Vibronic Dynamics of Photodissociating ICN from Simulations of Ultrafast X‐Ray Absorption Spectroscopy

Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1Π1 excited state, with emphasis on...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 132; no. 45; pp. 20219 - 20223
Main Authors Morzan, Uriel N., Videla, Pablo E., Soley, Micheline B., Nibbering, Erik T. J., Batista, Victor S.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 02.11.2020
Subjects
Online AccessGet full text
ISSN0044-8249
1521-3757
DOI10.1002/ange.202007192

Cover

Abstract Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1Π1 excited state, with emphasis on the transient response in the soft‐X‐ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. The simulated UV‐pump/soft‐X‐ray‐probe spectra exhibit detailed dynamical information, including a time‐domain signature for coherent vibration associated with the photogenerated CN fragment. Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy provides detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, the photodissociation of ICN in the 1Π1 excited state is studied. The carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process.
AbstractList Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1 Π 1 excited state, with emphasis on the transient response in the soft‐X‐ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. The simulated UV‐pump/soft‐X‐ray‐probe spectra exhibit detailed dynamical information, including a time‐domain signature for coherent vibration associated with the photogenerated CN fragment.
Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1Π1 excited state, with emphasis on the transient response in the soft‐X‐ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. The simulated UV‐pump/soft‐X‐ray‐probe spectra exhibit detailed dynamical information, including a time‐domain signature for coherent vibration associated with the photogenerated CN fragment. Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy provides detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, the photodissociation of ICN in the 1Π1 excited state is studied. The carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process.
Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1Π1 excited state, with emphasis on the transient response in the soft‐X‐ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K‐edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. The simulated UV‐pump/soft‐X‐ray‐probe spectra exhibit detailed dynamical information, including a time‐domain signature for coherent vibration associated with the photogenerated CN fragment.
Author Morzan, Uriel N.
Nibbering, Erik T. J.
Batista, Victor S.
Videla, Pablo E.
Soley, Micheline B.
Author_xml – sequence: 1
  givenname: Uriel N.
  orcidid: 0000-0002-3294-1441
  surname: Morzan
  fullname: Morzan, Uriel N.
  email: umorzan@ictp.it
  organization: Yale University
– sequence: 2
  givenname: Pablo E.
  surname: Videla
  fullname: Videla, Pablo E.
  email: pablo.videla@yale.edu
  organization: Yale University
– sequence: 3
  givenname: Micheline B.
  surname: Soley
  fullname: Soley, Micheline B.
  organization: Yale University
– sequence: 4
  givenname: Erik T. J.
  surname: Nibbering
  fullname: Nibbering, Erik T. J.
  organization: Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy
– sequence: 5
  givenname: Victor S.
  surname: Batista
  fullname: Batista, Victor S.
  email: victor.batista@yale.edu
  organization: Yale University
BookMark eNqFkMFKw0AQhhepYFu9el7wnDq72WSTY6m1FkoVteItbLabdkuSjbspkpuP4DP6JKatKAgicxgY_m_-mb-HOqUpFULnBAYEgF6KcqUGFCgAJzE9Ql0SUOL5POAd1AVgzIsoi09Qz7kNAISUx120ftKpNaWW-KopRaGlwybDd2tTm6V2zkgtal2u8HQ0x5k1BX7QxTZvZ6bcKxd5bUUmXI2fP97e70WDh6kzttoJ8EOlZG2Nk6ZqTtFxJnKnzr56Hy2ux4-jG292O5mOhjNPUk6px0GFJKWUphCJwFc8WsoIgIAIWRwx0pbiLEhlwEQEQRZyGrAlDYGzmMtI-H10cdhbWfOyVa5ONmZry9YyoSxgEPs8ZK1qcFDJ9jxnVZZUVhfCNgmBZJdmsksz-U6zBdgvQOp6H0P7v87_xuID9qpz1fxjkgznk_EP-wmA-4xp
CitedBy_id crossref_primary_10_1021_acs_jpca_0c10152
crossref_primary_10_1038_s42005_024_01794_4
crossref_primary_10_1039_D1CP04090A
crossref_primary_10_1016_j_cpc_2023_109016
