Above Room‐Temperature Reversible Phase Transition and Nonlinear Optical Material PO(CH2CH2CH2CF3)3 with Hirshfeld Surface Analyses
The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in data communication, photoelectric devices, information processing, etc. Herein, one compound PO(CH2CH2CH2CF3)3 1, which underwent an obvious r...
Saved in:
Published in | Zeitschrift für anorganische und allgemeine Chemie (1950) Vol. 651; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
07.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in data communication, photoelectric devices, information processing, etc. Herein, one compound PO(CH2CH2CH2CF3)3 1, which underwent an obvious reversible structural phase transition, is reported. In the single‐crystal structure data, it is shown that space group of 1 changes from R3c to R3m, from one polar space group to another polar space group, and the dielectric constant has frequency dependence. The second harmonic generation (SHG) value is 0.50 at room‐temperature phase. The SHG value changes abruptly at around 349 K. The SHG value is about 1.09 at high‐temperature phase. Hirshfeld surface analyses reveal that H···F/F···H interactions make major contribution to the total forces, and the forces of the two kinds of hydrogen bonds are different at different phases.
In the Hirshfeld surface analyses, difference in hydrogen bond interactions of organic compound PO(CH2CH2CH2CF3)3 at different dielectric and nonlinear optical states is shown. |
---|---|
AbstractList | The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in data communication, photoelectric devices, information processing, etc. Herein, one compound PO(CH2CH2CH2CF3)3 1, which underwent an obvious reversible structural phase transition, is reported. In the single‐crystal structure data, it is shown that space group of 1 changes from R3c to R3m, from one polar space group to another polar space group, and the dielectric constant has frequency dependence. The second harmonic generation (SHG) value is 0.50 at room‐temperature phase. The SHG value changes abruptly at around 349 K. The SHG value is about 1.09 at high‐temperature phase. Hirshfeld surface analyses reveal that H···F/F···H interactions make major contribution to the total forces, and the forces of the two kinds of hydrogen bonds are different at different phases.
In the Hirshfeld surface analyses, difference in hydrogen bond interactions of organic compound PO(CH2CH2CH2CF3)3 at different dielectric and nonlinear optical states is shown. The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in data communication, photoelectric devices, information processing, etc. Herein, one compound PO(CH 2 CH 2 CH 2 CF 3 ) 3 1 , which underwent an obvious reversible structural phase transition, is reported. In the single‐crystal structure data, it is shown that space group of 1 changes from R 3 c to R 3 m , from one polar space group to another polar space group, and the dielectric constant has frequency dependence. The second harmonic generation (SHG) value is 0.50 at room‐temperature phase. The SHG value changes abruptly at around 349 K. The SHG value is about 1.09 at high‐temperature phase. Hirshfeld surface analyses reveal that H···F/F···H interactions make major contribution to the total forces, and the forces of the two kinds of hydrogen bonds are different at different phases. The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in data communication, photoelectric devices, information processing, etc. Herein, one compound PO(CH2CH2CH2CF3)3 1, which underwent an obvious reversible structural phase transition, is reported. In the single‐crystal structure data, it is shown that space group of 1 changes from R3c to R3m, from one polar space group to another polar space group, and the dielectric constant has frequency dependence. The second harmonic generation (SHG) value is 0.50 at room‐temperature phase. The SHG value changes abruptly at around 349 K. The SHG value is about 1.09 at high‐temperature phase. Hirshfeld surface analyses reveal that H···F/F···H interactions make major contribution to the total forces, and the forces of the two kinds of hydrogen bonds are different at different phases. |
Author | Hu, Zhongyu Xiong, Zhenhua Yu, Yanhong |
Author_xml | – sequence: 1 givenname: Yanhong orcidid: 0009-0006-3794-4998 surname: Yu fullname: Yu, Yanhong email: yuyanhong@jxstnu.edu.cn organization: Jiangxi Science and Technology Normal University – sequence: 2 givenname: Zhongyu surname: Hu fullname: Hu, Zhongyu organization: Jiangxi Science and Technology Normal University – sequence: 3 givenname: Zhenhua surname: Xiong fullname: Xiong, Zhenhua organization: Jiangxi Science and Technology Normal University |
BookMark | eNqFkE1Lw0AQhhepYK1ePS940UPq7ub7GIq1QrVF68VLmCYTuiXNxt2kpZ68ePc3-kvc0qJHmYEZhucdZt5T0qlUhYRccNbnjImbd4CsL5jwGOMRPyJd7gvuuKEXd0iXMc9zhMvdE3JqzJJZhvl-l3wmc7VG-qTU6vvja4arGjU0rbYjXKM2cl4inS7AIJ1pqIxspKooVDl9VFUpKwRNJ3UjMyjpAzSopW2mk6vBSBxy6F67dCObBR1JbRYFljl9bnUBGdKkgnJr0JyR4wJKg-eH2iMvw9vZYOSMJ3f3g2TsZCLc_YLMFX7gFznywg8jBvY7gQBRLlgcMiHmEfhZKIKcQxh5HnjcRhBFMUMec7dHLvd7a63eWjRNulSttkeY1OWBF4vIspbq76lMK2M0Fmmt5Qr0NuUs3Vmd7qxOf622gngv2MgSt__Q6WuSDP60P17Bg3E |
Cites_doi | 10.1038/nmat1298 10.1063/1.1653673 10.1016/j.molstruc.2017.07.027 10.1021/acs.cgd.3c00119 10.1016/j.matchemphys.2020.123940 10.1002/adma.201004255 10.1002/adfm.202310407 10.1021/acs.inorgchem.3c04286 10.1364/JOSAB.6.000616 10.1039/D1RA08768A 10.1002/anie.202211151 10.1039/C7CE01202K 10.1021/acs.inorgchem.2c02206 10.1016/j.jeurceramsoc.2020.04.030 10.1002/adma.201203369 10.1002/zaac.202000382 10.1039/D1SC01345A 10.1021/cm800093a 10.1002/asia.201801056 10.14447/jnmes.v25i2.a04 10.1039/C4TC01925C 10.1007/s11426-024-2162-5 10.1002/adfm.201808118 10.1107/S0108767307043930 10.1016/j.molstruc.2019.127237 10.1016/j.optcom.2005.02.072 10.1021/jacs.7b10449 10.1107/S1600576721002910 10.1038/ncomms8338 10.1002/chem.201903678 10.1023/B:RUCO.0000030166.83903.e0 10.1038/nmat2137 10.1016/j.optmat.2023.114173 10.1126/science.288.5463.119 10.1126/science.1204093 10.1021/ja302395f 10.1080/21870764.2022.2072569 10.1002/anie.202102107 10.3390/cryst11030313 10.1016/0925-3467(95)00050-X 10.1016/j.physb.2012.01.084 10.1142/S0218863523500339 10.1126/science.adj1946 10.1107/S0108767390000277 10.1111/jace.13048 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/zaac.202400181 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3749 |
EndPage | n/a |
ExternalDocumentID | 10_1002_zaac_202400181 ZAAC202400181 |
Genre | article |
GrantInformation_xml | – fundername: Jiangxi Science and Technology Normal University funderid: 2022XJZD008 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 YNT ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION LH4 |
ID | FETCH-LOGICAL-c2721-3e032565fde1f5780a3742eaa8d2097022b8a5c726d1a7844a4141468890e1913 |
IEDL.DBID | DR2 |
ISSN | 0044-2313 |
IngestDate | Fri Jul 25 12:08:13 EDT 2025 Sun Jul 06 05:03:41 EDT 2025 Mon Feb 10 09:20:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2721-3e032565fde1f5780a3742eaa8d2097022b8a5c726d1a7844a4141468890e1913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0006-3794-4998 |
PQID | 3164928688 |
PQPubID | 1006443 |
PageCount | 6 |
ParticipantIDs | proquest_journals_3164928688 crossref_primary_10_1002_zaac_202400181 wiley_primary_10_1002_zaac_202400181_ZAAC202400181 |
PublicationCentury | 2000 |
PublicationDate | February 7, 2025 |
PublicationDateYYYYMMDD | 2025-02-07 |
PublicationDate_xml | – month: 02 year: 2025 text: February 7, 2025 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Zeitschrift für anorganische und allgemeine Chemie (1950) |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 32 1985; 28 2015; 6 2005; 251 1990; A46 2020; 40 1989; 6 2021; 647 2018; 1171 2023; 143 2024; 383 2008; 7 2022; 25 1996 2024; 34 2011; 332 2017; 139 2012; 407 2004; 30 2021; 54 2021; 12 2012; 134 2023; 23 2021; 11 2014; 2 2000 2022; 61 2021; 258 1971; 18 2019; 25 2022; 12 2005; 4 2024; 63 2019; 29 2017; 19 2011; 23 2022; 10 2024; 67 2000; 288 2008; 20 2008; 64 2021; 60 1996; 5 2012; 24 2020; 1202 2018; 13 2014; 97 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_49_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 Sheldrick G. M. (e_1_2_8_46_1) 1996 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Sheldrick G. M. (e_1_2_8_47_1) 2000 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Chen C. T. (e_1_2_8_26_1) 1985; 28 e_1_2_8_30_1 |
References_xml | – volume: 25 start-page: 16625 year: 2019 publication-title: Chem. Eur. J. – volume: 40 start-page: 4010 year: 2020 publication-title: J. Eur. Ceram. Soc. – volume: 383 start-page: 1492 year: 2024 publication-title: Science – volume: 19 start-page: 5662 year: 2017 publication-title: CrystEngComm – volume: 2 start-page: 10337 year: 2014 publication-title: J. Mater. Chem. C – volume: 23 start-page: 3694 year: 2023 publication-title: Cryst. Growth Des. – volume: 5 start-page: 105 year: 1996 publication-title: Opt. Mater. – volume: 60 start-page: 11457 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 67 start-page: 3669 year: 2024 publication-title: Sci. China: Chem. – volume: 32 start-page: 2350033 year: 2023 publication-title: J. Nonlinear Opt. Phys. Mater. – volume: 647 start-page: 764 year: 2021 publication-title: Z. Anorg. Allg. Chem. – volume: 12 start-page: 4955 year: 2022 publication-title: RSC Adv. – volume: 61 start-page: 15520 year: 2022 publication-title: Inorg. Chem. – volume: 6 start-page: 7338 year: 2015 publication-title: Nat. Commun. – year: 1996 – year: 2000 – volume: 61 start-page: e202211151 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 258 start-page: 123940 year: 2021 publication-title: Mater. Chem. Phys. – volume: 7 start-page: 357 year: 2008 publication-title: Nat. Mater. – volume: 13 start-page: 2916 year: 2018 publication-title: Chem. ‐ Asian J. – volume: 63 start-page: 2275 year: 2024 publication-title: Inorg. Chem. – volume: 10 start-page: 473 year: 2022 publication-title: J. Asian Ceram. Soc. – volume: 20 start-page: 4062 year: 2008 publication-title: Chem. Mater. – volume: 251 start-page: 172 year: 2005 publication-title: Opt. Commun. – volume: 139 start-page: 18071 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 288 start-page: 119 year: 2000 publication-title: Science – volume: 4 start-page: 163 year: 2005 publication-title: Nat. Mater. – volume: 28 start-page: 235 year: 1985 publication-title: Sci. Sin., Ser. B – volume: 6 start-page: 616 year: 1989 publication-title: J. Opt. Soc. Am. B – volume: 23 start-page: 2030 year: 2011 publication-title: Adv. Mater. – volume: A46 start-page: 467 year: 1990 publication-title: Acta Crystallogr. – volume: 143 start-page: 114173 year: 2023 publication-title: Opt. Mater. – volume: 64 start-page: 112 year: 2008 publication-title: Acta Crystal. A‐foundation Adv. – volume: 34 start-page: 2310407 year: 2024 publication-title: Adv. Funct. Mater. – volume: 332 start-page: 543 year: 2011 publication-title: Science – volume: 29 start-page: 1808118 year: 2019 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 8713 year: 2021 publication-title: Chem. Sci. – volume: 54 start-page: 1006 year: 2021 publication-title: J. Appl. Crystallogr. – volume: 11 start-page: 313 year: 2021 publication-title: Crystals – volume: 1202 start-page: 127237 year: 2020 publication-title: J. Mol. Struct. – volume: 97 start-page: 2368 year: 2014 publication-title: J. Am. Ceram. Soc. – volume: 25 start-page: 110 year: 2022 publication-title: J. New Mater. Electrochem. Syst. – volume: 18 start-page: 301 year: 1971 publication-title: Appl. Phys. Lett. – volume: 134 start-page: 8101 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 435 year: 2004 publication-title: Russ. J. Coord. Chem. – volume: 407 start-page: 1119 year: 2012 publication-title: Phys. B – volume: 24 start-page: 6410 year: 2012 publication-title: Adv. Mater. – volume: 1171 start-page: 915 year: 2018 publication-title: J. Mol. Struct. – ident: e_1_2_8_14_1 doi: 10.1038/nmat1298 – ident: e_1_2_8_29_1 doi: 10.1063/1.1653673 – ident: e_1_2_8_33_1 doi: 10.1016/j.molstruc.2017.07.027 – ident: e_1_2_8_8_1 doi: 10.1021/acs.cgd.3c00119 – ident: e_1_2_8_12_1 doi: 10.1016/j.matchemphys.2020.123940 – ident: e_1_2_8_21_1 doi: 10.1002/adma.201004255 – ident: e_1_2_8_6_1 doi: 10.1002/adfm.202310407 – ident: e_1_2_8_7_1 doi: 10.1021/acs.inorgchem.3c04286 – ident: e_1_2_8_27_1 doi: 10.1364/JOSAB.6.000616 – volume: 28 start-page: 235 year: 1985 ident: e_1_2_8_26_1 publication-title: Sci. Sin., Ser. B – ident: e_1_2_8_43_1 doi: 10.1039/D1RA08768A – ident: e_1_2_8_5_1 doi: 10.1002/anie.202211151 – ident: e_1_2_8_30_1 doi: 10.1039/C7CE01202K – ident: e_1_2_8_40_1 doi: 10.1021/acs.inorgchem.2c02206 – ident: e_1_2_8_13_1 doi: 10.1016/j.jeurceramsoc.2020.04.030 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201203369 – ident: e_1_2_8_42_1 doi: 10.1002/zaac.202000382 – ident: e_1_2_8_4_1 doi: 10.1039/D1SC01345A – ident: e_1_2_8_24_1 doi: 10.1021/cm800093a – ident: e_1_2_8_17_1 doi: 10.1002/asia.201801056 – ident: e_1_2_8_34_1 doi: 10.14447/jnmes.v25i2.a04 – ident: e_1_2_8_16_1 doi: 10.1039/C4TC01925C – ident: e_1_2_8_39_1 doi: 10.1007/s11426-024-2162-5 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201808118 – ident: e_1_2_8_49_1 doi: 10.1107/S0108767307043930 – ident: e_1_2_8_32_1 doi: 10.1016/j.molstruc.2019.127237 – ident: e_1_2_8_36_1 doi: 10.1016/j.optcom.2005.02.072 – ident: e_1_2_8_19_1 doi: 10.1021/jacs.7b10449 – ident: e_1_2_8_44_1 doi: 10.1107/S1600576721002910 – ident: e_1_2_8_20_1 doi: 10.1038/ncomms8338 – ident: e_1_2_8_41_1 doi: 10.1002/chem.201903678 – volume-title: Shelxtl (Version 6.1), Software Reference Manual year: 2000 ident: e_1_2_8_47_1 – ident: e_1_2_8_45_1 doi: 10.1023/B:RUCO.0000030166.83903.e0 – ident: e_1_2_8_15_1 doi: 10.1038/nmat2137 – ident: e_1_2_8_37_1 doi: 10.1016/j.optmat.2023.114173 – ident: e_1_2_8_23_1 doi: 10.1126/science.288.5463.119 – ident: e_1_2_8_18_1 doi: 10.1126/science.1204093 – ident: e_1_2_8_25_1 doi: 10.1021/ja302395f – ident: e_1_2_8_10_1 doi: 10.1080/21870764.2022.2072569 – volume-title: Sadabs, Program For Empirical Absorption Correction of Area DetectorData year: 1996 ident: e_1_2_8_46_1 – ident: e_1_2_8_3_1 doi: 10.1002/anie.202102107 – ident: e_1_2_8_11_1 doi: 10.3390/cryst11030313 – ident: e_1_2_8_28_1 doi: 10.1016/0925-3467(95)00050-X – ident: e_1_2_8_31_1 doi: 10.1016/j.physb.2012.01.084 – ident: e_1_2_8_38_1 doi: 10.1142/S0218863523500339 – ident: e_1_2_8_2_1 doi: 10.1126/science.adj1946 – ident: e_1_2_8_48_1 doi: 10.1107/S0108767390000277 – ident: e_1_2_8_22_1 doi: 10.1111/jace.13048 |
SSID | ssj0001055 |
Score | 2.3888571 |
Snippet | The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Crystal structure crystal structures Data communication Data processing dielectrics Hirshfeld surface analyses Hydrogen bonds Multifunctional materials nonlinear opticals (NLOs) Nonlinear optics Optical data processing Optical materials Optical properties Phase transitions Photoelectricity Second harmonic generation |
Title | Above Room‐Temperature Reversible Phase Transition and Nonlinear Optical Material PO(CH2CH2CH2CF3)3 with Hirshfeld Surface Analyses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzaac.202400181 https://www.proquest.com/docview/3164928688 |
Volume | 651 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8EYWCPCABQyCxXZKMVUVVIUFRoVLFEl3ii0BUbdUHAxMLO7-RX8LZblpgQQIpSwY7jn3n-86--46xQ7JqaRaGoYdK-56yl4QQZl6gY4gCFEqmJjn56vq80VaXnUrnSxa_44eYHbgZzbD7tVFwSEdnc9LQFwBDQWhiIAObe20Ctgwqas35o0z1R3fFrDwCMrJgbfTF2ffm363SHGp-BazW4tRXGRRjdYEmT6eTcXqavfygcfzPz6yxlSkc5VUnP-tsAXsbbKlWVIHbZG_VtP-MvEX4-uP1_Q4JZTsWZt5CG9GRdpHfPJAt5Nbs2QgwDj3Nr924YMibA3tgzq9gbOWd3zSPaw0xferyRHJzHMwbj8PRQ45dzW8nwxwy5I4yBUdbrF2_uKs1vGnpBi8T5FN6En1JYKqSawxy2hR8kOSDI0CkhR-HBBzSCCpZKM51AGGkFKhAmSywKPaRXEi5zRZ7_R7uME4OkdSZzCPabhTGOpZAbhTqTAc5CBAldlQsXTJwDB2J42IWiZnWZDatJVYuVjaZauookeQvxiKiL5eYsEv0Sy_JfbVam73t_qXRHlsWpoywCf4Oy2xxPJzgPmGbcXpg5fcTkc3vaA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ReqCX0l91gbY-FLU9BBLbS5IDh9XCKhR2QdtFQr0EJ56IqmhB-0NVTlx676vwKjxCn4SxnexCL0hIHCrlkkN-NJ7xN589_gbgA6Falodh6KHUviftJqEKcy_QsYoC5FJk5nByu7OW7MsvB_WDGbiszsI4fYjJgpuJDDtfmwA3C9KrU9XQc6WMBqEpgiSYKusqt_HXT2Jtw_WtDRriZc5bm71m4pWNBbycE-PxBPqCoL5eaAwKcllfCWKIqFSkuR-HBGtZpOp5yNd0oMJISiUDac4oRbGPRHAEvfcRPDZtxI1c_0Z3qlhl-k26TW3pUeokKp1In6_e_t_bODhNbm-myBbjWvNwVVnHlbb8WBmPspX8_B_hyP_KfM_gaZlxs4YLkecwg_0XMNesGt29hN-N7OQMWZcoxN-LPz0kIuGEplkXbdFKdoxs74jgnllkt0VuTPU16zhDqAHbPbV7AqytRjak2d7up2bCy6slPgtmVrxZ8n0wPCrwWLOv40GhcmROFQaHr2D_QazwGmb7J318A4w4n9C5KCKaUSXGOhaKmCLqXAeF4orX4GPlK-mpEyFJndw0T80wppNhrMFS5UppORkNU0GUOOYRfbkG3PrEHW9JvzUazcndwn0eeg9zSa-9k-5sdbYX4Qk3XZNNrXu4BLOjwRjfUio3yt7Z4GFw-NDudg0juEij |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIgEX_hGBAnsAAQe39u4mtg8cooQopTSNQitVXMzYO1YRVRrlB0RPXLjzKLwKr8CTMLtrJ5QLElIPSL744LU1O7PffN7ZbwAeM6rlRRzHAWkTBtptEmJcBJFJMYlIapXbw8m7g1b_QL86bB6uwff6LIzXh1j-cLOR4dZrG-ATU26tRENPEa0Eoa2BZJSqyip36PMnJm2zF9tdnuEnUvZe7nf6QdVXICgkE55AUagY6Zuloahkjw1RMUEkxMTIMI0Z1fIEm0UsWybCONEadaTtEaUkDYn5jeJxL8BF3QpT2yyiO1oJVtl2k35PWwecOalaJjKUW2e_9ywMrnLb3zNkB3G9a_CjNo6vbPmwuZjnm8XpH7qR_5P1rsPVKt8WbR8gN2CNxjfhcqduc3cLvrbzk48kRkwgfn75tk9MI7zMtBiRK1nJj0kMjxjshcN1V-ImcGzEwNsBp2Jv4nYExC7OXUCL4d6zTl9WV089V8L-7xb999PZUUnHRrxZTEssSHhNGJrdhoNzscIdWB-fjOkuCGZ8yhSqTHg91ZSaVCHzRDKFiUqUKBvwtHaVbOIlSDIvNi0zO43ZchobsFF7UlYtRbNMMSFOZcJvboB0LvGXUbK37XZneXfvXx56BJeG3V72enuwcx-uSNsy2Ra6xxuwPp8u6AHncfP8oQsdAe_O29t-Acw_R1I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Above+Room%E2%80%90Temperature+Reversible+Phase+Transition+and+Nonlinear+Optical+Material+PO%28CH+2+CH+2+CH+2+CF+3+%29+3+with+Hirshfeld+Surface+Analyses&rft.jtitle=Zeitschrift+f%C3%BCr+anorganische+und+allgemeine+Chemie+%281950%29&rft.au=Yu%2C+Yanhong&rft.au=Hu%2C+Zhongyu&rft.au=Xiong%2C+Zhenhua&rft.date=2025-02-07&rft.issn=0044-2313&rft.eissn=1521-3749&rft.volume=651&rft.issue=2&rft_id=info:doi/10.1002%2Fzaac.202400181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_zaac_202400181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2313&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2313&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2313&client=summon |