Facile Interface Engineering Enabled Efficient and Stable Self‐Powered Perovskite Photodetectors for Versatile Photosensing Applications
A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted naphthalene tetracarboxylic diimide (NDI‐Br2) as both electron transport layer (ETL) and ion blocking layer (IBL) is presented. The results signify t...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 20 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted naphthalene tetracarboxylic diimide (NDI‐Br2) as both electron transport layer (ETL) and ion blocking layer (IBL) is presented. The results signify that strong electron‐withdrawing dibromine substituents endow NDI‐Br2 with proper energy level and high affinity for iodide ions, rendering it well‐suited for acting as ETL and IBL synchronously. With this strategy, the resulting photodetectors exhibit remarkably high responsivity of 0.53 A W−1, specific detectivity of 3.58 × 1014 Jones and linear dynamic range of 217 dB. Very encouragingly, with appropriate encapsulation, superior device stability is secured even under continuous light irradiation or thermal stress conditions. More importantly, the applicability of this strategy to diverse fields, including pulse oximetry, image sensor, and precise ultraviolet (UV)‐A recognition system based on machine learning algorithm, are also validated. This work sets a precedent for developing self‐powered PVSK photodetectors with record‐breaking performance and stability, which represents an important step toward commercialization of this emerging technology. It is confident that this strategy can not only provide new insights in the design of new classes of interfacial layer materials, but also expand the practical applicability of PVSK photodetectors in real‐world scenarios.
A promising interface engineering strategy to achieve high‐performance and stable self‐powered perovskite photodetectors is presented by using NDI‐Br2 as electron transport layer and ion blocking layer synchronously. Very encouragingly, the resulting devices achieve record‐breaking performance and stability. Additionally, their wide‐range applications in pulse oximetry, image sensor, and precise UV‐A recognition system based on machine learning algorithm are also demonstrated. |
---|---|
AbstractList | A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted naphthalene tetracarboxylic diimide (NDI‐Br2) as both electron transport layer (ETL) and ion blocking layer (IBL) is presented. The results signify that strong electron‐withdrawing dibromine substituents endow NDI‐Br2 with proper energy level and high affinity for iodide ions, rendering it well‐suited for acting as ETL and IBL synchronously. With this strategy, the resulting photodetectors exhibit remarkably high responsivity of 0.53 A W−1, specific detectivity of 3.58 × 1014 Jones and linear dynamic range of 217 dB. Very encouragingly, with appropriate encapsulation, superior device stability is secured even under continuous light irradiation or thermal stress conditions. More importantly, the applicability of this strategy to diverse fields, including pulse oximetry, image sensor, and precise ultraviolet (UV)‐A recognition system based on machine learning algorithm, are also validated. This work sets a precedent for developing self‐powered PVSK photodetectors with record‐breaking performance and stability, which represents an important step toward commercialization of this emerging technology. It is confident that this strategy can not only provide new insights in the design of new classes of interfacial layer materials, but also expand the practical applicability of PVSK photodetectors in real‐world scenarios.
A promising interface engineering strategy to achieve high‐performance and stable self‐powered perovskite photodetectors is presented by using NDI‐Br2 as electron transport layer and ion blocking layer synchronously. Very encouragingly, the resulting devices achieve record‐breaking performance and stability. Additionally, their wide‐range applications in pulse oximetry, image sensor, and precise UV‐A recognition system based on machine learning algorithm are also demonstrated. A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted naphthalene tetracarboxylic diimide (NDI‐Br 2 ) as both electron transport layer (ETL) and ion blocking layer (IBL) is presented. The results signify that strong electron‐withdrawing dibromine substituents endow NDI‐Br 2 with proper energy level and high affinity for iodide ions, rendering it well‐suited for acting as ETL and IBL synchronously. With this strategy, the resulting photodetectors exhibit remarkably high responsivity of 0.53 A W −1 , specific detectivity of 3.58 × 10 14 Jones and linear dynamic range of 217 dB. Very encouragingly, with appropriate encapsulation, superior device stability is secured even under continuous light irradiation or thermal stress conditions. More importantly, the applicability of this strategy to diverse fields, including pulse oximetry, image sensor, and precise ultraviolet (UV)‐A recognition system based on machine learning algorithm, are also validated. This work sets a precedent for developing self‐powered PVSK photodetectors with record‐breaking performance and stability, which represents an important step toward commercialization of this emerging technology. It is confident that this strategy can not only provide new insights in the design of new classes of interfacial layer materials, but also expand the practical applicability of PVSK photodetectors in real‐world scenarios. A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted naphthalene tetracarboxylic diimide (NDI‐Br2) as both electron transport layer (ETL) and ion blocking layer (IBL) is presented. The results signify that strong electron‐withdrawing dibromine substituents endow NDI‐Br2 with proper energy level and high affinity for iodide ions, rendering it well‐suited for acting as ETL and IBL synchronously. With this strategy, the resulting photodetectors exhibit remarkably high responsivity of 0.53 A W−1, specific detectivity of 3.58 × 1014 Jones and linear dynamic range of 217 dB. Very encouragingly, with appropriate encapsulation, superior device stability is secured even under continuous light irradiation or thermal stress conditions. More importantly, the applicability of this strategy to diverse fields, including pulse oximetry, image sensor, and precise ultraviolet (UV)‐A recognition system based on machine learning algorithm, are also validated. This work sets a precedent for developing self‐powered PVSK photodetectors with record‐breaking performance and stability, which represents an important step toward commercialization of this emerging technology. It is confident that this strategy can not only provide new insights in the design of new classes of interfacial layer materials, but also expand the practical applicability of PVSK photodetectors in real‐world scenarios. |
Author | Holovský, Jakub Chang, Chun‐Ya Chang, Chih‐Yu Chin, Yi‐Ling |
Author_xml | – sequence: 1 givenname: Chih‐Yu orcidid: 0000-0003-0856-177X surname: Chang fullname: Chang, Chih‐Yu email: cychang@gapps.ntust.edu.tw organization: National Taiwan University of Science and Technology – sequence: 2 givenname: Yi‐Ling surname: Chin fullname: Chin, Yi‐Ling organization: National Taiwan University of Science and Technology – sequence: 3 givenname: Chun‐Ya surname: Chang fullname: Chang, Chun‐Ya organization: National Taiwan University of Science and Technology – sequence: 4 givenname: Jakub surname: Holovský fullname: Holovský, Jakub organization: Czech Technical University in Prague |
BookMark | eNqFkLtOAzEQRS0UJJJAS22JOsGPzT7KKCQQKYhIPES38nrHsLCxF9shSkdNxTfyJXgJgpJqRjPnztXcHupoowGhY0qGlBB2Kkq1GjLCIsYSzvZQl8Y0HnDC0s5vT-8PUM-5J0JokvCoi95nQlY14Ln2YJWQgKf6odIAttIPoRdFDSWeKlXJCrTHQpf42rdTfA21-nz7WJoN2MAswZpX91x5wMtH400JHqQ31mFlLL4D64Rvnb6XDrRrDcZNU1cyLIx2h2hfidrB0U_to9vZ9GZyMVhcnc8n48VAsoSxQRllBfCUjoqIEiYSSmJVlAVXZSZHJI25iEVcKKnSLOMRlTQpAsejMB3Fmcp4H53s7jbWvKzB-fzJrK0OljlnLM0ITyMWqOGOktY4Z0Hlja1Wwm5zSvI277zNO__NOwiynWATvtz-Q-fjs9nln_YLQtSJRA |
Cites_doi | 10.1039/C8TA01049H 10.1002/solr.202200234 10.1002/smll.202403193 10.1039/C8NR00152A 10.1039/C2CC36536G 10.1039/C8CC07640E 10.1039/C6CS00942E 10.1038/ncomms8747 10.1039/C8TC06089D 10.1016/j.jechem.2021.08.006 10.1016/j.orgel.2017.10.028 10.1021/acs.accounts.5b00420 10.1016/j.jcis.2017.05.029 10.1016/j.nanoen.2018.10.014 10.31635/ccschem.023.202303199 10.1002/aenm.202302837 10.1016/j.xcrp.2020.100224 10.1039/D0TC03390A 10.1002/aenm.201903659 10.1039/C8TA05639K 10.1039/b807500j 10.1038/ncomms6745 10.1039/c4ee00022f 10.1002/smll.201900854 10.1021/acsenergylett.2c01252 10.1039/D0TC05861K 10.1039/D0TA00978D 10.1021/acs.chemmater.3c00421 10.1039/C4NR01154F 10.1038/s41467-022-34203-x 10.1038/s41560-019-0529-5 10.1038/natrevmats.2016.100 10.1002/chem.201806009 10.1038/ncomms15330 10.1039/D3EE00881A 10.1016/j.xcrp.2020.100112 10.1146/annurev-physchem-040215-112222 10.1002/adfm.202108356 10.1002/pssa.202300128 10.1002/asia.201300058 10.1021/acs.jpcc.3c04672 10.1021/acsami.7b12939 10.1002/adfm.201902784 10.1002/adma.201401986 10.1039/C5NR08622A 10.1021/jo7015357 10.1016/j.trechm.2021.04.004 10.1021/acs.chemmater.6b02583 10.1016/j.jallcom.2024.175903 10.1039/C6EE00612D 10.1021/acsaelm.1c01318 10.1002/anie.201309746 10.1126/science.1243167 10.1021/jacs.2c00777 10.1002/adma.202302552 10.1007/s10854-020-02986-8 10.1039/C6CS00896H 10.1016/j.nanoen.2019.103962 10.1002/admt.201901122 10.1002/adfm.200305156 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202422732 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202422732 ADFM202422732 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Science and Technology Council funderid: NSTC110‐2221‐E‐011‐093‐MY3,NSTC111‐2628‐E‐011‐005‐MY3,NSTC113‐2221‐E‐011‐138‐MY3 – fundername: National Taiwan University of Science and Technology‐Czech Technical University in Prague Joint Research Program funderid: CTU‐NTUST‐2024‐03 – fundername: Technology‐Czech Technical University in Prague Joint Research Program funderid: CTU‐NTUST‐2024‐03 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 1OB 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c2722-d49be3815b4102a7106fbdb3fd9c50863a6a6bfcf899341c17b102346a6569f93 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 04:26:36 EDT 2025 Tue Jul 01 04:39:25 EDT 2025 Fri May 16 02:51:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2722-d49be3815b4102a7106fbdb3fd9c50863a6a6bfcf899341c17b102346a6569f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0856-177X |
PQID | 3228903842 |
PQPubID | 2045204 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3228903842 crossref_primary_10_1002_adfm_202422732 wiley_primary_10_1002_adfm_202422732_ADFM202422732 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2023; 35 2017; 2 2019; 55 2017; 46 2019; 15 2023; 220 2014; 26 2023; 1 2007; 72 2020; 10 2013; 8 2017; 9 2020; 8 2018; 6 2020; 5 2014; 5 2020; 1 2019; 64 2024; 6 2019; 25 2024; 20 2019; 29 2022; 32 2016; 49 2014; 7 2014; 6 2014; 53 2021; 9 2019; 7 2015; 6 2021; 3 2013; 49 2023; 16 2013; 342 2023; 127 2024; 14 2024; 1004 2017; 504 2022; 144 2020; 31 2022; 4 2022; 6 2004; 14 2022; 7 2022; 13 2018; 52 2016; 28 2021; 63 2018; 54 2018; 10 2009; 38 2016; 8 2016; 9 2016; 67 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 Krishna B. G. (e_1_2_9_17_1) 2023; 1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 6 year: 2022 publication-title: Sol. RRL – volume: 6 start-page: 6065 year: 2014 publication-title: Nanoscale – volume: 7 start-page: 1966 year: 2014 publication-title: Energy Environ. Sci. – volume: 144 start-page: 5996 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 26 start-page: 6000 year: 2014 publication-title: Adv. Mater. – volume: 6 start-page: 7747 year: 2015 publication-title: Nat. Commun. – volume: 504 start-page: 58 year: 2017 publication-title: J. Colloid Interface Sci. – volume: 8 year: 2020 publication-title: J. Mater. Chem. C. – volume: 64 year: 2019 publication-title: Nano Energy – volume: 127 year: 2023 publication-title: J. Phys. Chem. C. – volume: 10 start-page: 7218 year: 2018 publication-title: Nanoscale – volume: 46 start-page: 5204 year: 2017 publication-title: Chem. Soc. Rev. – volume: 1 year: 2023 publication-title: Chem. Inorg. Mater. – volume: 63 start-page: 528 year: 2021 publication-title: J. Energy Chem. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 5 start-page: 35 year: 2020 publication-title: Nat. Energy – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 6 year: 2018 publication-title: J. Mater. Chem. A. – volume: 13 start-page: 7454 year: 2022 publication-title: Nat. Commun. – volume: 46 start-page: 5714 year: 2017 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 4486 year: 2021 publication-title: J. Mater. Chem. C – volume: 35 start-page: 7430 year: 2023 publication-title: Chem. Mater. – volume: 20 year: 2024 publication-title: Small – volume: 49 start-page: 4220 year: 2013 publication-title: Chem. Commun. – volume: 1004 year: 2024 publication-title: J. Alloys Compd. – volume: 4 start-page: 903 year: 2022 publication-title: ACS Appl. Electron. – volume: 31 start-page: 4310 year: 2020 publication-title: J. Mater. Sci. Mater. Electron. – volume: 28 start-page: 6305 year: 2016 publication-title: Chem. Mater. – volume: 6 start-page: 7731 year: 2018 publication-title: J. Mater. Chem. A. – volume: 53 start-page: 7428 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 9 start-page: 1258 year: 2016 publication-title: Energy Environ. Sci. – volume: 25 start-page: 7058 year: 2019 publication-title: Chem. ‐ Eur. J. – volume: 32 year: 2022 publication-title: Adv. Func. Mater. – volume: 29 year: 2019 publication-title: Adv. Func. Mater. – volume: 16 start-page: 2621 year: 2023 publication-title: Energy Environ. Sci. – volume: 7 start-page: 2602 year: 2022 publication-title: ACS Energy Lett. – volume: 5 start-page: 5745 year: 2014 publication-title: Nat. Commun. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 200 year: 2018 publication-title: Org. Electron. – volume: 6 start-page: 672 year: 2024 publication-title: CCS Chem – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 8 start-page: 6249 year: 2016 publication-title: Nanoscale – volume: 8 start-page: 1279 year: 2013 publication-title: Chem. Asian J. – volume: 55 start-page: 354 year: 2019 publication-title: Nano Energy – volume: 67 start-page: 65 year: 2016 publication-title: Annu. Rev. Phys. Chem. – volume: 14 year: 2024 publication-title: Adv. Energy Mater. – volume: 14 start-page: 865 year: 2004 publication-title: Adv. Func. Mater. – volume: 72 start-page: 8070 year: 2007 publication-title: J. Org. Chem. – volume: 220 year: 2023 publication-title: Phys. Status Solidi A Appl. Mater. Sci. – volume: 8 start-page: 8593 year: 2020 publication-title: J. Mater. Chem. A – volume: 3 start-page: 575 year: 2021 publication-title: Trends Chem – volume: 7 start-page: 1741 year: 2019 publication-title: J. Mater. Chem. C. – volume: 49 start-page: 286 year: 2016 publication-title: Acc. Chem. Res. – volume: 38 start-page: 2576 year: 2009 publication-title: Chem. Soc. Rev. – ident: e_1_2_9_54_1 doi: 10.1039/C8TA01049H – ident: e_1_2_9_38_1 doi: 10.1002/solr.202200234 – ident: e_1_2_9_19_1 doi: 10.1002/smll.202403193 – ident: e_1_2_9_27_1 doi: 10.1039/C8NR00152A – ident: e_1_2_9_41_1 doi: 10.1039/C2CC36536G – volume: 1 year: 2023 ident: e_1_2_9_17_1 publication-title: Chem. Inorg. Mater. – ident: e_1_2_9_20_1 doi: 10.1039/C8CC07640E – ident: e_1_2_9_51_1 doi: 10.1039/C6CS00942E – ident: e_1_2_9_37_1 doi: 10.1038/ncomms8747 – ident: e_1_2_9_3_1 doi: 10.1039/C8TC06089D – ident: e_1_2_9_8_1 doi: 10.1016/j.jechem.2021.08.006 – ident: e_1_2_9_46_1 doi: 10.1016/j.orgel.2017.10.028 – ident: e_1_2_9_4_1 doi: 10.1021/acs.accounts.5b00420 – ident: e_1_2_9_43_1 doi: 10.1016/j.jcis.2017.05.029 – ident: e_1_2_9_34_1 doi: 10.1016/j.nanoen.2018.10.014 – ident: e_1_2_9_42_1 doi: 10.31635/ccschem.023.202303199 – ident: e_1_2_9_16_1 doi: 10.1002/aenm.202302837 – ident: e_1_2_9_24_1 doi: 10.1016/j.xcrp.2020.100224 – ident: e_1_2_9_61_1 doi: 10.1039/D0TC03390A – ident: e_1_2_9_15_1 doi: 10.1002/aenm.201903659 – ident: e_1_2_9_26_1 doi: 10.1039/C8TA05639K – ident: e_1_2_9_44_1 doi: 10.1039/b807500j – ident: e_1_2_9_57_1 doi: 10.1038/ncomms6745 – ident: e_1_2_9_45_1 doi: 10.1039/c4ee00022f – ident: e_1_2_9_18_1 doi: 10.1002/smll.201900854 – ident: e_1_2_9_59_1 doi: 10.1021/acsenergylett.2c01252 – ident: e_1_2_9_47_1 doi: 10.1039/D0TC05861K – ident: e_1_2_9_53_1 doi: 10.1039/D0TA00978D – ident: e_1_2_9_13_1 doi: 10.1021/acs.chemmater.3c00421 – ident: e_1_2_9_29_1 doi: 10.1039/C4NR01154F – ident: e_1_2_9_32_1 doi: 10.1038/s41467-022-34203-x – ident: e_1_2_9_55_1 doi: 10.1038/s41560-019-0529-5 – ident: e_1_2_9_1_1 doi: 10.1038/natrevmats.2016.100 – ident: e_1_2_9_22_1 doi: 10.1002/chem.201806009 – ident: e_1_2_9_11_1 doi: 10.1038/ncomms15330 – ident: e_1_2_9_52_1 doi: 10.1039/D3EE00881A – ident: e_1_2_9_12_1 doi: 10.1016/j.xcrp.2020.100112 – ident: e_1_2_9_14_1 doi: 10.1146/annurev-physchem-040215-112222 – ident: e_1_2_9_35_1 doi: 10.1002/adfm.202108356 – ident: e_1_2_9_36_1 doi: 10.1002/pssa.202300128 – ident: e_1_2_9_30_1 doi: 10.1002/asia.201300058 – ident: e_1_2_9_58_1 doi: 10.1021/acs.jpcc.3c04672 – ident: e_1_2_9_25_1 doi: 10.1021/acsami.7b12939 – ident: e_1_2_9_48_1 doi: 10.1002/adfm.201902784 – ident: e_1_2_9_39_1 doi: 10.1002/adma.201401986 – ident: e_1_2_9_50_1 doi: 10.1039/C5NR08622A – ident: e_1_2_9_23_1 doi: 10.1021/jo7015357 – ident: e_1_2_9_7_1 doi: 10.1016/j.trechm.2021.04.004 – ident: e_1_2_9_9_1 doi: 10.1021/acs.chemmater.6b02583 – ident: e_1_2_9_49_1 doi: 10.1016/j.jallcom.2024.175903 – ident: e_1_2_9_6_1 doi: 10.1039/C6EE00612D – ident: e_1_2_9_28_1 doi: 10.1021/acsaelm.1c01318 – ident: e_1_2_9_21_1 doi: 10.1002/anie.201309746 – ident: e_1_2_9_31_1 doi: 10.1126/science.1243167 – ident: e_1_2_9_60_1 doi: 10.1021/jacs.2c00777 – ident: e_1_2_9_5_1 doi: 10.1002/adma.202302552 – ident: e_1_2_9_40_1 doi: 10.1007/s10854-020-02986-8 – ident: e_1_2_9_2_1 doi: 10.1039/C6CS00896H – ident: e_1_2_9_10_1 doi: 10.1016/j.nanoen.2019.103962 – ident: e_1_2_9_56_1 doi: 10.1002/admt.201901122 – ident: e_1_2_9_33_1 doi: 10.1002/adfm.200305156 |
SSID | ssj0017734 |
Score | 2.4858005 |
Snippet | A facile and promising strategy to achieve high‐performance and stable perovskite (PVSK) photodetectors by strategically selecting dibromo‐substituted... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Commercialization Diimide Electron transport Energy levels hybrid perovskite interface engineering Light irradiation Machine learning Naphthalene Oximetry Perovskites Photometers self‐powered photodetectors Stability Thermal stress |
Title | Facile Interface Engineering Enabled Efficient and Stable Self‐Powered Perovskite Photodetectors for Versatile Photosensing Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202422732 https://www.proquest.com/docview/3228903842 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EYWCPCAxtc3DzWOsoFWFVFQBlbpFfgqJqkVNysDEzMRv5Jdw5yRtyoIEmRI7cRI_7j6f7z4TcslBR3DJVUMbLRqMaZCDnjYw3GHSbJgjuIexw4O7oD9it-P2uBLFn_NDLA1uODKsvMYBzkXaWpGGcmUwkhxUDGhgFMLosIWo6H7JH-WGYb6sHLjo4OWOS9ZGx2utP76ulVZQswpYrcbp7RJefmvuaPLcXGSiKd9-0Dj-52f2yE4BR2kn7z_7ZENPD8h2haTwkHz0uIQyqbUdGi41rWTDOcZeKdq1VBSgwSifKgoQFlLpg56Yr_fPIe7EBvcM9Xz2mqK5mA6fZtlM6cyuGaQUkDNFyx10k0mRmaJnPbygU1lhPyKjXvfxut8odnBoSC-EWa5isdCACdqCAZDhgGYCI5TwjYolIMPA5wEPhJEGZn2gTqUbCqSSYJDaDmIT-8dkczqb6hNCHeX6TCkQ7BIQiYk4ACMe4uEHDo-8GrkqWzB5yYk6kpyS2UuwdpNl7dZIvWzgpBiwaQJyLYodP2KQ7dmW-qWUpHPTGyyvTv_y0BnZ8nA3Yes-WSeb2XyhzwHiZOLCduNvekb12A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07bxNBEB5FpiApIAGiGByyRRCV7bu99Z1dUFjYlvNwZJFYcnfsU5Fi2Sh3AUGVOhV_hb_CT-CXMHMPx6FBipQirs6399zdmW9mbuZbgH2JGCG1NHXrrKoLYVEPcutQ3NFpdsJTklPt8OgkHE7E4bQ1XYNfZS1Mzg-xDLiRZGT6mgScAtLNW9ZQaRyVkiPGIATzIq_yyH7_hl5b8uGgh0P8jvNB_-zjsF4sLFDXPELny4iOsghVLSUQXyWCbOiUUYEzHY0GSxjIUIbKaYfOCGp57UeKGA4E7m2FHUf8S6j1n9Ay4kTX3_u0ZKzyoyj_kB36lFLmT0ueSI837z7vXRy8NW5XTeQM4wbP4XfZO3lqy0XjKlUN_eMf4shH1X2b8KywuFk3F5EtWLPzF7CxwsP4Em4GUuNLsCw86qS2bKUZt6m8zLB-xraBIM3k3DC00nEvO7Uz9-f655gWm8NjxvZy8TWhiDgbny_ShbFp9lkkYegcMApOoiTMisaEigfwBt2VJIJXMHmQztiGynwxtzvAPOMHwhjELo1Gl2tLtP1kRL8g9GSbV-F9OWXiLzkXSZyzTvOYRjNejmYVauWMigudlMSoutsdL2gLbObZ1PjPVeJubzBa_nt9n5P24OnwbHQcHx-cHL2BdU6LJ2fZojWopJdXdhctulS9zWSIweeHnnV_Ab5UUf4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuQwEC0hkNDMgW0YsePDIE4NieN2OgcOLZqIZUAtFqlvGa9CAnUjEkBw4syJT-FX-AW-hHKWpuGChMRhckrsrLarXpVT9QzwRyBGCCV0zVgja4wZ1IPUWBR3dJot86SgLnd4_4Bvn7DdTr0zBE9VLkzBD9GfcHOSketrJ-AX2q6_kYYKbV0mOUIMIjAtwyr3zO0NOm3pxk4Le3iF0njreHO7Vq4rUFM0RN9Ls0gaRKq6ZAivAjGWW6llYHWk0F7hgeCCS6ss-iKo5JUfSkdwwLC0ziPr6JdQ6Y8w7kVusYjWYZ-wyg_D4j82911Emd-paCI9uv7-fd_D4JttO2gh5xAXj8Nz1ThFZMvZ2lUm19TdB97I_6n1JmCstLdJsxCQSRgy3Sn4OcDC-AseYqHwG0g-OWqFMmSgGvddcpkmWznXBkI0EV1N0EbHUnJkzu3L_WPbLTWH57TNZe86dfPhpH3ay3raZPlPkZSga0Dc1CTKwXlZmbrUAXxAcyCEYBpOvqUxfsNwt9c1M0A87QdMa0QuhSaXbQi0_ETotoB7okFnYbUaMclFwUSSFJzTNHG9mfR7cxYWqgGVlBopTVBxNyIvaDCspvnI-OQuSbMV7_eP5r5y0TKMtltx8nfnYG8eflC3cnIeKroAw9nllVlEcy6TS7kEEfj33YPuFVT3UK0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Interface+Engineering+Enabled+Efficient+and+Stable+Self%E2%80%90Powered+Perovskite+Photodetectors+for+Versatile+Photosensing+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Chang%2C+Chih%E2%80%90Yu&rft.au=Chin%2C+Yi%E2%80%90Ling&rft.au=Chang%2C+Chun%E2%80%90Ya&rft.au=Holovsk%C3%BD%2C+Jakub&rft.date=2025-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202422732&rft.externalDBID=10.1002%252Fadfm.202422732&rft.externalDocID=ADFM202422732 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |