A Heteronuclear W/Cu/S Clusters‐Based Donor–Acceptor Polymer for Perovskite Solar Cells
Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly demanded to boost interfacial charge extraction and transport while yet realized. Here, two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units are b...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 42 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly demanded to boost interfacial charge extraction and transport while yet realized. Here, two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units are bridged by triphenylamine ligands to yield an unprecedented a heteronuclear W/Cu/S clusters‐based donor–acceptor polymer. Due to the effect of Rydberg orbital components in different clusters mainly contributed by Cu ions, Cu‐rich units have negative potential, whereas Cu‐deficient groups display positive potential. This facilitates the formation of a circuit network with ligands acting as “wires” to realize efficient charge transport. Mobility tests reveal that the hole mobility of polymer film is 3.81 × 10−5 cm2 V−1 s−1. Such a polymer can efficiently extract and transport the holes from perovskite film, and thus improving the cell performance and stability. This work opens the opportunities for designing donor–acceptor polymers based on heteronuclear W/Cu/S clusters.
A heteronuclear clusters‐based donor‐acceptor polymer is prepared by bridging two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units with triphenylamine ligands. In such a polymer, Cu‐deficient unit can be as donor unit and another is the acceptor, resulting in hole mobility of this polymer film up to 3.81 × 10−5 cm2 V−1 s−1. This polymer with highly exposed S and Cu surface sites from cluster centers can be efficiently bound on the surface of lead halide perovskite film, contributing to the improved efficiency and stability of perovskite solar cells. |
---|---|
AbstractList | Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly demanded to boost interfacial charge extraction and transport while yet realized. Here, two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units are bridged by triphenylamine ligands to yield an unprecedented a heteronuclear W/Cu/S clusters‐based donor–acceptor polymer. Due to the effect of Rydberg orbital components in different clusters mainly contributed by Cu ions, Cu‐rich units have negative potential, whereas Cu‐deficient groups display positive potential. This facilitates the formation of a circuit network with ligands acting as “wires” to realize efficient charge transport. Mobility tests reveal that the hole mobility of polymer film is 3.81 × 10−5 cm2 V−1 s−1. Such a polymer can efficiently extract and transport the holes from perovskite film, and thus improving the cell performance and stability. This work opens the opportunities for designing donor–acceptor polymers based on heteronuclear W/Cu/S clusters.
