A Heteronuclear W/Cu/S Clusters‐Based Donor–Acceptor Polymer for Perovskite Solar Cells

Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly demanded to boost interfacial charge extraction and transport while yet realized. Here, two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units are b...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 42
Main Authors Yao, Xiaoqiang, Fang, Zihan, Ren, Huarong, Mu, Xijiao, Xiao, Guo‐Bin, Zou, Xiaoxin, Cao, Jing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly demanded to boost interfacial charge extraction and transport while yet realized. Here, two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units are bridged by triphenylamine ligands to yield an unprecedented a heteronuclear W/Cu/S clusters‐based donor–acceptor polymer. Due to the effect of Rydberg orbital components in different clusters mainly contributed by Cu ions, Cu‐rich units have negative potential, whereas Cu‐deficient groups display positive potential. This facilitates the formation of a circuit network with ligands acting as “wires” to realize efficient charge transport. Mobility tests reveal that the hole mobility of polymer film is 3.81 × 10−5 cm2 V−1 s−1. Such a polymer can efficiently extract and transport the holes from perovskite film, and thus improving the cell performance and stability. This work opens the opportunities for designing donor–acceptor polymers based on heteronuclear W/Cu/S clusters. A heteronuclear clusters‐based donor‐acceptor polymer is prepared by bridging two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units with triphenylamine ligands. In such a polymer, Cu‐deficient unit can be as donor unit and another is the acceptor, resulting in hole mobility of this polymer film up to 3.81 × 10−5 cm2 V−1 s−1. This polymer with highly exposed S and Cu surface sites from cluster centers can be efficiently bound on the surface of lead halide perovskite film, contributing to the improved efficiency and stability of perovskite solar cells.
AbstractList Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly demanded to boost interfacial charge extraction and transport while yet realized. Here, two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units are bridged by triphenylamine ligands to yield an unprecedented a heteronuclear W/Cu/S clusters‐based donor–acceptor polymer. Due to the effect of Rydberg orbital components in different clusters mainly contributed by Cu ions, Cu‐rich units have negative potential, whereas Cu‐deficient groups display positive potential. This facilitates the formation of a circuit network with ligands acting as “wires” to realize efficient charge transport. Mobility tests reveal that the hole mobility of polymer film is 3.81 × 10−5 cm2 V−1 s−1. Such a polymer can efficiently extract and transport the holes from perovskite film, and thus improving the cell performance and stability. This work opens the opportunities for designing donor–acceptor polymers based on heteronuclear W/Cu/S clusters. A heteronuclear clusters‐based donor‐acceptor polymer is prepared by bridging two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units with triphenylamine ligands. In such a polymer, Cu‐deficient unit can be as donor unit and another is the acceptor, resulting in hole mobility of this polymer film up to 3.81 × 10−5 cm2 V−1 s−1. This polymer with highly exposed S and Cu surface sites from cluster centers can be efficiently bound on the surface of lead halide perovskite film, contributing to the improved efficiency and stability of perovskite solar cells.
Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly demanded to boost interfacial charge extraction and transport while yet realized. Here, two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units are bridged by triphenylamine ligands to yield an unprecedented a heteronuclear W/Cu/S clusters‐based donor–acceptor polymer. Due to the effect of Rydberg orbital components in different clusters mainly contributed by Cu ions, Cu‐rich units have negative potential, whereas Cu‐deficient groups display positive potential. This facilitates the formation of a circuit network with ligands acting as “wires” to realize efficient charge transport. Mobility tests reveal that the hole mobility of polymer film is 3.81 × 10−5 cm2 V−1 s−1. Such a polymer can efficiently extract and transport the holes from perovskite film, and thus improving the cell performance and stability. This work opens the opportunities for designing donor–acceptor polymers based on heteronuclear W/Cu/S clusters.
Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly demanded to boost interfacial charge extraction and transport while yet realized. Here, two [WS 4 Cu 4 Br] + and [WS 4 Cu 5 Br 2 ] + cluster units are bridged by triphenylamine ligands to yield an unprecedented a heteronuclear W/Cu/S clusters‐based donor–acceptor polymer. Due to the effect of Rydberg orbital components in different clusters mainly contributed by Cu ions, Cu‐rich units have negative potential, whereas Cu‐deficient groups display positive potential. This facilitates the formation of a circuit network with ligands acting as “wires” to realize efficient charge transport. Mobility tests reveal that the hole mobility of polymer film is 3.81 × 10 −5 cm 2 V −1 s −1 . Such a polymer can efficiently extract and transport the holes from perovskite film, and thus improving the cell performance and stability. This work opens the opportunities for designing donor–acceptor polymers based on heteronuclear W/Cu/S clusters.
Author Xiao, Guo‐Bin
Mu, Xijiao
Ren, Huarong
Cao, Jing
Zou, Xiaoxin
Yao, Xiaoqiang
Fang, Zihan
Author_xml – sequence: 1
  givenname: Xiaoqiang
  surname: Yao
  fullname: Yao, Xiaoqiang
  email: yxq@nwnu.edu.cn
  organization: Northwest Normal University
– sequence: 2
  givenname: Zihan
  surname: Fang
  fullname: Fang, Zihan
  organization: Lanzhou University
– sequence: 3
  givenname: Huarong
  surname: Ren
  fullname: Ren, Huarong
  organization: Northwest Normal University
– sequence: 4
  givenname: Xijiao
  surname: Mu
  fullname: Mu, Xijiao
  organization: Lanzhou University
– sequence: 5
  givenname: Guo‐Bin
  surname: Xiao
  fullname: Xiao, Guo‐Bin
  organization: Lanzhou University
– sequence: 6
  givenname: Xiaoxin
  surname: Zou
  fullname: Zou, Xiaoxin
  organization: Jilin University
– sequence: 7
  givenname: Jing
  orcidid: 0000-0003-3978-911X
  surname: Cao
  fullname: Cao, Jing
  email: caoj@lzu.edu.cn
  organization: Lanzhou University
BookMark eNqFUMtKAzEUDVLBtrp1PeB62jymk5nlOLVWqCioKLgIaXoDremkJjNKd_0EwT_sl5hSqUtX93A5D87poFZlK0DonOAewZj25UwvexTTBCcpJ0eoTVKSxgzTrHXA5OUEdbxfYEw4Z0kbvRbRGGpwtmqUAemi537Z9B-i0jQ-vP1283UpPcyioa2s226-C6VgVVsX3VuzXoKL9A4Hgw__Nq8herAmuJRgjD9Fx1oaD2e_t4ueRleP5Tie3F3flMUkVpRTEoMkmsCA5IwDB5iqqQ5VNDCZZwOdgebTWS5VpliSZglwrinWnAAmeQqgGOuii73vytn3BnwtFrZxVYgUjJA0tE5oEli9PUs5670DLVZuvpRuLQgWuwHFbkBxGDAI8r3gc25g_Q9bFMPR7Z_2B5GReUA
Cites_doi 10.1002/adma.202302178
10.1002/adma.201804762
10.1038/s41586-021-03285-w
10.31635/ccschem.023.202303175
10.1016/j.apsusc.2012.11.156
10.1016/j.electacta.2020.136010
10.1021/jacs.1c07916
10.1039/D0CS00084A
10.1039/D2EE02769K
10.1002/anie.202016087
10.1002/adfm.202206585
10.1002/anie.202014078
10.1021/jacs.2c13576
10.1039/C9DT01301F
10.1002/advs.201902470
10.1021/acs.accounts.0c00281
10.1002/anie.202205828
10.31635/ccschem.022.202101524
10.1021/acsenergylett.0c02210
10.1021/jacs.9b13559
10.1002/adma.202006274
10.1016/j.cct.2003.10.009
10.1002/aenm.202302047
10.1016/j.apcatb.2022.121611
10.1021/jacs.1c07518
10.1039/D2EE00595F
10.1021/jacs.5b06493
10.1002/adfm.201904545
10.1002/anie.202211850
10.1002/adma.202306389
10.1002/adma.202301876
10.1039/D1CS01157J
10.1021/jacs.2c00420
10.1038/s41467-022-29702-w
10.1021/acsenergylett.2c00303
10.1002/adfm.202110047
10.1021/jacs.5b07015
10.1021/acs.inorgchem.9b00745
10.1039/C9DT03181B
10.1002/anie.202102622
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202404671
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202404671
ADFM202404671
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22371096; 22075116; 22221001
– fundername: Fundamental Research Funds for the Central Universities of China
  funderid: lzujbky‐2021‐ey10
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c2721-ea1f1e51937e7eebcbfadffe3a985f8ef7bd9ac8c34684e77f20f71e0196eec33
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 09:11:52 EDT 2025
Tue Jul 01 05:18:25 EDT 2025
Wed Jan 22 17:13:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2721-ea1f1e51937e7eebcbfadffe3a985f8ef7bd9ac8c34684e77f20f71e0196eec33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3978-911X
PQID 3116301424
PQPubID 2045204
PageCount 7
ParticipantIDs proquest_journals_3116301424
crossref_primary_10_1002_adfm_202404671
wiley_primary_10_1002_adfm_202404671_ADFM202404671
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 35
2004; 248
2023; 13
2023; 36
2019; 30
2023; 5
2020; 142
2020; 341
2022; 51
2023; 145
2019; 58
2013; 266
2020; 33
2021; 143
2022; 316
2022; 144
2020; 7
2023; 62
2020; 6
2021; 32
2020; 53
2015; 137
2023
2022; 61
2022; 7
2019; 48
2020; 49
2022; 13
2022; 15
2021; 590
2022; 32
2021; 60
2018; 31
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
Xiao G. B. (e_1_2_11_41_1) 2023
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_1_1
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – year: 2023
  publication-title: CCS Chem.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 142
  start-page: 3712
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 248
  start-page: 169
  year: 2004
  publication-title: Coord. Chem. Rev.
– volume: 590
  start-page: 587
  year: 2021
  publication-title: Nature.
– volume: 31
  year: 2018
  publication-title: Adv. Mater.
– volume: 60
  start-page: 6294
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 33
  year: 2020
  publication-title: Adv. Mater.
– volume: 53
  start-page: 1557
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 13
  start-page: 2046
  year: 2022
  publication-title: Nat. Commun.
– volume: 145
  start-page: 8389
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 2828
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 208
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 341
  year: 2020
  publication-title: Electrochim. Acta.
– volume: 266
  start-page: 230
  year: 2013
  publication-title: Appl. Surf. Sci.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 60
  start-page: 7777
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 2156
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 4789
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 455
  year: 2023
  publication-title: CCS Chem.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 15
  start-page: 2537
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 316
  year: 2022
  publication-title: Appl Catal B.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 137
  start-page: 9503
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 8084
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 48
  year: 2019
  publication-title: Dalton Trans.
– volume: 48
  start-page: 6695
  year: 2019
  publication-title: Dalton Trans.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 5974
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 36
  year: 2023
  publication-title: Adv. Mater.
– volume: 58
  start-page: 9749
  year: 2019
  publication-title: Inorg. Chem.
– ident: e_1_2_11_5_1
  doi: 10.1002/adma.202302178
– ident: e_1_2_11_19_1
  doi: 10.1002/adma.201804762
– ident: e_1_2_11_40_1
  doi: 10.1038/s41586-021-03285-w
– ident: e_1_2_11_18_1
  doi: 10.31635/ccschem.023.202303175
– ident: e_1_2_11_35_1
  doi: 10.1016/j.apsusc.2012.11.156
– ident: e_1_2_11_33_1
  doi: 10.1016/j.electacta.2020.136010
– ident: e_1_2_11_23_1
  doi: 10.1021/jacs.1c07916
– ident: e_1_2_11_1_1
  doi: 10.1039/D0CS00084A
– ident: e_1_2_11_11_1
  doi: 10.1039/D2EE02769K
– ident: e_1_2_11_39_1
  doi: 10.1002/anie.202016087
– ident: e_1_2_11_38_1
  doi: 10.1002/adfm.202206585
– ident: e_1_2_11_12_1
  doi: 10.1002/anie.202014078
– ident: e_1_2_11_13_1
  doi: 10.1021/jacs.2c13576
– ident: e_1_2_11_27_1
  doi: 10.1039/C9DT01301F
– ident: e_1_2_11_15_1
  doi: 10.1002/advs.201902470
– ident: e_1_2_11_3_1
  doi: 10.1021/acs.accounts.0c00281
– ident: e_1_2_11_6_1
  doi: 10.1002/anie.202205828
– ident: e_1_2_11_21_1
  doi: 10.31635/ccschem.022.202101524
– ident: e_1_2_11_31_1
  doi: 10.1021/acsenergylett.0c02210
– ident: e_1_2_11_22_1
  doi: 10.1021/jacs.9b13559
– ident: e_1_2_11_25_1
  doi: 10.1002/adma.202006274
– ident: e_1_2_11_28_1
  doi: 10.1016/j.cct.2003.10.009
– ident: e_1_2_11_30_1
  doi: 10.1002/aenm.202302047
– ident: e_1_2_11_7_1
  doi: 10.1016/j.apcatb.2022.121611
– ident: e_1_2_11_37_1
  doi: 10.1021/jacs.1c07518
– ident: e_1_2_11_16_1
  doi: 10.1039/D2EE00595F
– ident: e_1_2_11_36_1
  doi: 10.1021/jacs.5b06493
– ident: e_1_2_11_20_1
  doi: 10.1002/adfm.201904545
– ident: e_1_2_11_24_1
  doi: 10.1002/anie.202211850
– ident: e_1_2_11_2_1
  doi: 10.1002/adma.202306389
– ident: e_1_2_11_9_1
  doi: 10.1002/adma.202301876
– ident: e_1_2_11_29_1
  doi: 10.1039/D1CS01157J
– ident: e_1_2_11_32_1
  doi: 10.1021/jacs.2c00420
– ident: e_1_2_11_17_1
  doi: 10.1038/s41467-022-29702-w
– ident: e_1_2_11_8_1
  doi: 10.1021/acsenergylett.2c00303
– ident: e_1_2_11_10_1
  doi: 10.1002/adfm.202110047
– ident: e_1_2_11_4_1
  doi: 10.1021/jacs.5b07015
– year: 2023
  ident: e_1_2_11_41_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_11_26_1
  doi: 10.1021/acs.inorgchem.9b00745
– ident: e_1_2_11_34_1
  doi: 10.1039/C9DT03181B
– ident: e_1_2_11_14_1
  doi: 10.1002/anie.202102622
SSID ssj0017734
Score 2.475456
Snippet Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Charge materials
Charge transport
Clusters
donor–acceptor polymers
Functional groups
heteronuclear
Hole mobility
Ligands
perovskite solar cells
Perovskites
Photovoltaic cells
Polymer films
Polymers
Solar cells
W/Cu/S Clusters
Title A Heteronuclear W/Cu/S Clusters‐Based Donor–Acceptor Polymer for Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202404671
https://www.proquest.com/docview/3116301424
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4I8pLHpCY0iZxEqdjaakqpCIEVFRiiGznvFASlLRIMPUnIPEP-SX4kr5gQYLNGWxd7ny575y7z4ScejaLAw6-5SkfExTtW1IqY5DQgFemAi2L2xt6V0G3710O_MFSF3_JDzE_cEPPKL7X6OBC5vUFaaiINXaSm4hkfB3zHyzYQlR0M-ePcjgvfysHDhZ4OYMZa6Pt1r9P_x6VFlBzGbAWEaezQcRM1rLQ5LE2HsmaevtB4_ifl9kk61M4Spvl_tkiK5Bsk7UlksId8tCkXayZSROkPhYZva-3xvVb2hqOkWQh_5y8n5tQGNN2mqTZ5-SjqbBUJs3odTp8fYKMahybBV5yPCqmt5hN0xYMh_ku6Xcu7lpda3olg6VckytaIBztAKI-DhxAKqmN6BqYaIS-DkFzGTeEChXzgtADzrVra-4AsvAAKMb2SCVJE9gnNPCEy33FVGjHXsgC4WvtNmIjYqCk59tVcjYzSfRcMm9EJceyG6G6orm6quRoZrFo6oF5xByDNG3s46sSt1D9L6tEzXanN386-MukQ7KK47LW74hURtkYjg1mGcmTYl9-ARBe5cQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQDMDAN6J8ekBiCk3iJE7H0lIVaBGiIJAYotg5L5QEpS0STPwEJP5hfwm-pGkpCxJsSSRbF9uXe-c8vyPk0DFZ5HFwDUe6mKAo1xBC6gnxNXhl0lMiq97QvvSat875vVuwCfEsTK4PMd5wQ8_Ivtfo4LghXZ6ohoaRwqPkOiRpZ9cJ0ByW9c6yquuxgpTFef5j2bOQ4mXdF7qNpl2ebj8dlyZg8ztkzWJOY5mIwtqcavJ4POiLY_n2Q8jxX6-zQpZGiJRW8yW0SmYgXiOL33QK18lDlTaRNpPEqH4cpvSuXBuUO7TWHaDOQm_4_nGio2FE60mcpMP3z6pEtkyS0quk-_oEKVV4rTt46eFuMe1gQk1r0O32Nsht4_Sm1jRGVRkMaet00YDQUhYg8OPAAYQUSpuugIUV31U-KC6iSih9yRzPd4BzZZuKW4BCPACSsU0yGycxbBHqOaHNXcmkb0aOz7zQVcquRNpETwrHNUvkqJiT4DkX3whymWU7wOEKxsNVIrvFlAUjJ-wFzNJg08SjfCViZ2P_Sy9Btd5oj--2_9LogMw3b9qtoHV2ebFDFvB5Tv3bJbP9dAB7GsL0xX62SL8Acdrp3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELYQSGg8MGBDlMHmh0k8pU1ix04fQ7uqY6OqxqpV4iGKnfMLJanSFgme-hMm7R_yS_AlbSl7mcTekki2Lne-3HfO3WdCPnOXpUJC4HAdYIJiAkcpbQ0SWvDKtDCqPL3hsie6A34xDIZrXfwVP8Rqww09o_xeo4OPU9N4Jg1NUoOd5DYiWV-3-c8WF26I67r9Y0Ug5UlZ_VcWHlZ4ecMlbaPrN16OfxmWnrHmOmItQ07nLUmWwlaVJjf12VTV9cNfPI7_8zZ7ZHeBR2lULaB9sgHZAdlZYyl8R64j2sWimTxD7uOkoL8arVnjirZGM2RZmDzOf5_bWJjSdp7lxeP8T6SxViYvaD8f3d9CQQ1e2wnuJrhXTK8wnaYtGI0m78mg8-Vnq-sszmRwtG-TRQcSz3iAsE-CBFBaGSu6AZY0w8CEYKRKm4kONeMi5CCl8V0jPUAaHgDN2CHZzPIMjggVPPFloJkO3ZSHTCSBMX4ztSIKrXjg1sjZ0iTxuKLeiCuSZT9GdcUrddXIydJi8cIFJzHzLNR0sZGvRvxS9f-YJY7ancvV3fFrBn0i2_12J_7-tfftA3mDj6u6vxOyOS1mcGrxy1R9LJfoE-GX6Jc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Heteronuclear+W%2FCu%2FS+Clusters%E2%80%90Based+Donor%E2%80%93Acceptor+Polymer+for+Perovskite+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Yao%2C+Xiaoqiang&rft.au=Fang%2C+Zihan&rft.au=Ren%2C+Huarong&rft.au=Mu%2C+Xijiao&rft.date=2024-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=42&rft_id=info:doi/10.1002%2Fadfm.202404671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202404671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon