Vibronic Dynamics of Photodissociating ICN from Simulations of Ultrafast X‐Ray Absorption Spectroscopy
Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1Π1 excited state, with emphasis on...
Saved in:
Published in | Angewandte Chemie Vol. 132; no. 45; pp. 20219 - 20223 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
02.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0044-8249 1521-3757 |
DOI | 10.1002/ange.202007192 |
Cover
Abstract | Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1Π1 excited state, with emphasis on the transient response in the soft‐X‐ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. The simulated UV‐pump/soft‐X‐ray‐probe spectra exhibit detailed dynamical information, including a time‐domain signature for coherent vibration associated with the photogenerated CN fragment.
Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy provides detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, the photodissociation of ICN in the 1Π1 excited state is studied. The carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. |
---|---|
AbstractList | Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the
1
Π
1
excited state, with emphasis on the transient response in the soft‐X‐ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. The simulated UV‐pump/soft‐X‐ray‐probe spectra exhibit detailed dynamical information, including a time‐domain signature for coherent vibration associated with the photogenerated CN fragment. Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1Π1 excited state, with emphasis on the transient response in the soft‐X‐ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. The simulated UV‐pump/soft‐X‐ray‐probe spectra exhibit detailed dynamical information, including a time‐domain signature for coherent vibration associated with the photogenerated CN fragment. Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy provides detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, the photodissociation of ICN in the 1Π1 excited state is studied. The carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1Π1 excited state, with emphasis on the transient response in the soft‐X‐ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. The simulated UV‐pump/soft‐X‐ray‐probe spectra exhibit detailed dynamical information, including a time‐domain signature for coherent vibration associated with the photogenerated CN fragment. |
Author | Morzan, Uriel N. Nibbering, Erik T. J. Batista, Victor S. Videla, Pablo E. Soley, Micheline B. |
Author_xml | – sequence: 1 givenname: Uriel N. orcidid: 0000-0002-3294-1441 surname: Morzan fullname: Morzan, Uriel N. email: umorzan@ictp.it organization: Yale University – sequence: 2 givenname: Pablo E. surname: Videla fullname: Videla, Pablo E. email: pablo.videla@yale.edu organization: Yale University – sequence: 3 givenname: Micheline B. surname: Soley fullname: Soley, Micheline B. organization: Yale University – sequence: 4 givenname: Erik T. J. surname: Nibbering fullname: Nibbering, Erik T. J. organization: Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy – sequence: 5 givenname: Victor S. surname: Batista fullname: Batista, Victor S. email: victor.batista@yale.edu organization: Yale University |
BookMark | eNqFkMFKw0AQhhepYFu9el7wnDq72WSTY6m1FkoVteItbLabdkuSjbspkpuP4DP6JKatKAgicxgY_m_-mb-HOqUpFULnBAYEgF6KcqUGFCgAJzE9Ql0SUOL5POAd1AVgzIsoi09Qz7kNAISUx120ftKpNaWW-KopRaGlwybDd2tTm6V2zkgtal2u8HQ0x5k1BX7QxTZvZ6bcKxd5bUUmXI2fP97e70WDh6kzttoJ8EOlZG2Nk6ZqTtFxJnKnzr56Hy2ux4-jG292O5mOhjNPUk6px0GFJKWUphCJwFc8WsoIgIAIWRwx0pbiLEhlwEQEQRZyGrAlDYGzmMtI-H10cdhbWfOyVa5ONmZry9YyoSxgEPs8ZK1qcFDJ9jxnVZZUVhfCNgmBZJdmsksz-U6zBdgvQOp6H0P7v87_xuID9qpz1fxjkgznk_EP-wmA-4xp |
CitedBy_id | crossref_primary_10_1021_acs_jpca_0c10152 crossref_primary_10_1038_s42005_024_01794_4 crossref_primary_10_1039_D1CP04090A crossref_primary_10_1016_j_cpc_2023_109016 |
Cites_doi | 10.1021/jp801738f 10.1039/C6FD00070C 10.1063/1.443307 10.1021/acs.accounts.8b00462 10.1021/jp0012754 10.1063/1.467925 10.1039/C9CP03695D 10.1039/C9FD00073A 10.1063/1.478866 10.1126/science.242.4886.1645 10.1088/0953-4075/48/21/214001 10.1063/1.5024869 10.1063/1.1467897 10.1126/science.aaz4740 10.1021/acs.jpca.5b03256 10.1126/science.1197796 10.1021/acs.chemrev.8b00026 10.1039/C6FD00117C 10.1039/C9CP03019K 10.1063/1.5116699 10.1073/pnas.1007000107 10.1021/cr500628b 10.1021/jp001460h 10.1038/nature14296 10.1038/s41467-019-10789-7 10.3389/fchem.2018.00070 10.1002/qua.560560840 10.1103/PhysRevA.76.012504 10.1002/9783527619436.ch7 10.1063/1.467209 10.1021/acs.jctc.9b00039 10.1063/1.5115154 10.1063/1.473717 10.1021/jp3106502 10.1039/C4FD00178H 10.1021/acs.jpclett.8b03420 10.1038/nature09212 10.1063/1.481130 10.1146/annurev.physchem.040808.090409 10.1126/science.aax0076 10.1063/1.463620 10.1146/annurev.physchem.56.092503.141314 10.1021/jp403751m 10.1038/s41570-018-0008-8 10.1126/science.aah6114 10.1063/1.4933007 10.1103/PhysRevA.63.063405 10.1063/1.1321049 10.1063/1.467978 10.1126/science.aaj2198 10.1103/PhysRevLett.120.243001 10.1063/1.471519 10.1063/1.4871688 10.1063/1.5047487 10.1021/acs.jctc.7b00608 10.1021/cr020690k 10.1021/acs.jpclett.9b00159 10.1021/j100180a030 10.1021/cr0206667 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by Wiley-VCH GmbH 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by Wiley-VCH GmbH – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202007192 |
DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | 20223 |
ExternalDocumentID | 10_1002_ange_202007192 ANGE202007192 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DGE-1144152; CHE-1900160 – fundername: Horizon 2020 (research and innovation programme) funderid: 788704 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c2722-70e61b222b08a53e78dc80010a649841414e745bc54a805f67254d2607497c8a3 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Sun Jul 13 05:16:08 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Tue Jul 01 01:48:41 EDT 2025 Wed Jan 22 16:31:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2722-70e61b222b08a53e78dc80010a649841414e745bc54a805f67254d2607497c8a3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3294-1441 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202007192 |
PQID | 2454093764 |
PQPubID | 866336 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2454093764 crossref_primary_10_1002_ange_202007192 crossref_citationtrail_10_1002_ange_202007192 wiley_primary_10_1002_ange_202007192_ANGE202007192 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2, 2020 |
PublicationDateYYYYMMDD | 2020-11-02 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2, 2020 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 120 2010; 107 2019; 10 2010; 466 2019; 15 2002; 116 2020; 367 1996; 104 1992; 97 2007; 76 2017; 355 2017; 356 2019; 365 1992; 96 1994; 101 2018; 6 2015; 48 1994; 100 1997; 106 2018; 2 2015; 177 2018; 377 2013; 117 2019; 151 2008; 112 2016; 194 2004; 104 2000; 113 2018; 149 2015; 520 2009; 60 1995; 56 1982; 76 2018; 148 1988; 242 1994 2020; 221 2000; 112 2001; 63 2011; 331 2016; 3 2015; 115 2000; 104 2018; 118 2017; 13 1999; 110 2015; 119 2018; 51 2014; 140 2020; 22 2005; 56 e_1_2_6_51_2 e_1_2_6_72_2 e_1_2_6_53_1 e_1_2_6_74_2 e_1_2_6_70_1 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_76_2 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_62_1 Geneaux R. (e_1_2_6_39_2) 2018; 377 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_1 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_26_1 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_31_2 e_1_2_6_71_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_1 e_1_2_6_16_2 e_1_2_6_77_2 e_1_2_6_14_2 e_1_2_6_56_2 e_1_2_6_37_1 e_1_2_6_63_1 e_1_2_6_42_2 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_48_1 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_21_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_67_1 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 466 start-page: 739 year: 2010 end-page: 743 publication-title: Nature – volume: 177 start-page: 405 year: 2015 end-page: 428 publication-title: Faraday Discuss. – volume: 242 start-page: 1645 year: 1988 publication-title: Science – volume: 48 year: 2015 publication-title: J. Phys. B – volume: 377 year: 2018 publication-title: Philos. Trans. R. Soc. London Ser. A – volume: 113 start-page: 9510 year: 2000 end-page: 9522 publication-title: J. Chem. Phys. – volume: 194 start-page: 731 year: 2016 end-page: 746 publication-title: Faraday Discuss. – volume: 355 start-page: 264 year: 2017 publication-title: Science – volume: 117 start-page: 4591 year: 2013 end-page: 4601 publication-title: J. Phys. Chem. A – volume: 520 start-page: 78 year: 2015 end-page: 81 publication-title: Nature – volume: 365 start-page: 79 year: 2019 publication-title: Science – volume: 100 start-page: 4894 year: 1994 end-page: 4909 publication-title: J. Chem. Phys. – volume: 51 start-page: 3203 year: 2018 end-page: 3211 publication-title: Acc. Chem. Res. – year: 1994 – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 148 year: 2018 publication-title: J. Chem. Phys. – volume: 110 start-page: 9922 year: 1999 end-page: 9936 publication-title: J. Chem. Phys. – volume: 116 start-page: 7997 year: 2002 end-page: 8005 publication-title: J. Chem. Phys. – volume: 101 start-page: 9469 year: 1994 end-page: 9479 publication-title: J. Chem. Phys. – volume: 151 year: 2019 publication-title: J. Chem. Phys. – volume: 15 start-page: 3117 year: 2019 end-page: 3133 publication-title: J. Chem. Theory Comput. – volume: 104 start-page: 8016 year: 1996 end-page: 8024 publication-title: J. Chem. Phys. – volume: 106 start-page: 6923 year: 1997 end-page: 6941 publication-title: J. Chem. Phys. – volume: 221 start-page: 245 year: 2020 end-page: 264 publication-title: Faraday Discuss. – volume: 60 start-page: 293 year: 2009 end-page: 320 publication-title: Annu. Rev. Phys. Chem. – volume: 10 start-page: 3133 year: 2019 publication-title: Nat. Commun. – volume: 2 start-page: 82 year: 2018 end-page: 94 publication-title: Nat. Rev. Chem. – volume: 112 start-page: 13164 year: 2008 end-page: 13171 publication-title: J. Phys. Chem. A – volume: 96 start-page: 135 year: 1992 end-page: 149 publication-title: J. Phys. Chem. – volume: 140 year: 2014 publication-title: J. Chem. Phys. – volume: 104 start-page: 1781 year: 2004 end-page: 1812 publication-title: Chem. Rev. – volume: 117 start-page: 361 year: 2013 end-page: 369 publication-title: J. Phys. Chem. A – volume: 112 start-page: 5566 year: 2000 end-page: 5575 publication-title: J. Chem. Phys. – volume: 104 start-page: 5660 year: 2000 end-page: 5694 publication-title: J. Phys. Chem. A – volume: 10 start-page: 52 year: 2019 end-page: 58 publication-title: J. Phys. Chem. Lett. – volume: 76 year: 2007 publication-title: Phys. Rev. A – volume: 56 start-page: 337 year: 2005 end-page: 367 publication-title: Annu. Rev. Phys. Chem. – volume: 10 start-page: 1382 year: 2019 end-page: 1387 publication-title: J. Phys. Chem. Lett. – volume: 331 start-page: 1423 year: 2011 publication-title: Science – volume: 6 start-page: 70 year: 2018 end-page: 82 publication-title: Front. Chem. – volume: 107 start-page: 20172 year: 2010 end-page: 20177 publication-title: Proc. Natl. Acad. Sci. USA – volume: 104 start-page: 10293 year: 2000 end-page: 10303 publication-title: J. Phys. Chem. A – volume: 118 start-page: 4071 year: 2018 end-page: 4113 publication-title: Chem. Rev. – volume: 356 start-page: 54 year: 2017 end-page: 59 publication-title: Science – volume: 101 start-page: 9597 year: 1994 end-page: 9609 publication-title: J. Chem. Phys. – volume: 22 start-page: 2667 year: 2020 end-page: 2676 publication-title: Phys. Chem. Chem. Phys. – volume: 56 start-page: 361 year: 1995 end-page: 370 publication-title: Int. J. Quantum Chem. – volume: 3 year: 2016 publication-title: Struct. Dyn. – volume: 76 start-page: 2127 year: 1982 end-page: 2128 publication-title: J. Chem. Phys. – volume: 149 year: 2018 publication-title: J. Chem. Phys. – volume: 104 start-page: 1717 year: 2004 end-page: 1718 publication-title: Chem. Rev. – volume: 13 start-page: 4034 year: 2017 end-page: 4042 publication-title: J. Chem. Theory Comput. – volume: 119 start-page: 7951 year: 2015 end-page: 7965 publication-title: J. Phys. Chem. A – volume: 194 start-page: 117 year: 2016 publication-title: Faraday Discuss. – volume: 22 start-page: 2693 year: 2020 end-page: 2703 publication-title: Phys. Chem. Chem. Phys. – volume: 367 start-page: 179 year: 2020 publication-title: Science – volume: 97 start-page: 227 year: 1992 end-page: 235 publication-title: J. Chem. Phys. – volume: 63 year: 2001 publication-title: Phys. Rev. A – volume: 115 start-page: 6217 year: 2015 end-page: 6263 publication-title: Chem. Rev. – ident: e_1_2_6_53_1 doi: 10.1021/jp801738f – ident: e_1_2_6_23_1 – ident: e_1_2_6_17_2 doi: 10.1039/C6FD00070C – ident: e_1_2_6_60_1 doi: 10.1063/1.443307 – ident: e_1_2_6_12_2 doi: 10.1021/acs.accounts.8b00462 – ident: e_1_2_6_40_1 – ident: e_1_2_6_46_2 doi: 10.1021/jp0012754 – ident: e_1_2_6_37_1 – ident: e_1_2_6_45_2 doi: 10.1063/1.467925 – ident: e_1_2_6_22_2 doi: 10.1039/C9CP03695D – ident: e_1_2_6_30_2 doi: 10.1039/C9FD00073A – ident: e_1_2_6_67_1 – ident: e_1_2_6_63_1 – ident: e_1_2_6_68_2 doi: 10.1063/1.478866 – ident: e_1_2_6_75_1 – ident: e_1_2_6_2_2 doi: 10.1126/science.242.4886.1645 – ident: e_1_2_6_14_2 doi: 10.1088/0953-4075/48/21/214001 – ident: e_1_2_6_66_2 doi: 10.1063/1.5024869 – ident: e_1_2_6_76_2 doi: 10.1063/1.1467897 – ident: e_1_2_6_62_1 doi: 10.1126/science.aaz4740 – ident: e_1_2_6_64_2 doi: 10.1021/acs.jpca.5b03256 – ident: e_1_2_6_47_2 doi: 10.1126/science.1197796 – ident: e_1_2_6_72_2 doi: 10.1021/acs.chemrev.8b00026 – ident: e_1_2_6_18_2 doi: 10.1039/C6FD00117C – ident: e_1_2_6_16_2 doi: 10.1039/C9CP03019K – ident: e_1_2_6_29_2 doi: 10.1063/1.5116699 – ident: e_1_2_6_52_1 doi: 10.1073/pnas.1007000107 – ident: e_1_2_6_74_2 doi: 10.1021/cr500628b – ident: e_1_2_6_4_2 doi: 10.1021/jp001460h – ident: e_1_2_6_7_2 doi: 10.1038/nature14296 – ident: e_1_2_6_35_2 doi: 10.1038/s41467-019-10789-7 – ident: e_1_2_6_73_2 doi: 10.3389/fchem.2018.00070 – ident: e_1_2_6_56_2 doi: 10.1002/qua.560560840 – ident: e_1_2_6_24_2 doi: 10.1103/PhysRevA.76.012504 – ident: e_1_2_6_58_2 doi: 10.1002/9783527619436.ch7 – ident: e_1_2_6_41_2 doi: 10.1063/1.467209 – ident: e_1_2_6_26_1 – ident: e_1_2_6_21_2 doi: 10.1021/acs.jctc.9b00039 – ident: e_1_2_6_20_2 doi: 10.1063/1.5115154 – ident: e_1_2_6_59_2 doi: 10.1063/1.473717 – ident: e_1_2_6_1_1 – ident: e_1_2_6_31_2 doi: 10.1021/jp3106502 – ident: e_1_2_6_36_1 doi: 10.1039/C4FD00178H – ident: e_1_2_6_61_1 doi: 10.1021/acs.jpclett.8b03420 – ident: e_1_2_6_34_2 doi: 10.1038/nature09212 – ident: e_1_2_6_43_2 doi: 10.1063/1.481130 – ident: e_1_2_6_77_2 doi: 10.1146/annurev.physchem.040808.090409 – ident: e_1_2_6_48_1 – ident: e_1_2_6_49_2 doi: 10.1063/1.467925 – ident: e_1_2_6_10_2 doi: 10.1126/science.aax0076 – volume: 377 start-page: 20170463 year: 2018 ident: e_1_2_6_39_2 publication-title: Philos. Trans. R. Soc. London Ser. A – ident: e_1_2_6_44_2 doi: 10.1063/1.463620 – ident: e_1_2_6_6_2 doi: 10.1146/annurev.physchem.56.092503.141314 – ident: e_1_2_6_32_2 doi: 10.1021/jp403751m – ident: e_1_2_6_38_2 doi: 10.1038/s41570-018-0008-8 – ident: e_1_2_6_33_1 – ident: e_1_2_6_51_2 doi: 10.1063/1.481130 – ident: e_1_2_6_8_2 doi: 10.1126/science.aah6114 – ident: e_1_2_6_28_2 doi: 10.1063/1.4933007 – ident: e_1_2_6_25_2 doi: 10.1103/PhysRevA.63.063405 – ident: e_1_2_6_5_1 – ident: e_1_2_6_69_2 doi: 10.1063/1.1321049 – ident: e_1_2_6_13_1 – ident: e_1_2_6_50_2 doi: 10.1063/1.467978 – ident: e_1_2_6_9_2 doi: 10.1126/science.aaj2198 – ident: e_1_2_6_19_2 doi: 10.1103/PhysRevLett.120.243001 – ident: e_1_2_6_42_2 doi: 10.1063/1.471519 – ident: e_1_2_6_71_2 doi: 10.1063/1.4871688 – ident: e_1_2_6_15_2 doi: 10.1063/1.5047487 – ident: e_1_2_6_65_2 doi: 10.1021/acs.jctc.7b00608 – ident: e_1_2_6_3_2 doi: 10.1021/cr020690k – ident: e_1_2_6_57_1 – ident: e_1_2_6_70_1 – ident: e_1_2_6_11_2 doi: 10.1021/acs.jpclett.9b00159 – ident: e_1_2_6_54_1 – ident: e_1_2_6_55_2 doi: 10.1021/j100180a030 – ident: e_1_2_6_27_2 doi: 10.1021/cr0206667 |
SSID | ssj0006279 |
Score | 2.1238604 |
Snippet | Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 20219 |
SubjectTerms | Absorption spectroscopy Chemistry ICN Information processing Photochemicals Photodissociation pump–probe spectroscopy quantum dynamics Spectra Spectrum analysis time-resolved X-ray spectroscopy Transient response ultrafast photochemistry Wave packets |
Title | Vibronic Dynamics of Photodissociating ICN from Simulations of Ultrafast X‐Ray Absorption Spectroscopy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202007192 https://www.proquest.com/docview/2454093764 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagCyz8Iwql8oDEFJo6TuyMVX8oDFUFFHWLbNehiJJUTTqUiUfgGXkSbCdpAQkhgbIk0tlKfD7fd47vOwDOlH1prxBa1BPYwj4jlu9I2yI8JGxEuULNhu2z53UH-HroDj9l8Wf8EMsNN20ZZr3WBs54UluRhuqz9yq-03ttCqWoRbjueJo8v3Wz4o_yUEa2Z2NsURVoFKyNNqp9bf7VK62g5mfAajxOZxuw4l2zgyZPF_OUX4iXbzSO__mYHbCVw1HYyObPLliT0R7YaBZV4PbB-F71q-lzYSurXZ_AOIT9cZzG-ld-ptroAV41e1CnqsDbx-e8IpiRHEzSGQtZksLh--vbDVvABk_imVmo4O3U1ODRmTGLAzDotO-aXSuvzmAJRFQES2zp1bmCF9ymzHUkoSNBdYjJPOxTXFeXJNjlwsWM2m7oERWLjlT4RLBPBGXOIShFcSSPACS2wNJ3fG6HRAWYQnlIjLhmSvR96bq0DKxCO4HIqct1BY1JkJEuo0CPX7AcvzI4X8pPM9KOHyUrhbKD3HiTAGlWQgXbPFwGyGjtl16CRu-yvXw6_kujE7Cp702WI6qAUjqby1MFd1JeBesI96tmYn8Aoj_2IA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsJAFJ0oLnBjfEYUdRYmrhrqdNqZLgmCoNgQBcOumSlTMUFKoC7Y-Ql-o1_i3L6QhTExXbW506R3eueeM49zEbrU8QVZITS4E1CDuoIZrqVMg8mQiRGXGjUnap-e0x7Qu6Gd7yaEszCpPkQx4QaRkYzXEOAwIV1bqYbC5ntN8GCyTcOUTbRFNTiHXX2E9orB2CGp3J5JqcE11ch1G01SW2-_npdWYPMnZE1yTmsX7WRgEdfT3t1DG2q6j8qNvEbbARo_608AcVt8k1aWX-AoxL1xFEew0J46fvqCOw0Pw0ES_PT6ltXrSiwHk3guQrGI8fDr4_NRLHFdLqJ5MoxgKE0fg9hlNFseokGr2W-0jax2ghEQpvklM5VzLXXylyYXtqUYHwUcCKBwqMvptb4Uo7YMbCq4aYcO00xxpMkNoy4LuLCOUGkaTdUxwswMqHItV5oh0_Qv0PmLEgk6hq6rbJtXkJF7zg8yYXGobzHxU0lk4oOn_cLTFXRV2M9SSY1fLat5R_hZaC18ApqBGlQ5tIJI0jl_vMWve7fN4u7kP40uULndf-j63Y53f4q24XlyHpFUUSmev6szDUxieZ78et_DPNeN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD7xkqgv3o147YOJT4MxurV7JCiKGmJADG9LWzoxIiMwHvTJn-Bv9JfYdhuIiTHR7GnLabP19PR8p-v5DsCJsi_tFUKLegJb2GfE8kvStggPCetQrlCzYfuse5ctfNV221-y-BN-iMmGm7YMs15rAx90wsKUNFSfvVfxnd5rUyhlHhaxp-CEhkWNKYGU5yRsezbGFlWRRkbbaDuF2fazbmmKNb8iVuNyqmvAspdNTpo85ccxz4vXbzyO__madVhN8SgqJxNoA-ZkfxOWK1kZuC3o3qt-NX8uOkuK149QFKLbbhRH-l9-otv-A6pV6kjnqqDm43NaEsxItnrxkIVsFKP2x9t7g72gMh9FQ7NSoebAFOHRqTEv29Cqnt9VLq20PIMlHKJCWGJLr8gVvuA2ZW5JEtoRVMeYzMM-xUV1SYJdLlzMqO2GHlHBaEfFTwT7RFBW2oGFftSXu4CILbD0Sz63Q6IiTKFcJHa4pkr0fem6NAdWpp1ApNzluoRGL0hYl51Aj18wGb8cnE7kBwlrx4-SB5myg9R6R4GjaQkVbvNwDhyjtV96Ccr1i_PJ3d5fGh3D0u1ZNbip1a_3YUU_NhmPzgEsxMOxPFTQJ-ZHZnZ_Al3--Bc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibronic+Dynamics+of+Photodissociating+ICN+from+Simulations+of+Ultrafast+X%E2%80%90Ray+Absorption+Spectroscopy&rft.jtitle=Angewandte+Chemie&rft.au=Morzan%2C+Uriel+N.&rft.au=Videla%2C+Pablo+E.&rft.au=Soley%2C+Micheline+B.&rft.au=Nibbering%2C+Erik+T.+J.&rft.date=2020-11-02&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=132&rft.issue=45&rft.spage=20219&rft.epage=20223&rft_id=info:doi/10.1002%2Fange.202007192&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202007192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |