Above Room‐Temperature Reversible Phase Transition and Nonlinear Optical Material PO(CH2CH2CH2CF3)3 with Hirshfeld Surface Analyses

The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in data communication, photoelectric devices, information processing, etc. Herein, one compound PO(CH2CH2CH2CF3)3 1, which underwent an obvious r...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für anorganische und allgemeine Chemie (1950) Vol. 651; no. 2
Main Authors Yu, Yanhong, Hu, Zhongyu, Xiong, Zhenhua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 07.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in data communication, photoelectric devices, information processing, etc. Herein, one compound PO(CH2CH2CH2CF3)3 1, which underwent an obvious reversible structural phase transition, is reported. In the single‐crystal structure data, it is shown that space group of 1 changes from R3c to R3m, from one polar space group to another polar space group, and the dielectric constant has frequency dependence. The second harmonic generation (SHG) value is 0.50 at room‐temperature phase. The SHG value changes abruptly at around 349 K. The SHG value is about 1.09 at high‐temperature phase. Hirshfeld surface analyses reveal that H···F/F···H interactions make major contribution to the total forces, and the forces of the two kinds of hydrogen bonds are different at different phases. In the Hirshfeld surface analyses, difference in hydrogen bond interactions of organic compound PO(CH2CH2CH2CF3)3 at different dielectric and nonlinear optical states is shown.
AbstractList The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in data communication, photoelectric devices, information processing, etc. Herein, one compound PO(CH2CH2CH2CF3)3 1, which underwent an obvious reversible structural phase transition, is reported. In the single‐crystal structure data, it is shown that space group of 1 changes from R3c to R3m, from one polar space group to another polar space group, and the dielectric constant has frequency dependence. The second harmonic generation (SHG) value is 0.50 at room‐temperature phase. The SHG value changes abruptly at around 349 K. The SHG value is about 1.09 at high‐temperature phase. Hirshfeld surface analyses reveal that H···F/F···H interactions make major contribution to the total forces, and the forces of the two kinds of hydrogen bonds are different at different phases. In the Hirshfeld surface analyses, difference in hydrogen bond interactions of organic compound PO(CH2CH2CH2CF3)3 at different dielectric and nonlinear optical states is shown.
The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in data communication, photoelectric devices, information processing, etc. Herein, one compound PO(CH 2 CH 2 CH 2 CF 3 ) 3 1 , which underwent an obvious reversible structural phase transition, is reported. In the single‐crystal structure data, it is shown that space group of 1 changes from R 3 c to R 3 m , from one polar space group to another polar space group, and the dielectric constant has frequency dependence. The second harmonic generation (SHG) value is 0.50 at room‐temperature phase. The SHG value changes abruptly at around 349 K. The SHG value is about 1.09 at high‐temperature phase. Hirshfeld surface analyses reveal that H···F/F···H interactions make major contribution to the total forces, and the forces of the two kinds of hydrogen bonds are different at different phases.
The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in data communication, photoelectric devices, information processing, etc. Herein, one compound PO(CH2CH2CH2CF3)3 1, which underwent an obvious reversible structural phase transition, is reported. In the single‐crystal structure data, it is shown that space group of 1 changes from R3c to R3m, from one polar space group to another polar space group, and the dielectric constant has frequency dependence. The second harmonic generation (SHG) value is 0.50 at room‐temperature phase. The SHG value changes abruptly at around 349 K. The SHG value is about 1.09 at high‐temperature phase. Hirshfeld surface analyses reveal that H···F/F···H interactions make major contribution to the total forces, and the forces of the two kinds of hydrogen bonds are different at different phases.
Author Hu, Zhongyu
Xiong, Zhenhua
Yu, Yanhong
Author_xml – sequence: 1
  givenname: Yanhong
  orcidid: 0009-0006-3794-4998
  surname: Yu
  fullname: Yu, Yanhong
  email: yuyanhong@jxstnu.edu.cn
  organization: Jiangxi Science and Technology Normal University
– sequence: 2
  givenname: Zhongyu
  surname: Hu
  fullname: Hu, Zhongyu
  organization: Jiangxi Science and Technology Normal University
– sequence: 3
  givenname: Zhenhua
  surname: Xiong
  fullname: Xiong, Zhenhua
  organization: Jiangxi Science and Technology Normal University
BookMark eNqFkE1Lw0AQhhepYK1ePS940UPq7ub7GIq1QrVF68VLmCYTuiXNxt2kpZ68ePc3-kvc0qJHmYEZhucdZt5T0qlUhYRccNbnjImbd4CsL5jwGOMRPyJd7gvuuKEXd0iXMc9zhMvdE3JqzJJZhvl-l3wmc7VG-qTU6vvja4arGjU0rbYjXKM2cl4inS7AIJ1pqIxspKooVDl9VFUpKwRNJ3UjMyjpAzSopW2mk6vBSBxy6F67dCObBR1JbRYFljl9bnUBGdKkgnJr0JyR4wJKg-eH2iMvw9vZYOSMJ3f3g2TsZCLc_YLMFX7gFznywg8jBvY7gQBRLlgcMiHmEfhZKIKcQxh5HnjcRhBFMUMec7dHLvd7a63eWjRNulSttkeY1OWBF4vIspbq76lMK2M0Fmmt5Qr0NuUs3Vmd7qxOf622gngv2MgSt__Q6WuSDP60P17Bg3E
Cites_doi 10.1038/nmat1298
10.1063/1.1653673
10.1016/j.molstruc.2017.07.027
10.1021/acs.cgd.3c00119
10.1016/j.matchemphys.2020.123940
10.1002/adma.201004255
10.1002/adfm.202310407
10.1021/acs.inorgchem.3c04286
10.1364/JOSAB.6.000616
10.1039/D1RA08768A
10.1002/anie.202211151
10.1039/C7CE01202K
10.1021/acs.inorgchem.2c02206
10.1016/j.jeurceramsoc.2020.04.030
10.1002/adma.201203369
10.1002/zaac.202000382
10.1039/D1SC01345A
10.1021/cm800093a
10.1002/asia.201801056
10.14447/jnmes.v25i2.a04
10.1039/C4TC01925C
10.1007/s11426-024-2162-5
10.1002/adfm.201808118
10.1107/S0108767307043930
10.1016/j.molstruc.2019.127237
10.1016/j.optcom.2005.02.072
10.1021/jacs.7b10449
10.1107/S1600576721002910
10.1038/ncomms8338
10.1002/chem.201903678
10.1023/B:RUCO.0000030166.83903.e0
10.1038/nmat2137
10.1016/j.optmat.2023.114173
10.1126/science.288.5463.119
10.1126/science.1204093
10.1021/ja302395f
10.1080/21870764.2022.2072569
10.1002/anie.202102107
10.3390/cryst11030313
10.1016/0925-3467(95)00050-X
10.1016/j.physb.2012.01.084
10.1142/S0218863523500339
10.1126/science.adj1946
10.1107/S0108767390000277
10.1111/jace.13048
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/zaac.202400181
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3749
EndPage n/a
ExternalDocumentID 10_1002_zaac_202400181
ZAAC202400181
Genre article
GrantInformation_xml – fundername: Jiangxi Science and Technology Normal University
  funderid: 2022XJZD008
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
YNT
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
LH4
ID FETCH-LOGICAL-c2721-3e032565fde1f5780a3742eaa8d2097022b8a5c726d1a7844a4141468890e1913
IEDL.DBID DR2
ISSN 0044-2313
IngestDate Fri Jul 25 12:08:13 EDT 2025
Sun Jul 06 05:03:41 EDT 2025
Mon Feb 10 09:20:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2721-3e032565fde1f5780a3742eaa8d2097022b8a5c726d1a7844a4141468890e1913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-3794-4998
PQID 3164928688
PQPubID 1006443
PageCount 6
ParticipantIDs proquest_journals_3164928688
crossref_primary_10_1002_zaac_202400181
wiley_primary_10_1002_zaac_202400181_ZAAC202400181
PublicationCentury 2000
PublicationDate February 7, 2025
PublicationDateYYYYMMDD 2025-02-07
PublicationDate_xml – month: 02
  year: 2025
  text: February 7, 2025
  day: 07
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Zeitschrift für anorganische und allgemeine Chemie (1950)
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 32
1985; 28
2015; 6
2005; 251
1990; A46
2020; 40
1989; 6
2021; 647
2018; 1171
2023; 143
2024; 383
2008; 7
2022; 25
1996
2024; 34
2011; 332
2017; 139
2012; 407
2004; 30
2021; 54
2021; 12
2012; 134
2023; 23
2021; 11
2014; 2
2000
2022; 61
2021; 258
1971; 18
2019; 25
2022; 12
2005; 4
2024; 63
2019; 29
2017; 19
2011; 23
2022; 10
2024; 67
2000; 288
2008; 20
2008; 64
2021; 60
1996; 5
2012; 24
2020; 1202
2018; 13
2014; 97
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
Sheldrick G. M. (e_1_2_8_46_1) 1996
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Sheldrick G. M. (e_1_2_8_47_1) 2000
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Chen C. T. (e_1_2_8_26_1) 1985; 28
e_1_2_8_30_1
References_xml – volume: 25
  start-page: 16625
  year: 2019
  publication-title: Chem. Eur. J.
– volume: 40
  start-page: 4010
  year: 2020
  publication-title: J. Eur. Ceram. Soc.
– volume: 383
  start-page: 1492
  year: 2024
  publication-title: Science
– volume: 19
  start-page: 5662
  year: 2017
  publication-title: CrystEngComm
– volume: 2
  start-page: 10337
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 23
  start-page: 3694
  year: 2023
  publication-title: Cryst. Growth Des.
– volume: 5
  start-page: 105
  year: 1996
  publication-title: Opt. Mater.
– volume: 60
  start-page: 11457
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 67
  start-page: 3669
  year: 2024
  publication-title: Sci. China: Chem.
– volume: 32
  start-page: 2350033
  year: 2023
  publication-title: J. Nonlinear Opt. Phys. Mater.
– volume: 647
  start-page: 764
  year: 2021
  publication-title: Z. Anorg. Allg. Chem.
– volume: 12
  start-page: 4955
  year: 2022
  publication-title: RSC Adv.
– volume: 61
  start-page: 15520
  year: 2022
  publication-title: Inorg. Chem.
– volume: 6
  start-page: 7338
  year: 2015
  publication-title: Nat. Commun.
– year: 1996
– year: 2000
– volume: 61
  start-page: e202211151
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 258
  start-page: 123940
  year: 2021
  publication-title: Mater. Chem. Phys.
– volume: 7
  start-page: 357
  year: 2008
  publication-title: Nat. Mater.
– volume: 13
  start-page: 2916
  year: 2018
  publication-title: Chem. ‐ Asian J.
– volume: 63
  start-page: 2275
  year: 2024
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 473
  year: 2022
  publication-title: J. Asian Ceram. Soc.
– volume: 20
  start-page: 4062
  year: 2008
  publication-title: Chem. Mater.
– volume: 251
  start-page: 172
  year: 2005
  publication-title: Opt. Commun.
– volume: 139
  start-page: 18071
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 288
  start-page: 119
  year: 2000
  publication-title: Science
– volume: 4
  start-page: 163
  year: 2005
  publication-title: Nat. Mater.
– volume: 28
  start-page: 235
  year: 1985
  publication-title: Sci. Sin., Ser. B
– volume: 6
  start-page: 616
  year: 1989
  publication-title: J. Opt. Soc. Am. B
– volume: 23
  start-page: 2030
  year: 2011
  publication-title: Adv. Mater.
– volume: A46
  start-page: 467
  year: 1990
  publication-title: Acta Crystallogr.
– volume: 143
  start-page: 114173
  year: 2023
  publication-title: Opt. Mater.
– volume: 64
  start-page: 112
  year: 2008
  publication-title: Acta Crystal. A‐foundation Adv.
– volume: 34
  start-page: 2310407
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 332
  start-page: 543
  year: 2011
  publication-title: Science
– volume: 29
  start-page: 1808118
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 8713
  year: 2021
  publication-title: Chem. Sci.
– volume: 54
  start-page: 1006
  year: 2021
  publication-title: J. Appl. Crystallogr.
– volume: 11
  start-page: 313
  year: 2021
  publication-title: Crystals
– volume: 1202
  start-page: 127237
  year: 2020
  publication-title: J. Mol. Struct.
– volume: 97
  start-page: 2368
  year: 2014
  publication-title: J. Am. Ceram. Soc.
– volume: 25
  start-page: 110
  year: 2022
  publication-title: J. New Mater. Electrochem. Syst.
– volume: 18
  start-page: 301
  year: 1971
  publication-title: Appl. Phys. Lett.
– volume: 134
  start-page: 8101
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 435
  year: 2004
  publication-title: Russ. J. Coord. Chem.
– volume: 407
  start-page: 1119
  year: 2012
  publication-title: Phys. B
– volume: 24
  start-page: 6410
  year: 2012
  publication-title: Adv. Mater.
– volume: 1171
  start-page: 915
  year: 2018
  publication-title: J. Mol. Struct.
– ident: e_1_2_8_14_1
  doi: 10.1038/nmat1298
– ident: e_1_2_8_29_1
  doi: 10.1063/1.1653673
– ident: e_1_2_8_33_1
  doi: 10.1016/j.molstruc.2017.07.027
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.cgd.3c00119
– ident: e_1_2_8_12_1
  doi: 10.1016/j.matchemphys.2020.123940
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.201004255
– ident: e_1_2_8_6_1
  doi: 10.1002/adfm.202310407
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.inorgchem.3c04286
– ident: e_1_2_8_27_1
  doi: 10.1364/JOSAB.6.000616
– volume: 28
  start-page: 235
  year: 1985
  ident: e_1_2_8_26_1
  publication-title: Sci. Sin., Ser. B
– ident: e_1_2_8_43_1
  doi: 10.1039/D1RA08768A
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.202211151
– ident: e_1_2_8_30_1
  doi: 10.1039/C7CE01202K
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.inorgchem.2c02206
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jeurceramsoc.2020.04.030
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201203369
– ident: e_1_2_8_42_1
  doi: 10.1002/zaac.202000382
– ident: e_1_2_8_4_1
  doi: 10.1039/D1SC01345A
– ident: e_1_2_8_24_1
  doi: 10.1021/cm800093a
– ident: e_1_2_8_17_1
  doi: 10.1002/asia.201801056
– ident: e_1_2_8_34_1
  doi: 10.14447/jnmes.v25i2.a04
– ident: e_1_2_8_16_1
  doi: 10.1039/C4TC01925C
– ident: e_1_2_8_39_1
  doi: 10.1007/s11426-024-2162-5
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.201808118
– ident: e_1_2_8_49_1
  doi: 10.1107/S0108767307043930
– ident: e_1_2_8_32_1
  doi: 10.1016/j.molstruc.2019.127237
– ident: e_1_2_8_36_1
  doi: 10.1016/j.optcom.2005.02.072
– ident: e_1_2_8_19_1
  doi: 10.1021/jacs.7b10449
– ident: e_1_2_8_44_1
  doi: 10.1107/S1600576721002910
– ident: e_1_2_8_20_1
  doi: 10.1038/ncomms8338
– ident: e_1_2_8_41_1
  doi: 10.1002/chem.201903678
– volume-title: Shelxtl (Version 6.1), Software Reference Manual
  year: 2000
  ident: e_1_2_8_47_1
– ident: e_1_2_8_45_1
  doi: 10.1023/B:RUCO.0000030166.83903.e0
– ident: e_1_2_8_15_1
  doi: 10.1038/nmat2137
– ident: e_1_2_8_37_1
  doi: 10.1016/j.optmat.2023.114173
– ident: e_1_2_8_23_1
  doi: 10.1126/science.288.5463.119
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1204093
– ident: e_1_2_8_25_1
  doi: 10.1021/ja302395f
– ident: e_1_2_8_10_1
  doi: 10.1080/21870764.2022.2072569
– volume-title: Sadabs, Program For Empirical Absorption Correction of Area DetectorData
  year: 1996
  ident: e_1_2_8_46_1
– ident: e_1_2_8_3_1
  doi: 10.1002/anie.202102107
– ident: e_1_2_8_11_1
  doi: 10.3390/cryst11030313
– ident: e_1_2_8_28_1
  doi: 10.1016/0925-3467(95)00050-X
– ident: e_1_2_8_31_1
  doi: 10.1016/j.physb.2012.01.084
– ident: e_1_2_8_38_1
  doi: 10.1142/S0218863523500339
– ident: e_1_2_8_2_1
  doi: 10.1126/science.adj1946
– ident: e_1_2_8_48_1
  doi: 10.1107/S0108767390000277
– ident: e_1_2_8_22_1
  doi: 10.1111/jace.13048
SSID ssj0001055
Score 2.3888571
Snippet The multifunctional materials with dielectric and nonlinear optical properties have attracted the attention of many scientists with potential applications in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Crystal structure
crystal structures
Data communication
Data processing
dielectrics
Hirshfeld surface analyses
Hydrogen bonds
Multifunctional materials
nonlinear opticals (NLOs)
Nonlinear optics
Optical data processing
Optical materials
Optical properties
Phase transitions
Photoelectricity
Second harmonic generation
Title Above Room‐Temperature Reversible Phase Transition and Nonlinear Optical Material PO(CH2CH2CH2CF3)3 with Hirshfeld Surface Analyses
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzaac.202400181
https://www.proquest.com/docview/3164928688
Volume 651
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8EYWCPCABQyCxXZKMVUVVIUFRoVLFEl3ii0BUbdUHAxMLO7-RX8LZblpgQQIpSwY7jn3n-86--46xQ7JqaRaGoYdK-56yl4QQZl6gY4gCFEqmJjn56vq80VaXnUrnSxa_44eYHbgZzbD7tVFwSEdnc9LQFwBDQWhiIAObe20Ctgwqas35o0z1R3fFrDwCMrJgbfTF2ffm363SHGp-BazW4tRXGRRjdYEmT6eTcXqavfygcfzPz6yxlSkc5VUnP-tsAXsbbKlWVIHbZG_VtP-MvEX4-uP1_Q4JZTsWZt5CG9GRdpHfPJAt5Nbs2QgwDj3Nr924YMibA3tgzq9gbOWd3zSPaw0xferyRHJzHMwbj8PRQ45dzW8nwxwy5I4yBUdbrF2_uKs1vGnpBi8T5FN6En1JYKqSawxy2hR8kOSDI0CkhR-HBBzSCCpZKM51AGGkFKhAmSywKPaRXEi5zRZ7_R7uME4OkdSZzCPabhTGOpZAbhTqTAc5CBAldlQsXTJwDB2J42IWiZnWZDatJVYuVjaZauookeQvxiKiL5eYsEv0Sy_JfbVam73t_qXRHlsWpoywCf4Oy2xxPJzgPmGbcXpg5fcTkc3vaA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ReqCX0l91gbY-FLU9BBLbS5IDh9XCKhR2QdtFQr0EJ56IqmhB-0NVTlx676vwKjxCn4SxnexCL0hIHCrlkkN-NJ7xN589_gbgA6Falodh6KHUviftJqEKcy_QsYoC5FJk5nByu7OW7MsvB_WDGbiszsI4fYjJgpuJDDtfmwA3C9KrU9XQc6WMBqEpgiSYKusqt_HXT2Jtw_WtDRriZc5bm71m4pWNBbycE-PxBPqCoL5eaAwKcllfCWKIqFSkuR-HBGtZpOp5yNd0oMJISiUDac4oRbGPRHAEvfcRPDZtxI1c_0Z3qlhl-k26TW3pUeokKp1In6_e_t_bODhNbm-myBbjWvNwVVnHlbb8WBmPspX8_B_hyP_KfM_gaZlxs4YLkecwg_0XMNesGt29hN-N7OQMWZcoxN-LPz0kIuGEplkXbdFKdoxs74jgnllkt0VuTPU16zhDqAHbPbV7AqytRjak2d7up2bCy6slPgtmVrxZ8n0wPCrwWLOv40GhcmROFQaHr2D_QazwGmb7J318A4w4n9C5KCKaUSXGOhaKmCLqXAeF4orX4GPlK-mpEyFJndw0T80wppNhrMFS5UppORkNU0GUOOYRfbkG3PrEHW9JvzUazcndwn0eeg9zSa-9k-5sdbYX4Qk3XZNNrXu4BLOjwRjfUio3yt7Z4GFw-NDudg0juEij
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIgEX_hGBAnsAAQe39u4mtg8cooQopTSNQitVXMzYO1YRVRrlB0RPXLjzKLwKr8CTMLtrJ5QLElIPSL744LU1O7PffN7ZbwAeM6rlRRzHAWkTBtptEmJcBJFJMYlIapXbw8m7g1b_QL86bB6uwff6LIzXh1j-cLOR4dZrG-ATU26tRENPEa0Eoa2BZJSqyip36PMnJm2zF9tdnuEnUvZe7nf6QdVXICgkE55AUagY6Zuloahkjw1RMUEkxMTIMI0Z1fIEm0UsWybCONEadaTtEaUkDYn5jeJxL8BF3QpT2yyiO1oJVtl2k35PWwecOalaJjKUW2e_9ywMrnLb3zNkB3G9a_CjNo6vbPmwuZjnm8XpH7qR_5P1rsPVKt8WbR8gN2CNxjfhcqduc3cLvrbzk48kRkwgfn75tk9MI7zMtBiRK1nJj0kMjxjshcN1V-ImcGzEwNsBp2Jv4nYExC7OXUCL4d6zTl9WV089V8L-7xb999PZUUnHRrxZTEssSHhNGJrdhoNzscIdWB-fjOkuCGZ8yhSqTHg91ZSaVCHzRDKFiUqUKBvwtHaVbOIlSDIvNi0zO43ZchobsFF7UlYtRbNMMSFOZcJvboB0LvGXUbK37XZneXfvXx56BJeG3V72enuwcx-uSNsy2Ra6xxuwPp8u6AHncfP8oQsdAe_O29t-Acw_R1I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Above+Room%E2%80%90Temperature+Reversible+Phase+Transition+and+Nonlinear+Optical+Material+PO%28CH+2+CH+2+CH+2+CF+3+%29+3+with+Hirshfeld+Surface+Analyses&rft.jtitle=Zeitschrift+f%C3%BCr+anorganische+und+allgemeine+Chemie+%281950%29&rft.au=Yu%2C+Yanhong&rft.au=Hu%2C+Zhongyu&rft.au=Xiong%2C+Zhenhua&rft.date=2025-02-07&rft.issn=0044-2313&rft.eissn=1521-3749&rft.volume=651&rft.issue=2&rft_id=info:doi/10.1002%2Fzaac.202400181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_zaac_202400181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2313&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2313&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2313&client=summon