A heteronuclear clusters‐based donor‐acceptor polymer is prepared by bridging two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units with triphenylamine ligands. In such a polymer, Cu‐deficient unit can be as donor unit and another is the acceptor, resulting in hole mobility of this polymer film up to 3.81 × 10−5 cm2 V−1 s−1. This polymer with highly exposed S and Cu surface sites from cluster centers can be efficiently bound on the surface of lead halide perovskite film, contributing to the improved efficiency and stability of perovskite solar cells. Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly demanded to boost interfacial charge extraction and transport while yet realized. Here, two [WS4Cu4Br]+ and [WS4Cu5Br2]+ cluster units are bridged by triphenylamine ligands to yield an unprecedented a heteronuclear W/Cu/S clusters‐based donor–acceptor polymer. Due to the effect of Rydberg orbital components in different clusters mainly contributed by Cu ions, Cu‐rich units have negative potential, whereas Cu‐deficient groups display positive potential. This facilitates the formation of a circuit network with ligands acting as “wires” to realize efficient charge transport. Mobility tests reveal that the hole mobility of polymer film is 3.81 × 10−5 cm2 V−1 s−1. Such a polymer can efficiently extract and transport the holes from perovskite film, and thus improving the cell performance and stability. This work opens the opportunities for designing donor–acceptor polymers based on heteronuclear W/Cu/S clusters. Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly demanded to boost interfacial charge extraction and transport while yet realized. Here, two [WS 4 Cu 4 Br] + and [WS 4 Cu 5 Br 2 ] + cluster units are bridged by triphenylamine ligands to yield an unprecedented a heteronuclear W/Cu/S clusters‐based donor–acceptor polymer. Due to the effect of Rydberg orbital components in different clusters mainly contributed by Cu ions, Cu‐rich units have negative potential, whereas Cu‐deficient groups display positive potential. This facilitates the formation of a circuit network with ligands acting as “wires” to realize efficient charge transport. Mobility tests reveal that the hole mobility of polymer film is 3.81 × 10 −5 cm 2 V −1 s −1 . Such a polymer can efficiently extract and transport the holes from perovskite film, and thus improving the cell performance and stability. This work opens the opportunities for designing donor–acceptor polymers based on heteronuclear W/Cu/S clusters. |
Author | Xiao, Guo‐Bin Mu, Xijiao Ren, Huarong Cao, Jing Zou, Xiaoxin Yao, Xiaoqiang Fang, Zihan |
Author_xml | – sequence: 1 givenname: Xiaoqiang surname: Yao fullname: Yao, Xiaoqiang email: yxq@nwnu.edu.cn organization: Northwest Normal University – sequence: 2 givenname: Zihan surname: Fang fullname: Fang, Zihan organization: Lanzhou University – sequence: 3 givenname: Huarong surname: Ren fullname: Ren, Huarong organization: Northwest Normal University – sequence: 4 givenname: Xijiao surname: Mu fullname: Mu, Xijiao organization: Lanzhou University – sequence: 5 givenname: Guo‐Bin surname: Xiao fullname: Xiao, Guo‐Bin organization: Lanzhou University – sequence: 6 givenname: Xiaoxin surname: Zou fullname: Zou, Xiaoxin organization: Jilin University – sequence: 7 givenname: Jing orcidid: 0000-0003-3978-911X surname: Cao fullname: Cao, Jing email: caoj@lzu.edu.cn organization: Lanzhou University |
BookMark | eNqFUMtKAzEUDVLBtrp1PeB62jymk5nlOLVWqCioKLgIaXoDremkJjNKd_0EwT_sl5hSqUtX93A5D87poFZlK0DonOAewZj25UwvexTTBCcpJ0eoTVKSxgzTrHXA5OUEdbxfYEw4Z0kbvRbRGGpwtmqUAemi537Z9B-i0jQ-vP1283UpPcyioa2s226-C6VgVVsX3VuzXoKL9A4Hgw__Nq8herAmuJRgjD9Fx1oaD2e_t4ueRleP5Tie3F3flMUkVpRTEoMkmsCA5IwDB5iqqQ5VNDCZZwOdgebTWS5VpliSZglwrinWnAAmeQqgGOuii73vytn3BnwtFrZxVYgUjJA0tE5oEli9PUs5670DLVZuvpRuLQgWuwHFbkBxGDAI8r3gc25g_Q9bFMPR7Z_2B5GReUA |
Cites_doi | 10.1002/adma.202302178 10.1002/adma.201804762 10.1038/s41586-021-03285-w 10.31635/ccschem.023.202303175 10.1016/j.apsusc.2012.11.156 10.1016/j.electacta.2020.136010 10.1021/jacs.1c07916 10.1039/D0CS00084A 10.1039/D2EE02769K 10.1002/anie.202016087 10.1002/adfm.202206585 10.1002/anie.202014078 10.1021/jacs.2c13576 10.1039/C9DT01301F 10.1002/advs.201902470 10.1021/acs.accounts.0c00281 10.1002/anie.202205828 10.31635/ccschem.022.202101524 10.1021/acsenergylett.0c02210 10.1021/jacs.9b13559 10.1002/adma.202006274 10.1016/j.cct.2003.10.009 10.1002/aenm.202302047 10.1016/j.apcatb.2022.121611 10.1021/jacs.1c07518 10.1039/D2EE00595F 10.1021/jacs.5b06493 10.1002/adfm.201904545 10.1002/anie.202211850 10.1002/adma.202306389 10.1002/adma.202301876 10.1039/D1CS01157J 10.1021/jacs.2c00420 10.1038/s41467-022-29702-w 10.1021/acsenergylett.2c00303 10.1002/adfm.202110047 10.1021/jacs.5b07015 10.1021/acs.inorgchem.9b00745 10.1039/C9DT03181B 10.1002/anie.202102622 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202404671 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202404671 ADFM202404671 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22371096; 22075116; 22221001 – fundername: Fundamental Research Funds for the Central Universities of China funderid: lzujbky‐2021‐ey10 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 1OB 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c2721-ea1f1e51937e7eebcbfadffe3a985f8ef7bd9ac8c34684e77f20f71e0196eec33 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 09:11:52 EDT 2025 Tue Jul 01 05:18:25 EDT 2025 Wed Jan 22 17:13:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2721-ea1f1e51937e7eebcbfadffe3a985f8ef7bd9ac8c34684e77f20f71e0196eec33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3978-911X |
PQID | 3116301424 |
PQPubID | 2045204 |
PageCount | 7 |
ParticipantIDs | proquest_journals_3116301424 crossref_primary_10_1002_adfm_202404671 wiley_primary_10_1002_adfm_202404671_ADFM202404671 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 35 2004; 248 2023; 13 2023; 36 2019; 30 2023; 5 2020; 142 2020; 341 2022; 51 2023; 145 2019; 58 2013; 266 2020; 33 2021; 143 2022; 316 2022; 144 2020; 7 2023; 62 2020; 6 2021; 32 2020; 53 2015; 137 2023 2022; 61 2022; 7 2019; 48 2020; 49 2022; 13 2022; 15 2021; 590 2022; 32 2021; 60 2018; 31 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 Xiao G. B. (e_1_2_11_41_1) 2023 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_1_1 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
References_xml | – year: 2023 publication-title: CCS Chem. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 142 start-page: 3712 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 248 start-page: 169 year: 2004 publication-title: Coord. Chem. Rev. – volume: 590 start-page: 587 year: 2021 publication-title: Nature. – volume: 31 year: 2018 publication-title: Adv. Mater. – volume: 60 start-page: 6294 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 33 year: 2020 publication-title: Adv. Mater. – volume: 53 start-page: 1557 year: 2020 publication-title: Acc. Chem. Res. – volume: 13 start-page: 2046 year: 2022 publication-title: Nat. Commun. – volume: 145 start-page: 8389 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 2828 year: 2020 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 208 year: 2020 publication-title: ACS Energy Lett. – volume: 341 year: 2020 publication-title: Electrochim. Acta. – volume: 266 start-page: 230 year: 2013 publication-title: Appl. Surf. Sci. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 60 start-page: 7777 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 2156 year: 2022 publication-title: ACS Energy Lett. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 15 start-page: 4789 year: 2022 publication-title: Energy Environ. Sci. – volume: 5 start-page: 455 year: 2023 publication-title: CCS Chem. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 15 start-page: 2537 year: 2022 publication-title: Energy Environ. Sci. – volume: 316 year: 2022 publication-title: Appl Catal B. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 137 start-page: 9503 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 8084 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 48 year: 2019 publication-title: Dalton Trans. – volume: 48 start-page: 6695 year: 2019 publication-title: Dalton Trans. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 5974 year: 2022 publication-title: Chem. Soc. Rev. – volume: 36 year: 2023 publication-title: Adv. Mater. – volume: 58 start-page: 9749 year: 2019 publication-title: Inorg. Chem. – ident: e_1_2_11_5_1 doi: 10.1002/adma.202302178 – ident: e_1_2_11_19_1 doi: 10.1002/adma.201804762 – ident: e_1_2_11_40_1 doi: 10.1038/s41586-021-03285-w – ident: e_1_2_11_18_1 doi: 10.31635/ccschem.023.202303175 – ident: e_1_2_11_35_1 doi: 10.1016/j.apsusc.2012.11.156 – ident: e_1_2_11_33_1 doi: 10.1016/j.electacta.2020.136010 – ident: e_1_2_11_23_1 doi: 10.1021/jacs.1c07916 – ident: e_1_2_11_1_1 doi: 10.1039/D0CS00084A – ident: e_1_2_11_11_1 doi: 10.1039/D2EE02769K – ident: e_1_2_11_39_1 doi: 10.1002/anie.202016087 – ident: e_1_2_11_38_1 doi: 10.1002/adfm.202206585 – ident: e_1_2_11_12_1 doi: 10.1002/anie.202014078 – ident: e_1_2_11_13_1 doi: 10.1021/jacs.2c13576 – ident: e_1_2_11_27_1 doi: 10.1039/C9DT01301F – ident: e_1_2_11_15_1 doi: 10.1002/advs.201902470 – ident: e_1_2_11_3_1 doi: 10.1021/acs.accounts.0c00281 – ident: e_1_2_11_6_1 doi: 10.1002/anie.202205828 – ident: e_1_2_11_21_1 doi: 10.31635/ccschem.022.202101524 – ident: e_1_2_11_31_1 doi: 10.1021/acsenergylett.0c02210 – ident: e_1_2_11_22_1 doi: 10.1021/jacs.9b13559 – ident: e_1_2_11_25_1 doi: 10.1002/adma.202006274 – ident: e_1_2_11_28_1 doi: 10.1016/j.cct.2003.10.009 – ident: e_1_2_11_30_1 doi: 10.1002/aenm.202302047 – ident: e_1_2_11_7_1 doi: 10.1016/j.apcatb.2022.121611 – ident: e_1_2_11_37_1 doi: 10.1021/jacs.1c07518 – ident: e_1_2_11_16_1 doi: 10.1039/D2EE00595F – ident: e_1_2_11_36_1 doi: 10.1021/jacs.5b06493 – ident: e_1_2_11_20_1 doi: 10.1002/adfm.201904545 – ident: e_1_2_11_24_1 doi: 10.1002/anie.202211850 – ident: e_1_2_11_2_1 doi: 10.1002/adma.202306389 – ident: e_1_2_11_9_1 doi: 10.1002/adma.202301876 – ident: e_1_2_11_29_1 doi: 10.1039/D1CS01157J – ident: e_1_2_11_32_1 doi: 10.1021/jacs.2c00420 – ident: e_1_2_11_17_1 doi: 10.1038/s41467-022-29702-w – ident: e_1_2_11_8_1 doi: 10.1021/acsenergylett.2c00303 – ident: e_1_2_11_10_1 doi: 10.1002/adfm.202110047 – ident: e_1_2_11_4_1 doi: 10.1021/jacs.5b07015 – year: 2023 ident: e_1_2_11_41_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_11_26_1 doi: 10.1021/acs.inorgchem.9b00745 – ident: e_1_2_11_34_1 doi: 10.1039/C9DT03181B – ident: e_1_2_11_14_1 doi: 10.1002/anie.202102622 |
SSID | ssj0017734 |
Score | 2.475456 |
Snippet | Designing the donor–acceptor polymers‐based modifiers with good charge mobility and abundant surface functional groups to bind on perovskite material is highly... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Charge materials Charge transport Clusters donor–acceptor polymers Functional groups heteronuclear Hole mobility Ligands perovskite solar cells Perovskites Photovoltaic cells Polymer films Polymers Solar cells W/Cu/S Clusters |
Title | A Heteronuclear W/Cu/S Clusters‐Based Donor–Acceptor Polymer for Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202404671 https://www.proquest.com/docview/3116301424 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4I8pLHpCY0iZxEqdjaakqpCIEVFRiiGznvFASlLRIMPUnIPEP-SX4kr5gQYLNGWxd7ny575y7z4ScejaLAw6-5SkfExTtW1IqY5DQgFemAi2L2xt6V0G3710O_MFSF3_JDzE_cEPPKL7X6OBC5vUFaaiINXaSm4hkfB3zHyzYQlR0M-ePcjgvfysHDhZ4OYMZa6Pt1r9P_x6VFlBzGbAWEaezQcRM1rLQ5LE2HsmaevtB4_ifl9kk61M4Spvl_tkiK5Bsk7UlksId8tCkXayZSROkPhYZva-3xvVb2hqOkWQh_5y8n5tQGNN2mqTZ5-SjqbBUJs3odTp8fYKMahybBV5yPCqmt5hN0xYMh_ku6Xcu7lpda3olg6VckytaIBztAKI-DhxAKqmN6BqYaIS-DkFzGTeEChXzgtADzrVra-4AsvAAKMb2SCVJE9gnNPCEy33FVGjHXsgC4WvtNmIjYqCk59tVcjYzSfRcMm9EJceyG6G6orm6quRoZrFo6oF5xByDNG3s46sSt1D9L6tEzXanN386-MukQ7KK47LW74hURtkYjg1mGcmTYl9-ARBe5cQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQDMDAN6J8ekBiCk3iJE7H0lIVaBGiIJAYotg5L5QEpS0STPwEJP5hfwm-pGkpCxJsSSRbF9uXe-c8vyPk0DFZ5HFwDUe6mKAo1xBC6gnxNXhl0lMiq97QvvSat875vVuwCfEsTK4PMd5wQ8_Ivtfo4LghXZ6ohoaRwqPkOiRpZ9cJ0ByW9c6yquuxgpTFef5j2bOQ4mXdF7qNpl2ebj8dlyZg8ztkzWJOY5mIwtqcavJ4POiLY_n2Q8jxX6-zQpZGiJRW8yW0SmYgXiOL33QK18lDlTaRNpPEqH4cpvSuXBuUO7TWHaDOQm_4_nGio2FE60mcpMP3z6pEtkyS0quk-_oEKVV4rTt46eFuMe1gQk1r0O32Nsht4_Sm1jRGVRkMaet00YDQUhYg8OPAAYQUSpuugIUV31U-KC6iSih9yRzPd4BzZZuKW4BCPACSsU0yGycxbBHqOaHNXcmkb0aOz7zQVcquRNpETwrHNUvkqJiT4DkX3whymWU7wOEKxsNVIrvFlAUjJ-wFzNJg08SjfCViZ2P_Sy9Btd5oj--2_9LogMw3b9qtoHV2ebFDFvB5Tv3bJbP9dAB7GsL0xX62SL8Acdrp3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELYQSGg8MGBDlMHmh0k8pU1ix04fQ7uqY6OqxqpV4iGKnfMLJanSFgme-hMm7R_yS_AlbSl7mcTekki2Lne-3HfO3WdCPnOXpUJC4HAdYIJiAkcpbQ0SWvDKtDCqPL3hsie6A34xDIZrXfwVP8Rqww09o_xeo4OPU9N4Jg1NUoOd5DYiWV-3-c8WF26I67r9Y0Ug5UlZ_VcWHlZ4ecMlbaPrN16OfxmWnrHmOmItQ07nLUmWwlaVJjf12VTV9cNfPI7_8zZ7ZHeBR2lULaB9sgHZAdlZYyl8R64j2sWimTxD7uOkoL8arVnjirZGM2RZmDzOf5_bWJjSdp7lxeP8T6SxViYvaD8f3d9CQQ1e2wnuJrhXTK8wnaYtGI0m78mg8-Vnq-sszmRwtG-TRQcSz3iAsE-CBFBaGSu6AZY0w8CEYKRKm4kONeMi5CCl8V0jPUAaHgDN2CHZzPIMjggVPPFloJkO3ZSHTCSBMX4ztSIKrXjg1sjZ0iTxuKLeiCuSZT9GdcUrddXIydJi8cIFJzHzLNR0sZGvRvxS9f-YJY7ancvV3fFrBn0i2_12J_7-tfftA3mDj6u6vxOyOS1mcGrxy1R9LJfoE-GX6Jc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Heteronuclear+W%2FCu%2FS+Clusters%E2%80%90Based+Donor%E2%80%93Acceptor+Polymer+for+Perovskite+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Yao%2C+Xiaoqiang&rft.au=Fang%2C+Zihan&rft.au=Ren%2C+Huarong&rft.au=Mu%2C+Xijiao&rft.date=2024-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=42&rft_id=info:doi/10.1002%2Fadfm.202404671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202404671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |