Enhanced Water Flux of Aromatic Polyamide Membranes by Grafting Imidazolium‐Type Ionic Liquids Containing Silsesquioxane Frameworks
An imidazolium‐type room‐temperature ionic liquid containing silsesquioxane frameworks is successfully prepared. The polar ionic liquid products are grafted onto the surface of prepared aromatic polyamide (PA) membranes to improve water flux of PA membranes. Membranes grafted with an ionic liquid ex...
Saved in:
Published in | Macromolecular chemistry and physics Vol. 225; no. 7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An imidazolium‐type room‐temperature ionic liquid containing silsesquioxane frameworks is successfully prepared. The polar ionic liquid products are grafted onto the surface of prepared aromatic polyamide (PA) membranes to improve water flux of PA membranes. Membranes grafted with an ionic liquid exhibit a water flux of 1.89 L m−2 h−1 bar−1), 48% higher than that of pure PA membranes while the salt rejection still remains at 96%. This improvement can be attributed to the enhanced hydrophilicity of the membrane surface, as evidenced by the reduced water contact angle.
Imidazolium‐type ionic liquids containing silsesquioxane frameworks are prepared and grafted onto the surface of polyamide membranes to enhance the water flux of polyamide membranes. The results show that the water flux of membranes grafted with ionic liquid is increased by 48% compared with pure polyamide membranes while salt rejection is still high at 96%. |
---|---|
AbstractList | An imidazolium‐type room‐temperature ionic liquid containing silsesquioxane frameworks is successfully prepared. The polar ionic liquid products are grafted onto the surface of prepared aromatic polyamide (PA) membranes to improve water flux of PA membranes. Membranes grafted with an ionic liquid exhibit a water flux of 1.89 L m−2 h−1 bar−1), 48% higher than that of pure PA membranes while the salt rejection still remains at 96%. This improvement can be attributed to the enhanced hydrophilicity of the membrane surface, as evidenced by the reduced water contact angle. An imidazolium‐type room‐temperature ionic liquid containing silsesquioxane frameworks is successfully prepared. The polar ionic liquid products are grafted onto the surface of prepared aromatic polyamide (PA) membranes to improve water flux of PA membranes. Membranes grafted with an ionic liquid exhibit a water flux of 1.89 L m −2 h −1 bar −1 ), 48% higher than that of pure PA membranes while the salt rejection still remains at 96%. This improvement can be attributed to the enhanced hydrophilicity of the membrane surface, as evidenced by the reduced water contact angle. An imidazolium‐type room‐temperature ionic liquid containing silsesquioxane frameworks is successfully prepared. The polar ionic liquid products are grafted onto the surface of prepared aromatic polyamide (PA) membranes to improve water flux of PA membranes. Membranes grafted with an ionic liquid exhibit a water flux of 1.89 L m−2 h−1 bar−1), 48% higher than that of pure PA membranes while the salt rejection still remains at 96%. This improvement can be attributed to the enhanced hydrophilicity of the membrane surface, as evidenced by the reduced water contact angle. Imidazolium‐type ionic liquids containing silsesquioxane frameworks are prepared and grafted onto the surface of polyamide membranes to enhance the water flux of polyamide membranes. The results show that the water flux of membranes grafted with ionic liquid is increased by 48% compared with pure polyamide membranes while salt rejection is still high at 96%. |
Author | Su, Ke Zheng, Feng‐Tao |
Author_xml | – sequence: 1 givenname: Feng‐Tao orcidid: 0000-0002-6631-9861 surname: Zheng fullname: Zheng, Feng‐Tao email: zhengfengtao2019@qlu.edu.cn organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 2 givenname: Ke surname: Su fullname: Su, Ke organization: Qilu University of Technology (Shandong Academy of Sciences) |
BookMark | eNqFkD9PwzAQxS1UJNrCymyJueXs_KvHKqKlUisqUcQYOYkNLold7EQQJhZ2PiOfBFdFMDLd6d7v3eneAPW00QKhcwJjAkAva17sxhRoABAScoT6JKJkFLAg6vkeKB2RIKInaODcFgAmwJI--rjSj1wXosT3vBEWz6r2FRuJp9bUvFEFXpuq47UqBV6JOrdcC4fzDs8tl43SD3jhNf5mKtXWX--fm24n8MJob1yq51aVDqdGN1zpPXurKiecH5tXvwfPLK_Fi7FP7hQdS-61s586RHezq016PVrezBfpdDkqaOJ_KSkpWMwhIbRIkkjICErghCUhUMilzHMRT1hCYxkxRjmJJURlGMZBnoSMxXkwRBeHvTtrnlvhmmxrWqv9ySyAwJMRjUNPjQ9UYY1zVshsZ1XNbZcRyPZRZ_uos9-ovYEdDC-qEt0_dLaapus_7zc8v4aT |
Cites_doi | 10.1016/j.memsci.2023.122104 10.1016/j.watres.2020.115557 10.1002/app.54524 10.1016/j.memsci.2017.10.025 10.1016/j.memsci.2022.120914 10.1016/j.desal.2023.116998 10.1016/j.apenergy.2023.121950 10.1016/j.memsci.2023.121773 10.1016/j.geothermics.2023.102829 10.1016/j.seppur.2015.10.028 10.1016/j.desal.2022.116235 10.1016/j.memsci.2011.03.017 10.1016/j.desal.2023.116515 10.1039/C4RA17113F 10.1002/jctb.6744 10.1021/acsami.1c16229 10.1016/j.ijhydene.2020.10.025 10.1021/acs.est.2c09772 10.1016/j.jece.2023.110540 10.1016/j.memsci.2018.08.016 10.1016/j.seppur.2023.125282 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
DOI | 10.1002/macp.202300411 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3935 |
EndPage | n/a |
ExternalDocumentID | 10_1002_macp_202300411 MACP202300411 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c2721-d21c96a0712c775ef50d0a1974020bffbbe689726f5992a16f05d4463b74996b3 |
IEDL.DBID | DR2 |
ISSN | 1022-1352 |
IngestDate | Fri Jul 25 10:37:25 EDT 2025 Wed Aug 20 07:46:26 EDT 2025 Wed Jun 11 08:25:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2721-d21c96a0712c775ef50d0a1974020bffbbe689726f5992a16f05d4463b74996b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6631-9861 |
PQID | 3034465264 |
PQPubID | 2034252 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3034465264 crossref_primary_10_1002_macp_202300411 wiley_primary_10_1002_macp_202300411_MACP202300411 |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular chemistry and physics |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 661 2021; 46 2023; 57 2015; 5 2023; 11 2020; 173 2023; 681 2018; 546 2023; 140 2015; 156 2023; 352 2018; 565 2015; 32 2023; 567 2023; 688 2023; 115 2022; 14 2023; 554 2024; 330 2023; 547 2021; 96 2011; 375 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 Rakhshan N. (e_1_2_7_20_1) 2015; 32 |
References_xml | – volume: 115 year: 2023 publication-title: Geothermics – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 46 start-page: 2244 year: 2021 publication-title: Int J Hydrogen Energy – volume: 173 year: 2020 publication-title: Water Res. – volume: 375 start-page: 88 year: 2011 publication-title: J. Membr. Sci. – volume: 352 year: 2023 publication-title: Appl Energy – volume: 57 start-page: 3930 year: 2023 publication-title: Environ. Sci. Technol. – volume: 11 year: 2023 publication-title: J. Environ. Chem. Eng. – volume: 554 year: 2023 publication-title: Desalination – volume: 96 start-page: 1832 year: 2021 publication-title: J. Chem. Technol. Biot. – volume: 565 start-page: 145 year: 2018 publication-title: J. Membr. Sci. – volume: 681 year: 2023 publication-title: J. Membr. Sci. – volume: 546 start-page: 173 year: 2018 publication-title: J. Membr. Sci. – volume: 156 start-page: 396 year: 2015 publication-title: Sep. Purif. Techno. – volume: 661 year: 2022 publication-title: J. Membr. Sci. – volume: 140 year: 2023 publication-title: J. Appl. Polym. Sci. – volume: 32 start-page: 2523 year: 2015 publication-title: J. Chem. Eng. – volume: 688 year: 2023 publication-title: J. Membr. Sci. – volume: 14 start-page: 1838 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 547 year: 2023 publication-title: Desalination – volume: 330 year: 2024 publication-title: Sep. Purif. Technol. – volume: 567 year: 2023 publication-title: Desalination – ident: e_1_2_7_5_1 doi: 10.1016/j.memsci.2023.122104 – ident: e_1_2_7_6_1 doi: 10.1016/j.watres.2020.115557 – ident: e_1_2_7_10_1 doi: 10.1002/app.54524 – ident: e_1_2_7_17_1 doi: 10.1016/j.memsci.2017.10.025 – ident: e_1_2_7_7_1 doi: 10.1016/j.memsci.2022.120914 – ident: e_1_2_7_1_1 doi: 10.1016/j.desal.2023.116998 – ident: e_1_2_7_3_1 doi: 10.1016/j.apenergy.2023.121950 – ident: e_1_2_7_9_1 doi: 10.1016/j.memsci.2023.121773 – volume: 32 start-page: 2523 year: 2015 ident: e_1_2_7_20_1 publication-title: J. Chem. Eng. – ident: e_1_2_7_2_1 doi: 10.1016/j.geothermics.2023.102829 – ident: e_1_2_7_22_1 doi: 10.1016/j.seppur.2015.10.028 – ident: e_1_2_7_13_1 doi: 10.1016/j.desal.2022.116235 – ident: e_1_2_7_19_1 doi: 10.1016/j.memsci.2011.03.017 – ident: e_1_2_7_12_1 doi: 10.1016/j.desal.2023.116515 – ident: e_1_2_7_16_1 doi: 10.1039/C4RA17113F – ident: e_1_2_7_15_1 doi: 10.1002/jctb.6744 – ident: e_1_2_7_8_1 doi: 10.1021/acsami.1c16229 – ident: e_1_2_7_21_1 doi: 10.1016/j.ijhydene.2020.10.025 – ident: e_1_2_7_4_1 doi: 10.1021/acs.est.2c09772 – ident: e_1_2_7_11_1 doi: 10.1016/j.jece.2023.110540 – ident: e_1_2_7_18_1 doi: 10.1016/j.memsci.2018.08.016 – ident: e_1_2_7_14_1 doi: 10.1016/j.seppur.2023.125282 |
SSID | ssj0008097 |
Score | 2.4087214 |
Snippet | An imidazolium‐type room‐temperature ionic liquid containing silsesquioxane frameworks is successfully prepared. The polar ionic liquid products are grafted... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Aramid fibers Contact angle enhanced water flux Grafting ionic liquid Ionic liquids Membranes polyamide membrane Polyamide resins reverse osmosis |
Title | Enhanced Water Flux of Aromatic Polyamide Membranes by Grafting Imidazolium‐Type Ionic Liquids Containing Silsesquioxane Frameworks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.202300411 https://www.proquest.com/docview/3034465264 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQCyy8EYWCPCAxpSRO45ARVS0togjxEGyRnyKibaBpJNqJhZ1v5Eu4zqOlLEiw5SFbtq_te65zci5Ch-bbjVSOtgBbSKvu8cACJwwGoT73tJS-p8w5ZPeStu_q5w_ew7e_-HN9iOmBm1kZ2X5tFjjjyfFMNLTPhNGbJJlklIl_DGHLoKLrmX7UiZ1nVzGUdQegRqnaaJPj-eLzXmkGNb8D1szjtFYRK9uaE02eaumI18Tkh4zjfzqzhlYKOIpP8_mzjhbUYAMtNcoscJvovTl4zEgC-B5Q6RC3eukrjjWUiDOxV3wV98asH0mFu6oPTYCtE_MxPhsybRjVuAPv2CTuRWn_8-3DhL24Y-R48UX0kkYywUYfK09TgW8icNQJPI5foR7cKoljyRa6azVvG22rSN1gCQIxpSWJIwLKAL8Q4YO9tWdLmzkQvAA85VpzruhJ4BOqvSAgzKHa9iREpi73IQSj3N1Gi4N4oHYQ1ozb3BaEU8nrwiHcgU1W1W2XSEGE8ivoqDRd-JwrdIS5FjMJzbCG02GtoGpp2bBYqUnoGs1D6gEurCCSmeiXWsLuaeNqerf7l0J7aBmuCwJQFS2OhqnaB2wz4gfZ_P0CnVDyqg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQDLDwRhQKeEBiCk3cxmlGVAgttFUFVLBF8UtEtA20jUSZWNj5Rr6E6zxaYEGCMY5sOb6277n2ybkIHeq7GyEtZQC2EEbFZq4BThgMQh1mKyEcW-pzyFab1ruVizs7ZxPqf2FSfYjpgZteGcl-rRe4PpAuzVRD-wHXgpMk0YyCAGhBp_XW8vmnVzMFqaqZ5lfRpHULwEau22iS0vf63_3SDGx-hayJz_FWEMt7m1JNHo7jMTvmLz-EHP_1OatoOUOk-CSdQmtoTg7W0WItTwS3gd7OBvcJTwDfAjAdYq8XP-NIQY0o0XvFnag3CfqhkLgl-9AH2D0xm-DzYaA0qRo34F3wEvXCuP_x-q4jX9zQiry4GT7FoRhhLZGVZqrA1yH46hEUR8_QDvZy7thoE3W9s5ta3ciyNxicQFhpCGJxlwYAYQh3wOTKNoUZWBC_AEJlSjEmadV1CFW265LAosq0BQSnZeZAFEZZeQvND6KB3EZYBcxkJieMClbhFmEW7LOyYpaJ4IRLp4COctv5j6lIh5_KMRNfD6s_HdYCKuam9bPFOvLLWvaQ2gANC4gkNvqlFb91UutMn3b-UukALdZvWk2_2Whf7qIlKM_4QEU0Px7Gcg-gzpjtJ5P5E8we9sY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9owFLcmJq297KurytZ1PkzaKdQxiUOOCEhhKxVah8Yt8qcaDUgHRIKedum9f2P_kj4nBGgvk7ZjHD3L8fPz-z375fcQ-mzvbpR2jQPYQjmeL0IHnDAohAXCN0oFvrbnkP0L1h16X0f-aOcv_oIfYnPgZi0j36-tgV8rc7olDZ1wafkmaU4ZBfHPc4-R0BZvaH_fEkg1SFFexeasu4A1StpGQk8fyz92S1usuYtYc5cTvUK8HGyRafKrli1ETd484XH8n695jV6u8ShuFgvoDXqmp2_RXqssA3eAbjvTqzxLAP8EWDrD0Thb4tSARJqzveJBOl7xSaI07usJDAH2TixW-GzGjU2pxj14x2_ScZJN7v_c2bgX9ywfLz5PfmeJmmNLkFXUqcCXCXjqOTSnS-gHR2Xm2PwdGkadH62us67d4EgKQaWjqCtDxgHAUBmAwo1PFOEuRC-AT4UxQmjWCAPKjB-GlLvMEF9BaFoXAcRgTNQPUWWaTvURwoYLIoikginhSZcKF3ZZ7ZE6VZJKHVTRl1J18XVB0REXZMw0ttMab6a1io5LzcZrU53HdUt6yHwAhlVEcxX9pZe432wNNk_v_0XoE3oxaEfxee_i2we0D83rZKBjVFnMMv0RcM5CnORL-QHwq_V1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Water+Flux+of+Aromatic+Polyamide+Membranes+by+Grafting+Imidazolium%E2%80%90Type+Ionic+Liquids+Containing+Silsesquioxane+Frameworks&rft.jtitle=Macromolecular+chemistry+and+physics&rft.au=Feng%E2%80%90Tao+Zheng&rft.au=Su%2C+Ke&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1022-1352&rft.eissn=1521-3935&rft.volume=225&rft.issue=7&rft_id=info:doi/10.1002%2Fmacp.202300411&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1352&client=summon |