Cites_doi 10.1021/jp801738f
10.1039/C6FD00070C
10.1063/1.443307
10.1021/acs.accounts.8b00462
10.1021/jp0012754
10.1063/1.467925
10.1039/C9CP03695D
10.1039/C9FD00073A
10.1063/1.478866
10.1126/science.242.4886.1645
10.1088/0953-4075/48/21/214001
10.1063/1.5024869
10.1063/1.1467897
10.1126/science.aaz4740
10.1021/acs.jpca.5b03256
10.1126/science.1197796
10.1021/acs.chemrev.8b00026
10.1039/C6FD00117C
10.1039/C9CP03019K
10.1063/1.5116699
10.1073/pnas.1007000107
10.1021/cr500628b
10.1021/jp001460h
10.1038/nature14296
10.1038/s41467-019-10789-7
10.3389/fchem.2018.00070
10.1002/qua.560560840
10.1103/PhysRevA.76.012504
10.1002/9783527619436.ch7
10.1063/1.467209
10.1021/acs.jctc.9b00039
10.1063/1.5115154
10.1063/1.473717
10.1021/jp3106502
10.1039/C4FD00178H
10.1021/acs.jpclett.8b03420
10.1038/nature09212
10.1063/1.481130
10.1146/annurev.physchem.040808.090409
10.1126/science.aax0076
10.1063/1.463620
10.1146/annurev.physchem.56.092503.141314
10.1021/jp403751m
10.1038/s41570-018-0008-8
10.1126/science.aah6114
10.1063/1.4933007
10.1103/PhysRevA.63.063405
10.1063/1.1321049
10.1063/1.467978
10.1126/science.aaj2198
10.1103/PhysRevLett.120.243001
10.1063/1.471519
10.1063/1.4871688
10.1063/1.5047487
10.1021/acs.jctc.7b00608
10.1021/cr020690k
10.1021/acs.jpclett.9b00159
10.1021/j100180a030
10.1021/cr0206667
ContentType Journal Article
Copyright 2020 The Authors. Published by Wiley-VCH GmbH
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by Wiley-VCH GmbH
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202007192
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage 20223
ExternalDocumentID 10_1002_ange_202007192
ANGE202007192
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DGE-1144152; CHE-1900160
– fundername: Horizon 2020 (research and innovation programme)
  funderid: 788704
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c2722-70e61b222b08a53e78dc80010a649841414e745bc54a805f67254d2607497c8a3
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Sun Jul 13 05:16:08 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 01:48:41 EDT 2025
Wed Jan 22 16:31:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2722-70e61b222b08a53e78dc80010a649841414e745bc54a805f67254d2607497c8a3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3294-1441
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202007192
PQID 2454093764
PQPubID 866336
PageCount 5
ParticipantIDs proquest_journals_2454093764
crossref_primary_10_1002_ange_202007192
crossref_citationtrail_10_1002_ange_202007192
wiley_primary_10_1002_ange_202007192_ANGE202007192
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2, 2020
PublicationDateYYYYMMDD 2020-11-02
PublicationDate_xml – month: 11
  year: 2020
  text: November 2, 2020
  day: 02
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 120
2010; 107
2019; 10
2010; 466
2019; 15
2002; 116
2020; 367
1996; 104
1992; 97
2007; 76
2017; 355
2017; 356
2019; 365
1992; 96
1994; 101
2018; 6
2015; 48
1994; 100
1997; 106
2018; 2
2015; 177
2018; 377
2013; 117
2019; 151
2008; 112
2016; 194
2004; 104
2000; 113
2018; 149
2015; 520
2009; 60
1995; 56
1982; 76
2018; 148
1988; 242
1994
2020; 221
2000; 112
2001; 63
2011; 331
2016; 3
2015; 115
2000; 104
2018; 118
2017; 13
1999; 110
2015; 119
2018; 51
2014; 140
2020; 22
2005; 56
e_1_2_6_51_2
e_1_2_6_72_2
e_1_2_6_53_1
e_1_2_6_74_2
e_1_2_6_70_1
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_76_2
e_1_2_6_57_1
e_1_2_6_15_2
e_1_2_6_62_1
Geneaux R. (e_1_2_6_39_2) 2018; 377
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_1
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_26_1
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_31_2
e_1_2_6_71_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_1
e_1_2_6_16_2
e_1_2_6_77_2
e_1_2_6_14_2
e_1_2_6_56_2
e_1_2_6_37_1
e_1_2_6_63_1
e_1_2_6_42_2
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_48_1
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_67_1
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 466
  start-page: 739
  year: 2010
  end-page: 743
  publication-title: Nature
– volume: 177
  start-page: 405
  year: 2015
  end-page: 428
  publication-title: Faraday Discuss.
– volume: 242
  start-page: 1645
  year: 1988
  publication-title: Science
– volume: 48
  year: 2015
  publication-title: J. Phys. B
– volume: 377
  year: 2018
  publication-title: Philos. Trans. R. Soc. London Ser. A
– volume: 113
  start-page: 9510
  year: 2000
  end-page: 9522
  publication-title: J. Chem. Phys.
– volume: 194
  start-page: 731
  year: 2016
  end-page: 746
  publication-title: Faraday Discuss.
– volume: 355
  start-page: 264
  year: 2017
  publication-title: Science
– volume: 117
  start-page: 4591
  year: 2013
  end-page: 4601
  publication-title: J. Phys. Chem. A
– volume: 520
  start-page: 78
  year: 2015
  end-page: 81
  publication-title: Nature
– volume: 365
  start-page: 79
  year: 2019
  publication-title: Science
– volume: 100
  start-page: 4894
  year: 1994
  end-page: 4909
  publication-title: J. Chem. Phys.
– volume: 51
  start-page: 3203
  year: 2018
  end-page: 3211
  publication-title: Acc. Chem. Res.
– year: 1994
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 148
  year: 2018
  publication-title: J. Chem. Phys.
– volume: 110
  start-page: 9922
  year: 1999
  end-page: 9936
  publication-title: J. Chem. Phys.
– volume: 116
  start-page: 7997
  year: 2002
  end-page: 8005
  publication-title: J. Chem. Phys.
– volume: 101
  start-page: 9469
  year: 1994
  end-page: 9479
  publication-title: J. Chem. Phys.
– volume: 151
  year: 2019
  publication-title: J. Chem. Phys.
– volume: 15
  start-page: 3117
  year: 2019
  end-page: 3133
  publication-title: J. Chem. Theory Comput.
– volume: 104
  start-page: 8016
  year: 1996
  end-page: 8024
  publication-title: J. Chem. Phys.
– volume: 106
  start-page: 6923
  year: 1997
  end-page: 6941
  publication-title: J. Chem. Phys.
– volume: 221
  start-page: 245
  year: 2020
  end-page: 264
  publication-title: Faraday Discuss.
– volume: 60
  start-page: 293
  year: 2009
  end-page: 320
  publication-title: Annu. Rev. Phys. Chem.
– volume: 10
  start-page: 3133
  year: 2019
  publication-title: Nat. Commun.
– volume: 2
  start-page: 82
  year: 2018
  end-page: 94
  publication-title: Nat. Rev. Chem.
– volume: 112
  start-page: 13164
  year: 2008
  end-page: 13171
  publication-title: J. Phys. Chem. A
– volume: 96
  start-page: 135
  year: 1992
  end-page: 149
  publication-title: J. Phys. Chem.
– volume: 140
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 104
  start-page: 1781
  year: 2004
  end-page: 1812
  publication-title: Chem. Rev.
– volume: 117
  start-page: 361
  year: 2013
  end-page: 369
  publication-title: J. Phys. Chem. A
– volume: 112
  start-page: 5566
  year: 2000
  end-page: 5575
  publication-title: J. Chem. Phys.
– volume: 104
  start-page: 5660
  year: 2000
  end-page: 5694
  publication-title: J. Phys. Chem. A
– volume: 10
  start-page: 52
  year: 2019
  end-page: 58
  publication-title: J. Phys. Chem. Lett.
– volume: 76
  year: 2007
  publication-title: Phys. Rev. A
– volume: 56
  start-page: 337
  year: 2005
  end-page: 367
  publication-title: Annu. Rev. Phys. Chem.
– volume: 10
  start-page: 1382
  year: 2019
  end-page: 1387
  publication-title: J. Phys. Chem. Lett.
– volume: 331
  start-page: 1423
  year: 2011
  publication-title: Science
– volume: 6
  start-page: 70
  year: 2018
  end-page: 82
  publication-title: Front. Chem.
– volume: 107
  start-page: 20172
  year: 2010
  end-page: 20177
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 104
  start-page: 10293
  year: 2000
  end-page: 10303
  publication-title: J. Phys. Chem. A
– volume: 118
  start-page: 4071
  year: 2018
  end-page: 4113
  publication-title: Chem. Rev.
– volume: 356
  start-page: 54
  year: 2017
  end-page: 59
  publication-title: Science
– volume: 101
  start-page: 9597
  year: 1994
  end-page: 9609
  publication-title: J. Chem. Phys.
– volume: 22
  start-page: 2667
  year: 2020
  end-page: 2676
  publication-title: Phys. Chem. Chem. Phys.
– volume: 56
  start-page: 361
  year: 1995
  end-page: 370
  publication-title: Int. J. Quantum Chem.
– volume: 3
  year: 2016
  publication-title: Struct. Dyn.
– volume: 76
  start-page: 2127
  year: 1982
  end-page: 2128
  publication-title: J. Chem. Phys.
– volume: 149
  year: 2018
  publication-title: J. Chem. Phys.
– volume: 104
  start-page: 1717
  year: 2004
  end-page: 1718
  publication-title: Chem. Rev.
– volume: 13
  start-page: 4034
  year: 2017
  end-page: 4042
  publication-title: J. Chem. Theory Comput.
– volume: 119
  start-page: 7951
  year: 2015
  end-page: 7965
  publication-title: J. Phys. Chem. A
– volume: 194
  start-page: 117
  year: 2016
  publication-title: Faraday Discuss.
– volume: 22
  start-page: 2693
  year: 2020
  end-page: 2703
  publication-title: Phys. Chem. Chem. Phys.
– volume: 367
  start-page: 179
  year: 2020
  publication-title: Science
– volume: 97
  start-page: 227
  year: 1992
  end-page: 235
  publication-title: J. Chem. Phys.
– volume: 63
  year: 2001
  publication-title: Phys. Rev. A
– volume: 115
  start-page: 6217
  year: 2015
  end-page: 6263
  publication-title: Chem. Rev.
– ident: e_1_2_6_53_1
  doi: 10.1021/jp801738f
– ident: e_1_2_6_23_1
– ident: e_1_2_6_17_2
  doi: 10.1039/C6FD00070C
– ident: e_1_2_6_60_1
  doi: 10.1063/1.443307
– ident: e_1_2_6_12_2
  doi: 10.1021/acs.accounts.8b00462
– ident: e_1_2_6_40_1
– ident: e_1_2_6_46_2
  doi: 10.1021/jp0012754
– ident: e_1_2_6_37_1
– ident: e_1_2_6_45_2
  doi: 10.1063/1.467925
– ident: e_1_2_6_22_2
  doi: 10.1039/C9CP03695D
– ident: e_1_2_6_30_2
  doi: 10.1039/C9FD00073A
– ident: e_1_2_6_67_1
– ident: e_1_2_6_63_1
– ident: e_1_2_6_68_2
  doi: 10.1063/1.478866
– ident: e_1_2_6_75_1
– ident: e_1_2_6_2_2
  doi: 10.1126/science.242.4886.1645
– ident: e_1_2_6_14_2
  doi: 10.1088/0953-4075/48/21/214001
– ident: e_1_2_6_66_2
  doi: 10.1063/1.5024869
– ident: e_1_2_6_76_2
  doi: 10.1063/1.1467897
– ident: e_1_2_6_62_1
  doi: 10.1126/science.aaz4740
– ident: e_1_2_6_64_2
  doi: 10.1021/acs.jpca.5b03256
– ident: e_1_2_6_47_2
  doi: 10.1126/science.1197796
– ident: e_1_2_6_72_2
  doi: 10.1021/acs.chemrev.8b00026
– ident: e_1_2_6_18_2
  doi: 10.1039/C6FD00117C
– ident: e_1_2_6_16_2
  doi: 10.1039/C9CP03019K
– ident: e_1_2_6_29_2
  doi: 10.1063/1.5116699
– ident: e_1_2_6_52_1
  doi: 10.1073/pnas.1007000107
– ident: e_1_2_6_74_2
  doi: 10.1021/cr500628b
– ident: e_1_2_6_4_2
  doi: 10.1021/jp001460h
– ident: e_1_2_6_7_2
  doi: 10.1038/nature14296
– ident: e_1_2_6_35_2
  doi: 10.1038/s41467-019-10789-7
– ident: e_1_2_6_73_2
  doi: 10.3389/fchem.2018.00070
– ident: e_1_2_6_56_2
  doi: 10.1002/qua.560560840
– ident: e_1_2_6_24_2
  doi: 10.1103/PhysRevA.76.012504
– ident: e_1_2_6_58_2
  doi: 10.1002/9783527619436.ch7
– ident: e_1_2_6_41_2
  doi: 10.1063/1.467209
– ident: e_1_2_6_26_1
– ident: e_1_2_6_21_2
  doi: 10.1021/acs.jctc.9b00039
– ident: e_1_2_6_20_2
  doi: 10.1063/1.5115154
– ident: e_1_2_6_59_2
  doi: 10.1063/1.473717
– ident: e_1_2_6_1_1
– ident: e_1_2_6_31_2
  doi: 10.1021/jp3106502
– ident: e_1_2_6_36_1
  doi: 10.1039/C4FD00178H
– ident: e_1_2_6_61_1
  doi: 10.1021/acs.jpclett.8b03420
– ident: e_1_2_6_34_2
  doi: 10.1038/nature09212
– ident: e_1_2_6_43_2
  doi: 10.1063/1.481130
– ident: e_1_2_6_77_2
  doi: 10.1146/annurev.physchem.040808.090409
– ident: e_1_2_6_48_1
– ident: e_1_2_6_49_2
  doi: 10.1063/1.467925
– ident: e_1_2_6_10_2
  doi: 10.1126/science.aax0076
– volume: 377
  start-page: 20170463
  year: 2018
  ident: e_1_2_6_39_2
  publication-title: Philos. Trans. R. Soc. London Ser. A
– ident: e_1_2_6_44_2
  doi: 10.1063/1.463620
– ident: e_1_2_6_6_2
  doi: 10.1146/annurev.physchem.56.092503.141314
– ident: e_1_2_6_32_2
  doi: 10.1021/jp403751m
– ident: e_1_2_6_38_2
  doi: 10.1038/s41570-018-0008-8
– ident: e_1_2_6_33_1
– ident: e_1_2_6_51_2
  doi: 10.1063/1.481130
– ident: e_1_2_6_8_2
  doi: 10.1126/science.aah6114
– ident: e_1_2_6_28_2
  doi: 10.1063/1.4933007
– ident: e_1_2_6_25_2
  doi: 10.1103/PhysRevA.63.063405
– ident: e_1_2_6_5_1
– ident: e_1_2_6_69_2
  doi: 10.1063/1.1321049
– ident: e_1_2_6_13_1
– ident: e_1_2_6_50_2
  doi: 10.1063/1.467978
– ident: e_1_2_6_9_2
  doi: 10.1126/science.aaj2198
– ident: e_1_2_6_19_2
  doi: 10.1103/PhysRevLett.120.243001
– ident: e_1_2_6_42_2
  doi: 10.1063/1.471519
– ident: e_1_2_6_71_2
  doi: 10.1063/1.4871688
– ident: e_1_2_6_15_2
  doi: 10.1063/1.5047487
– ident: e_1_2_6_65_2
  doi: 10.1021/acs.jctc.7b00608
– ident: e_1_2_6_3_2
  doi: 10.1021/cr020690k
– ident: e_1_2_6_57_1
– ident: e_1_2_6_70_1
– ident: e_1_2_6_11_2
  doi: 10.1021/acs.jpclett.9b00159
– ident: e_1_2_6_54_1
– ident: e_1_2_6_55_2
  doi: 10.1021/j100180a030
– ident: e_1_2_6_27_2
  doi: 10.1021/cr0206667
SSID ssj0006279
Score 2.1238604
Snippet Ultrafast UV‐pump/soft‐X‐ray‐probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20219
SubjectTerms Absorption spectroscopy
Chemistry
ICN
Information processing
Photochemicals
Photodissociation
pump–probe spectroscopy
quantum dynamics
Spectra
Spectrum analysis
time-resolved X-ray spectroscopy
Transient response
ultrafast photochemistry
Wave packets
Title Vibronic Dynamics of Photodissociating ICN from Simulations of Ultrafast X‐Ray Absorption Spectroscopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202007192
https://www.proquest.com/docview/2454093764
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagCyz8Iwql8oDEFJo6TuyMVX8oDFUFFHWLbNehiJJUTTqUiUfgGXkSbCdpAQkhgbIk0tlKfD7fd47vOwDOlH1prxBa1BPYwj4jlu9I2yI8JGxEuULNhu2z53UH-HroDj9l8Wf8EMsNN20ZZr3WBs54UluRhuqz9yq-03ttCqWoRbjueJo8v3Wz4o_yUEa2Z2NsURVoFKyNNqp9bf7VK62g5mfAajxOZxuw4l2zgyZPF_OUX4iXbzSO__mYHbCVw1HYyObPLliT0R7YaBZV4PbB-F71q-lzYSurXZ_AOIT9cZzG-ld-ptroAV41e1CnqsDbx-e8IpiRHEzSGQtZksLh--vbDVvABk_imVmo4O3U1ODRmTGLAzDotO-aXSuvzmAJRFQES2zp1bmCF9ymzHUkoSNBdYjJPOxTXFeXJNjlwsWM2m7oERWLjlT4RLBPBGXOIShFcSSPACS2wNJ3fG6HRAWYQnlIjLhmSvR96bq0DKxCO4HIqct1BY1JkJEuo0CPX7AcvzI4X8pPM9KOHyUrhbKD3HiTAGlWQgXbPFwGyGjtl16CRu-yvXw6_kujE7Cp702WI6qAUjqby1MFd1JeBesI96tmYn8Aoj_2IA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsJAFJ0oLnBjfEYUdRYmrhrqdNqZLgmCoNgQBcOumSlTMUFKoC7Y-Ql-o1_i3L6QhTExXbW506R3eueeM49zEbrU8QVZITS4E1CDuoIZrqVMg8mQiRGXGjUnap-e0x7Qu6Gd7yaEszCpPkQx4QaRkYzXEOAwIV1bqYbC5ntN8GCyTcOUTbRFNTiHXX2E9orB2CGp3J5JqcE11ch1G01SW2-_npdWYPMnZE1yTmsX7WRgEdfT3t1DG2q6j8qNvEbbARo_608AcVt8k1aWX-AoxL1xFEew0J46fvqCOw0Pw0ES_PT6ltXrSiwHk3guQrGI8fDr4_NRLHFdLqJ5MoxgKE0fg9hlNFseokGr2W-0jax2ghEQpvklM5VzLXXylyYXtqUYHwUcCKBwqMvptb4Uo7YMbCq4aYcO00xxpMkNoy4LuLCOUGkaTdUxwswMqHItV5oh0_Qv0PmLEgk6hq6rbJtXkJF7zg8yYXGobzHxU0lk4oOn_cLTFXRV2M9SSY1fLat5R_hZaC18ApqBGlQ5tIJI0jl_vMWve7fN4u7kP40uULndf-j63Y53f4q24XlyHpFUUSmev6szDUxieZ78et_DPNeN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD7xkqgv3o147YOJT4MxurV7JCiKGmJADG9LWzoxIiMwHvTJn-Bv9JfYdhuIiTHR7GnLabP19PR8p-v5DsCJsi_tFUKLegJb2GfE8kvStggPCetQrlCzYfuse5ctfNV221-y-BN-iMmGm7YMs15rAx90wsKUNFSfvVfxnd5rUyhlHhaxp-CEhkWNKYGU5yRsezbGFlWRRkbbaDuF2fazbmmKNb8iVuNyqmvAspdNTpo85ccxz4vXbzyO__madVhN8SgqJxNoA-ZkfxOWK1kZuC3o3qt-NX8uOkuK149QFKLbbhRH-l9-otv-A6pV6kjnqqDm43NaEsxItnrxkIVsFKP2x9t7g72gMh9FQ7NSoebAFOHRqTEv29Cqnt9VLq20PIMlHKJCWGJLr8gVvuA2ZW5JEtoRVMeYzMM-xUV1SYJdLlzMqO2GHlHBaEfFTwT7RFBW2oGFftSXu4CILbD0Sz63Q6IiTKFcJHa4pkr0fem6NAdWpp1ApNzluoRGL0hYl51Aj18wGb8cnE7kBwlrx4-SB5myg9R6R4GjaQkVbvNwDhyjtV96Ccr1i_PJ3d5fGh3D0u1ZNbip1a_3YUU_NhmPzgEsxMOxPFTQJ-ZHZnZ_Al3--Bc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibronic+Dynamics+of+Photodissociating+ICN+from+Simulations+of+Ultrafast+X%E2%80%90Ray+Absorption+Spectroscopy&rft.jtitle=Angewandte+Chemie&rft.au=Morzan%2C+Uriel+N.&rft.au=Videla%2C+Pablo+E.&rft.au=Soley%2C+Micheline+B.&rft.au=Nibbering%2C+Erik+T.+J.&rft.date=2020-11-02&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=132&rft.issue=45&rft.spage=20219&rft.epage=20223&rft_id=info:doi/10.1002%2Fange.202007192&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202007192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon