30305-8 – ident: e_1_2_9_24_1 doi: 10.1038/s41467-023-38286-y – ident: e_1_2_9_39_1 doi: 10.1038/ncomms10275 – ident: e_1_2_9_48_1 doi: 10.1038/323533a0 – ident: e_1_2_9_2_1 doi: 10.1038/s41586-021-03819-2 – ident: e_1_2_9_4_1 – ident: e_1_2_9_9_1 doi: 10.1126/science.aaw4399 – ident: e_1_2_9_29_1 doi: 10.1038/s41586-020-2061-y – ident: e_1_2_9_5_1 – ident: e_1_2_9_3_1 doi: 10.1038/s41586-023-06004-9 – ident: e_1_2_9_35_1 doi: 10.1007/BF01759054 – ident: e_1_2_9_8_1 – ident: e_1_2_9_12_1 doi: 10.1038/s41467-019-12035-6 – ident: e_1_2_9_49_1 – ident: e_1_2_9_13_1 doi: 10.1038/s41467-019-13103-7 – volume: 25 start-page: 1090 year: 2012 ident: e_1_2_9_47_1 publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_9_22_1 – ident: e_1_2_9_10_1 doi: 10.1002/adma.202204569 – ident: e_1_2_9_33_1 doi: 10.1038/ncomms2108 – ident: e_1_2_9_34_1 doi: 10.1002/admi.202201283 – ident: e_1_2_9_46_1 doi: 10.1126/science.1253493 – ident: e_1_2_9_6_1 – ident: e_1_2_9_43_1 doi: 10.1038/s41586-022-04714-0 – ident: e_1_2_9_28_1 doi: 10.1038/s41467-023-41830-5 – ident: e_1_2_9_41_1 doi: 10.1038/s41566-020-00754-y – ident: e_1_2_9_7_1 – ident: e_1_2_9_23_1 doi: 10.1038/s41565-022-01091-7 – ident: e_1_2_9_27_1 doi: 10.1126/science.aau7913 – ident: e_1_2_9_17_1 doi: 10.1002/smll.202003141 – ident: e_1_2_9_25_1 doi: 10.1088/1741-2560/13/5/051001 – ident: e_1_2_9_36_1 doi: 10.1049/ip-vis:20030362 – ident: e_1_2_9_44_1 doi: 10.1126/science.abh2076 – ident: e_1_2_9_19_1 doi: 10.1002/advs.202402182 – ident: e_1_2_9_42_1 doi: 10.1002/adma.202210216 – ident: e_1_2_9_11_1 doi: 10.1038/nrn2258 – ident: e_1_2_9_38_1 doi: 10.1109/TNNLS.2018.2874565 – ident: e_1_2_9_15_1 doi: 10.1038/nnano.2016.70 – ident: e_1_2_9_32_1 doi: 10.1103/RevModPhys.82.2731 – ident: e_1_2_9_1_1 doi: 10.1038/nature14539 – ident: e_1_2_9_31_1 doi: 10.1103/PhysRevLett.76.4250 – ident: e_1_2_9_40_1 doi: 10.1038/s41928-021-00593-x – ident: e_1_2_9_21_1 doi: 10.1103/PhysRevApplied.17.024052 – ident: e_1_2_9_26_1 doi: 10.1038/nphys2613 |
SSID | ssj0017734 |
Score | 2.4763937 |
Snippet | Deep neural networks (DNNs) have proved to be remarkably successful in various domains, in particular for implementing complex functions and performing... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Artificial neural networks artificial spin ice Magnetic anisotropy nanomagnet Neural networks neuromorphic computing probabilistic computing Probability theory Robustness Spin ice Task complexity Ultrafast lasers ultrafast spin dynamics |
Title | Ultrafast Probabilistic Neuron in an Artificial Spin Ice for Robust Deep Neural Networks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202417334 https://www.proquest.com/docview/3175813322 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD7KQHf4vTKTkInrq1Sdq0x-EcU9iQ6aC3kp8gSjfW7uJfb9Ks3eZF0GNbXmhf8vq-TV8-AeCOhLEgjHEPR4J4hCWJxxOhPIG5CrjRvEjYqYHxJBrNyHMaplur-B0foplws5FRva9tgDNe9DbQUCa1XUluMhDF2AJBbcGWVUXThh8VUOp-K0eBLfAK0pra6KPervluVtpIzW3BWmWc4RFg9b26QpOP7qrkXfH1A-P4n4c5BodrOQr7bvycgD2Vn4KDLUjhGUhnn-WSaVaU8GVpot9W01q4M6y4Hjl8zyHLqxYcjAK-LsypJ6Gg0cNwOucrYzlQalEZmOsTV3lenIPZ8PHtYeSt92PwBKKIeFT7dgMFzRLEVKRjyVTMkNFPMopiKjiWWBNFOA0pwzJOBNZBnEgtqWCc-BJfgFY-z9UlgCJRGEtl9IUQRCOfsyCiinIL5AspVm1wX_dHtnDYjcwBllFmfZU1vmqDTt1d2Tr8isyKoth8fSPUBqjy-y-tZP3BcNwcXf3F6BrsI7s3cFWf1gGtcrlSN0awlPy2GpTf-BbjFA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JT8JAFMdfXA7qwd2Ios7BxFORzgyd9khEAgrEICTcmlkTo6kEysVP70xLWbyY6LFt3qSd9d83b34P4JbWQkk5Fx4JJPUojyJPRFJ7kgjtC6t5sXSugW4vaA3p06hWRBO6szA5H2LhcHMjI5uv3QB3Dun7JTWUK-OOktsliBFCN2HbpfV2-PxGf0GQ8hnLN5YD34V4-aOC21jF9-v26-vSUmyuStZszWkegCjeNg81ea_MUlGRXz9Ajv_6nEPYnytSVM-70BFs6OQY9lY4hScwGn6kE274NEUvEzsBuIBax3dGGdojQW8J4klWQs6jQK9je6stNbKSGPU_xcxaNrQeZwb2eS8PPp-ewrD5OHhoefOUDJ7EDFOPmarLoWB4hLkOTKi4Djm2EkoFQcikIIoYqqlgNcaJCiNJjB9GyigmuaBVRc5gK_lM9DkgGWlClLYSQ0pqcFVwP2CaCcfkqzGiS3BXNEg8zskbcc5YxrGrq3hRVyUoF-0Vz0fgNHa6KLQ_4BiXAGcV_0spcb3R7C6uLv5idAM7rUG3E3favedL2MUuVXAWrlaGrXQy01dWv6TiOuuh3zpg5zA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcf_gDRg7_F6dQcBE_VNsma9ijW4s8xpoPdSn6CKF3Zuot_vUm7zc2LoMe2vNC-5DXfpi-fB3BOW5GknAuPhJJ6lMexJ2KpPUmEDoTVvFi6pYHndnjXow_9Vn9uF3_Nh5gtuLnIqN7XLsALZa6-oaFcGbeT3M5AjBC6DKs09GNXvCHpzgBSAWP1f-UwcBleQX-KbfTx1aL94rT0rTXnFWs15aRbwKc3W2eavF-OS3EpP39wHP_zNNuwOdGj6LoeQDuwpPNd2JijFO5Bv_dRDrnhoxJ1hjb8XTqtozujCuyRo7cc8bxqoaZRoJfCnrqXGllBjLoDMbaWidZFZWCvt-vU89E-9NLb15s7b1KQwZOYYeox47sKCobHmOvQRIrriGMroFQYRkwKooihmgrWYpyoKJbEBFGsjGKSC-orcgAr-SDXh4BkrAlR2goMKanBvuBByDQTjsjXYkQ34GLaH1lRczeymrCMM-erbOarBjSn3ZVN4m-UOVUU2c9vjBuAK7__0kp2naTPs6OjvxidwVonSbOn-_bjMaxjVye4ylVrwko5HOsTK15KcVqNzy-WVuXf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Probabilistic+Neuron+in+an+Artificial+Spin+Ice+for+Robust+Deep+Neural+Networks&rft.jtitle=Advanced+functional+materials&rft.au=Liang%2C+Zhongyu&rft.au=Bu%2C+Tong&rft.au=Lyu%2C+Zijian&rft.au=Liu%2C+Zhentao&rft.date=2025-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=11&rft_id=info:doi/10.1002%2Fadfm.202417334&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202417334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |