Facile Interface Engineering Enabled Efficient and Stable Self‐Powered Perovskite Photodetectors for Versatile Photosensing Applications

A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted naphthalene tetracarboxylic diimide (NDI‐Br2) as both electron transport layer (ETL) and ion blocking layer (IBL) is presented. The results signify t...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 20
Main Authors Chang, Chih‐Yu, Chin, Yi‐Ling, Chang, Chun‐Ya, Holovský, Jakub
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted naphthalene tetracarboxylic diimide (NDI‐Br2) as both electron transport layer (ETL) and ion blocking layer (IBL) is presented. The results signify that strong electron‐withdrawing dibromine substituents endow NDI‐Br2 with proper energy level and high affinity for iodide ions, rendering it well‐suited for acting as ETL and IBL synchronously. With this strategy, the resulting photodetectors exhibit remarkably high responsivity of 0.53 A W−1, specific detectivity of 3.58 × 1014 Jones and linear dynamic range of 217 dB. Very encouragingly, with appropriate encapsulation, superior device stability is secured even under continuous light irradiation or thermal stress conditions. More importantly, the applicability of this strategy to diverse fields, including pulse oximetry, image sensor, and precise ultraviolet (UV)‐A recognition system based on machine learning algorithm, are also validated. This work sets a precedent for developing self‐powered PVSK photodetectors with record‐breaking performance and stability, which represents an important step toward commercialization of this emerging technology. It is confident that this strategy can not only provide new insights in the design of new classes of interfacial layer materials, but also expand the practical applicability of PVSK photodetectors in real‐world scenarios. A promising interface engineering strategy to achieve high‐performance and stable self‐powered perovskite photodetectors is presented by using NDI‐Br2 as electron transport layer and ion blocking layer synchronously. Very encouragingly, the resulting devices achieve record‐breaking performance and stability. Additionally, their wide‐range applications in pulse oximetry, image sensor, and precise UV‐A recognition system based on machine learning algorithm are also demonstrated.
AbstractList A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted naphthalene tetracarboxylic diimide (NDI‐Br2) as both electron transport layer (ETL) and ion blocking layer (IBL) is presented. The results signify that strong electron‐withdrawing dibromine substituents endow NDI‐Br2 with proper energy level and high affinity for iodide ions, rendering it well‐suited for acting as ETL and IBL synchronously. With this strategy, the resulting photodetectors exhibit remarkably high responsivity of 0.53 A W−1, specific detectivity of 3.58 × 1014 Jones and linear dynamic range of 217 dB. Very encouragingly, with appropriate encapsulation, superior device stability is secured even under continuous light irradiation or thermal stress conditions. More importantly, the applicability of this strategy to diverse fields, including pulse oximetry, image sensor, and precise ultraviolet (UV)‐A recognition system based on machine learning algorithm, are also validated. This work sets a precedent for developing self‐powered PVSK photodetectors with record‐breaking performance and stability, which represents an important step toward commercialization of this emerging technology. It is confident that this strategy can not only provide new insights in the design of new classes of interfacial layer materials, but also expand the practical applicability of PVSK photodetectors in real‐world scenarios. A promising interface engineering strategy to achieve high‐performance and stable self‐powered perovskite photodetectors is presented by using NDI‐Br2 as electron transport layer and ion blocking layer synchronously. Very encouragingly, the resulting devices achieve record‐breaking performance and stability. Additionally, their wide‐range applications in pulse oximetry, image sensor, and precise UV‐A recognition system based on machine learning algorithm are also demonstrated.
A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted naphthalene tetracarboxylic diimide (NDI‐Br 2 ) as both electron transport layer (ETL) and ion blocking layer (IBL) is presented. The results signify that strong electron‐withdrawing dibromine substituents endow NDI‐Br 2 with proper energy level and high affinity for iodide ions, rendering it well‐suited for acting as ETL and IBL synchronously. With this strategy, the resulting photodetectors exhibit remarkably high responsivity of 0.53 A W −1 , specific detectivity of 3.58 × 10 14 Jones and linear dynamic range of 217 dB. Very encouragingly, with appropriate encapsulation, superior device stability is secured even under continuous light irradiation or thermal stress conditions. More importantly, the applicability of this strategy to diverse fields, including pulse oximetry, image sensor, and precise ultraviolet (UV)‐A recognition system based on machine learning algorithm, are also validated. This work sets a precedent for developing self‐powered PVSK photodetectors with record‐breaking performance and stability, which represents an important step toward commercialization of this emerging technology. It is confident that this strategy can not only provide new insights in the design of new classes of interfacial layer materials, but also expand the practical applicability of PVSK photodetectors in real‐world scenarios.
A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted naphthalene tetracarboxylic diimide (NDI‐Br2) as both electron transport layer (ETL) and ion blocking layer (IBL) is presented. The results signify that strong electron‐withdrawing dibromine substituents endow NDI‐Br2 with proper energy level and high affinity for iodide ions, rendering it well‐suited for acting as ETL and IBL synchronously. With this strategy, the resulting photodetectors exhibit remarkably high responsivity of 0.53 A W−1, specific detectivity of 3.58 × 1014 Jones and linear dynamic range of 217 dB. Very encouragingly, with appropriate encapsulation, superior device stability is secured even under continuous light irradiation or thermal stress conditions. More importantly, the applicability of this strategy to diverse fields, including pulse oximetry, image sensor, and precise ultraviolet (UV)‐A recognition system based on machine learning algorithm, are also validated. This work sets a precedent for developing self‐powered PVSK photodetectors with record‐breaking performance and stability, which represents an important step toward commercialization of this emerging technology. It is confident that this strategy can not only provide new insights in the design of new classes of interfacial layer materials, but also expand the practical applicability of PVSK photodetectors in real‐world scenarios.
Author Holovský, Jakub
Chang, Chun‐Ya
Chang, Chih‐Yu
Chin, Yi‐Ling
Author_xml – sequence: 1
  givenname: Chih‐Yu
  orcidid: 0000-0003-0856-177X
  surname: Chang
  fullname: Chang, Chih‐Yu
  email: cychang@gapps.ntust.edu.tw
  organization: National Taiwan University of Science and Technology
– sequence: 2
  givenname: Yi‐Ling
  surname: Chin
  fullname: Chin, Yi‐Ling
  organization: National Taiwan University of Science and Technology
– sequence: 3
  givenname: Chun‐Ya
  surname: Chang
  fullname: Chang, Chun‐Ya
  organization: National Taiwan University of Science and Technology
– sequence: 4
  givenname: Jakub
  surname: Holovský
  fullname: Holovský, Jakub
  organization: Czech Technical University in Prague
BookMark eNqFkLtOAzEQRS0UJJJAS22JOsGPzT7KKCQQKYhIPES38nrHsLCxF9shSkdNxTfyJXgJgpJqRjPnztXcHupoowGhY0qGlBB2Kkq1GjLCIsYSzvZQl8Y0HnDC0s5vT-8PUM-5J0JokvCoi95nQlY14Ln2YJWQgKf6odIAttIPoRdFDSWeKlXJCrTHQpf42rdTfA21-nz7WJoN2MAswZpX91x5wMtH400JHqQ31mFlLL4D64Rvnb6XDrRrDcZNU1cyLIx2h2hfidrB0U_to9vZ9GZyMVhcnc8n48VAsoSxQRllBfCUjoqIEiYSSmJVlAVXZSZHJI25iEVcKKnSLOMRlTQpAsejMB3Fmcp4H53s7jbWvKzB-fzJrK0OljlnLM0ITyMWqOGOktY4Z0Hlja1Wwm5zSvI277zNO__NOwiynWATvtz-Q-fjs9nln_YLQtSJRA
Cites_doi 10.1039/C8TA01049H
10.1002/solr.202200234
10.1002/smll.202403193
10.1039/C8NR00152A
10.1039/C2CC36536G
10.1039/C8CC07640E
10.1039/C6CS00942E
10.1038/ncomms8747
10.1039/C8TC06089D
10.1016/j.jechem.2021.08.006
10.1016/j.orgel.2017.10.028
10.1021/acs.accounts.5b00420
10.1016/j.jcis.2017.05.029
10.1016/j.nanoen.2018.10.014
10.31635/ccschem.023.202303199
10.1002/aenm.202302837
10.1016/j.xcrp.2020.100224
10.1039/D0TC03390A
10.1002/aenm.201903659
10.1039/C8TA05639K
10.1039/b807500j
10.1038/ncomms6745
10.1039/c4ee00022f
10.1002/smll.201900854
10.1021/acsenergylett.2c01252
10.1039/D0TC05861K
10.1039/D0TA00978D
10.1021/acs.chemmater.3c00421
10.1039/C4NR01154F
10.1038/s41467-022-34203-x
10.1038/s41560-019-0529-5
10.1038/natrevmats.2016.100
10.1002/chem.201806009
10.1038/ncomms15330
10.1039/D3EE00881A
10.1016/j.xcrp.2020.100112
10.1146/annurev-physchem-040215-112222
10.1002/adfm.202108356
10.1002/pssa.202300128
10.1002/asia.201300058
10.1021/acs.jpcc.3c04672
10.1021/acsami.7b12939
10.1002/adfm.201902784
10.1002/adma.201401986
10.1039/C5NR08622A
10.1021/jo7015357
10.1016/j.trechm.2021.04.004
10.1021/acs.chemmater.6b02583
10.1016/j.jallcom.2024.175903
10.1039/C6EE00612D
10.1021/acsaelm.1c01318
10.1002/anie.201309746
10.1126/science.1243167
10.1021/jacs.2c00777
10.1002/adma.202302552
10.1007/s10854-020-02986-8
10.1039/C6CS00896H
10.1016/j.nanoen.2019.103962
10.1002/admt.201901122
10.1002/adfm.200305156
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202422732
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202422732
ADFM202422732
Genre researchArticle
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: NSTC110‐2221‐E‐011‐093‐MY3,NSTC111‐2628‐E‐011‐005‐MY3,NSTC113‐2221‐E‐011‐138‐MY3
– fundername: National Taiwan University of Science and Technology‐Czech Technical University in Prague Joint Research Program
  funderid: CTU‐NTUST‐2024‐03
– fundername: Technology‐Czech Technical University in Prague Joint Research Program
  funderid: CTU‐NTUST‐2024‐03
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c2722-d49be3815b4102a7106fbdb3fd9c50863a6a6bfcf899341c17b102346a6569f93
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 04:26:36 EDT 2025
Tue Jul 01 04:39:25 EDT 2025
Fri May 16 02:51:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2722-d49be3815b4102a7106fbdb3fd9c50863a6a6bfcf899341c17b102346a6569f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0856-177X
PQID 3228903842
PQPubID 2045204
PageCount 15
ParticipantIDs proquest_journals_3228903842
crossref_primary_10_1002_adfm_202422732
wiley_primary_10_1002_adfm_202422732_ADFM202422732
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2023; 35
2017; 2
2019; 55
2017; 46
2019; 15
2023; 220
2014; 26
2023; 1
2007; 72
2020; 10
2013; 8
2017; 9
2020; 8
2018; 6
2020; 5
2014; 5
2020; 1
2019; 64
2024; 6
2019; 25
2024; 20
2019; 29
2022; 32
2016; 49
2014; 7
2014; 6
2014; 53
2021; 9
2019; 7
2015; 6
2021; 3
2013; 49
2023; 16
2013; 342
2023; 127
2024; 14
2024; 1004
2017; 504
2022; 144
2020; 31
2022; 4
2022; 6
2004; 14
2022; 7
2022; 13
2018; 52
2016; 28
2021; 63
2018; 54
2018; 10
2009; 38
2016; 8
2016; 9
2016; 67
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
Krishna B. G. (e_1_2_9_17_1) 2023; 1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2022
  publication-title: Sol. RRL
– volume: 6
  start-page: 6065
  year: 2014
  publication-title: Nanoscale
– volume: 7
  start-page: 1966
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 144
  start-page: 5996
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 26
  start-page: 6000
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7747
  year: 2015
  publication-title: Nat. Commun.
– volume: 504
  start-page: 58
  year: 2017
  publication-title: J. Colloid Interface Sci.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. C.
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 127
  year: 2023
  publication-title: J. Phys. Chem. C.
– volume: 10
  start-page: 7218
  year: 2018
  publication-title: Nanoscale
– volume: 46
  start-page: 5204
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 1
  year: 2023
  publication-title: Chem. Inorg. Mater.
– volume: 63
  start-page: 528
  year: 2021
  publication-title: J. Energy Chem.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 35
  year: 2020
  publication-title: Nat. Energy
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A.
– volume: 13
  start-page: 7454
  year: 2022
  publication-title: Nat. Commun.
– volume: 46
  start-page: 5714
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 4486
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 35
  start-page: 7430
  year: 2023
  publication-title: Chem. Mater.
– volume: 20
  year: 2024
  publication-title: Small
– volume: 49
  start-page: 4220
  year: 2013
  publication-title: Chem. Commun.
– volume: 1004
  year: 2024
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 903
  year: 2022
  publication-title: ACS Appl. Electron.
– volume: 31
  start-page: 4310
  year: 2020
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 28
  start-page: 6305
  year: 2016
  publication-title: Chem. Mater.
– volume: 6
  start-page: 7731
  year: 2018
  publication-title: J. Mater. Chem. A.
– volume: 53
  start-page: 7428
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 9
  start-page: 1258
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 7058
  year: 2019
  publication-title: Chem. ‐ Eur. J.
– volume: 32
  year: 2022
  publication-title: Adv. Func. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Func. Mater.
– volume: 16
  start-page: 2621
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 2602
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 5745
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 200
  year: 2018
  publication-title: Org. Electron.
– volume: 6
  start-page: 672
  year: 2024
  publication-title: CCS Chem
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 8
  start-page: 6249
  year: 2016
  publication-title: Nanoscale
– volume: 8
  start-page: 1279
  year: 2013
  publication-title: Chem. Asian J.
– volume: 55
  start-page: 354
  year: 2019
  publication-title: Nano Energy
– volume: 67
  start-page: 65
  year: 2016
  publication-title: Annu. Rev. Phys. Chem.
– volume: 14
  year: 2024
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 865
  year: 2004
  publication-title: Adv. Func. Mater.
– volume: 72
  start-page: 8070
  year: 2007
  publication-title: J. Org. Chem.
– volume: 220
  year: 2023
  publication-title: Phys. Status Solidi A Appl. Mater. Sci.
– volume: 8
  start-page: 8593
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 575
  year: 2021
  publication-title: Trends Chem
– volume: 7
  start-page: 1741
  year: 2019
  publication-title: J. Mater. Chem. C.
– volume: 49
  start-page: 286
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 38
  start-page: 2576
  year: 2009
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_9_54_1
  doi: 10.1039/C8TA01049H
– ident: e_1_2_9_38_1
  doi: 10.1002/solr.202200234
– ident: e_1_2_9_19_1
  doi: 10.1002/smll.202403193
– ident: e_1_2_9_27_1
  doi: 10.1039/C8NR00152A
– ident: e_1_2_9_41_1
  doi: 10.1039/C2CC36536G
– volume: 1
  year: 2023
  ident: e_1_2_9_17_1
  publication-title: Chem. Inorg. Mater.
– ident: e_1_2_9_20_1
  doi: 10.1039/C8CC07640E
– ident: e_1_2_9_51_1
  doi: 10.1039/C6CS00942E
– ident: e_1_2_9_37_1
  doi: 10.1038/ncomms8747
– ident: e_1_2_9_3_1
  doi: 10.1039/C8TC06089D
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jechem.2021.08.006
– ident: e_1_2_9_46_1
  doi: 10.1016/j.orgel.2017.10.028
– ident: e_1_2_9_4_1
  doi: 10.1021/acs.accounts.5b00420
– ident: e_1_2_9_43_1
  doi: 10.1016/j.jcis.2017.05.029
– ident: e_1_2_9_34_1
  doi: 10.1016/j.nanoen.2018.10.014
– ident: e_1_2_9_42_1
  doi: 10.31635/ccschem.023.202303199
– ident: e_1_2_9_16_1
  doi: 10.1002/aenm.202302837
– ident: e_1_2_9_24_1
  doi: 10.1016/j.xcrp.2020.100224
– ident: e_1_2_9_61_1
  doi: 10.1039/D0TC03390A
– ident: e_1_2_9_15_1
  doi: 10.1002/aenm.201903659
– ident: e_1_2_9_26_1
  doi: 10.1039/C8TA05639K
– ident: e_1_2_9_44_1
  doi: 10.1039/b807500j
– ident: e_1_2_9_57_1
  doi: 10.1038/ncomms6745
– ident: e_1_2_9_45_1
  doi: 10.1039/c4ee00022f
– ident: e_1_2_9_18_1
  doi: 10.1002/smll.201900854
– ident: e_1_2_9_59_1
  doi: 10.1021/acsenergylett.2c01252
– ident: e_1_2_9_47_1
  doi: 10.1039/D0TC05861K
– ident: e_1_2_9_53_1
  doi: 10.1039/D0TA00978D
– ident: e_1_2_9_13_1
  doi: 10.1021/acs.chemmater.3c00421
– ident: e_1_2_9_29_1
  doi: 10.1039/C4NR01154F
– ident: e_1_2_9_32_1
  doi: 10.1038/s41467-022-34203-x
– ident: e_1_2_9_55_1
  doi: 10.1038/s41560-019-0529-5
– ident: e_1_2_9_1_1
  doi: 10.1038/natrevmats.2016.100
– ident: e_1_2_9_22_1
  doi: 10.1002/chem.201806009
– ident: e_1_2_9_11_1
  doi: 10.1038/ncomms15330
– ident: e_1_2_9_52_1
  doi: 10.1039/D3EE00881A
– ident: e_1_2_9_12_1
  doi: 10.1016/j.xcrp.2020.100112
– ident: e_1_2_9_14_1
  doi: 10.1146/annurev-physchem-040215-112222
– ident: e_1_2_9_35_1
  doi: 10.1002/adfm.202108356
– ident: e_1_2_9_36_1
  doi: 10.1002/pssa.202300128
– ident: e_1_2_9_30_1
  doi: 10.1002/asia.201300058
– ident: e_1_2_9_58_1
  doi: 10.1021/acs.jpcc.3c04672
– ident: e_1_2_9_25_1
  doi: 10.1021/acsami.7b12939
– ident: e_1_2_9_48_1
  doi: 10.1002/adfm.201902784
– ident: e_1_2_9_39_1
  doi: 10.1002/adma.201401986
– ident: e_1_2_9_50_1
  doi: 10.1039/C5NR08622A
– ident: e_1_2_9_23_1
  doi: 10.1021/jo7015357
– ident: e_1_2_9_7_1
  doi: 10.1016/j.trechm.2021.04.004
– ident: e_1_2_9_9_1
  doi: 10.1021/acs.chemmater.6b02583
– ident: e_1_2_9_49_1
  doi: 10.1016/j.jallcom.2024.175903
– ident: e_1_2_9_6_1
  doi: 10.1039/C6EE00612D
– ident: e_1_2_9_28_1
  doi: 10.1021/acsaelm.1c01318
– ident: e_1_2_9_21_1
  doi: 10.1002/anie.201309746
– ident: e_1_2_9_31_1
  doi: 10.1126/science.1243167
– ident: e_1_2_9_60_1
  doi: 10.1021/jacs.2c00777
– ident: e_1_2_9_5_1
  doi: 10.1002/adma.202302552
– ident: e_1_2_9_40_1
  doi: 10.1007/s10854-020-02986-8
– ident: e_1_2_9_2_1
  doi: 10.1039/C6CS00896H
– ident: e_1_2_9_10_1
  doi: 10.1016/j.nanoen.2019.103962
– ident: e_1_2_9_56_1
  doi: 10.1002/admt.201901122
– ident: e_1_2_9_33_1
  doi: 10.1002/adfm.200305156
SSID ssj0017734
Score 2.4858005
Snippet A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Commercialization
Diimide
Electron transport
Energy levels
hybrid perovskite
interface engineering
Light irradiation
Machine learning
Naphthalene
Oximetry
Perovskites
Photometers
self‐powered photodetectors
Stability
Thermal stress
Title Facile Interface Engineering Enabled Efficient and Stable Self‐Powered Perovskite Photodetectors for Versatile Photosensing Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202422732
https://www.proquest.com/docview/3228903842
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EYWCPCAxtc3DzWOsoFWFVFQBlbpFfgqJqkVNysDEzMRv5Jdw5yRtyoIEmRI7cRI_7j6f7z4TcslBR3DJVUMbLRqMaZCDnjYw3GHSbJgjuIexw4O7oD9it-P2uBLFn_NDLA1uODKsvMYBzkXaWpGGcmUwkhxUDGhgFMLosIWo6H7JH-WGYb6sHLjo4OWOS9ZGx2utP76ulVZQswpYrcbp7RJefmvuaPLcXGSiKd9-0Dj-52f2yE4BR2kn7z_7ZENPD8h2haTwkHz0uIQyqbUdGi41rWTDOcZeKdq1VBSgwSifKgoQFlLpg56Yr_fPIe7EBvcM9Xz2mqK5mA6fZtlM6cyuGaQUkDNFyx10k0mRmaJnPbygU1lhPyKjXvfxut8odnBoSC-EWa5isdCACdqCAZDhgGYCI5TwjYolIMPA5wEPhJEGZn2gTqUbCqSSYJDaDmIT-8dkczqb6hNCHeX6TCkQ7BIQiYk4ACMe4uEHDo-8GrkqWzB5yYk6kpyS2UuwdpNl7dZIvWzgpBiwaQJyLYodP2KQ7dmW-qWUpHPTGyyvTv_y0BnZ8nA3Yes-WSeb2XyhzwHiZOLCduNvekb12A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07bxNBEB5FpiApIAGiGByyRRCV7bu99Z1dUFjYlvNwZJFYcnfsU5Fi2Sh3AUGVOhV_hb_CT-CXMHMPx6FBipQirs6399zdmW9mbuZbgH2JGCG1NHXrrKoLYVEPcutQ3NFpdsJTklPt8OgkHE7E4bQ1XYNfZS1Mzg-xDLiRZGT6mgScAtLNW9ZQaRyVkiPGIATzIq_yyH7_hl5b8uGgh0P8jvNB_-zjsF4sLFDXPELny4iOsghVLSUQXyWCbOiUUYEzHY0GSxjIUIbKaYfOCGp57UeKGA4E7m2FHUf8S6j1n9Ay4kTX3_u0ZKzyoyj_kB36lFLmT0ueSI837z7vXRy8NW5XTeQM4wbP4XfZO3lqy0XjKlUN_eMf4shH1X2b8KywuFk3F5EtWLPzF7CxwsP4Em4GUuNLsCw86qS2bKUZt6m8zLB-xraBIM3k3DC00nEvO7Uz9-f655gWm8NjxvZy8TWhiDgbny_ShbFp9lkkYegcMApOoiTMisaEigfwBt2VJIJXMHmQztiGynwxtzvAPOMHwhjELo1Gl2tLtP1kRL8g9GSbV-F9OWXiLzkXSZyzTvOYRjNejmYVauWMigudlMSoutsdL2gLbObZ1PjPVeJubzBa_nt9n5P24OnwbHQcHx-cHL2BdU6LJ2fZojWopJdXdhctulS9zWSIweeHnnV_Ab5UUf4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuQwEC0hkNDMgW0YsePDIE4NieN2OgcOLZqIZUAtFqlvGa9CAnUjEkBw4syJT-FX-AW-hHKWpuGChMRhckrsrLarXpVT9QzwRyBGCCV0zVgja4wZ1IPUWBR3dJot86SgLnd4_4Bvn7DdTr0zBE9VLkzBD9GfcHOSketrJ-AX2q6_kYYKbV0mOUIMIjAtwyr3zO0NOm3pxk4Le3iF0njreHO7Vq4rUFM0RN9Ls0gaRKq6ZAivAjGWW6llYHWk0F7hgeCCS6ss-iKo5JUfSkdwwLC0ziPr6JdQ6Y8w7kVusYjWYZ-wyg_D4j82911Emd-paCI9uv7-fd_D4JttO2gh5xAXj8Nz1ThFZMvZ2lUm19TdB97I_6n1JmCstLdJsxCQSRgy3Sn4OcDC-AseYqHwG0g-OWqFMmSgGvddcpkmWznXBkI0EV1N0EbHUnJkzu3L_WPbLTWH57TNZe86dfPhpH3ay3raZPlPkZSga0Dc1CTKwXlZmbrUAXxAcyCEYBpOvqUxfsNwt9c1M0A87QdMa0QuhSaXbQi0_ETotoB7okFnYbUaMclFwUSSFJzTNHG9mfR7cxYWqgGVlBopTVBxNyIvaDCspvnI-OQuSbMV7_eP5r5y0TKMtltx8nfnYG8eflC3cnIeKroAw9nllVlEcy6TS7kEEfj33YPuFVT3UK0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Interface+Engineering+Enabled+Efficient+and+Stable+Self%E2%80%90Powered+Perovskite+Photodetectors+for+Versatile+Photosensing+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Chang%2C+Chih%E2%80%90Yu&rft.au=Chin%2C+Yi%E2%80%90Ling&rft.au=Chang%2C+Chun%E2%80%90Ya&rft.au=Holovsk%C3%BD%2C+Jakub&rft.date=2025-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202422732&rft.externalDBID=10.1002%252Fadfm.202422732&rft.externalDocID=ADFM202422732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon