A Pair of Hydrogen‐Bonded Cobalt(II) Complexes Showing the Proton Conduction and Spin Crossover Property

Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work we designed two spin‐crossover and proton‐conductive bifunctional Co(II) compounds, [Co(Pyrimidine‐terpy)2](BF4)2⋅2H2O (1⋅2H2O; Pyrimidine‐te...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of inorganic chemistry Vol. 28; no. 7
Main Authors Liu, Fu‐Bin, Shang, Meng‐Jia, Lu, Han‐Han, Li, Jing, Kong, Cong, Zhang, Wen‐Jing, Meng, Yin‐Shan, Liu, Tao
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 03.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work we designed two spin‐crossover and proton‐conductive bifunctional Co(II) compounds, [Co(Pyrimidine‐terpy)2](BF4)2⋅2H2O (1⋅2H2O; Pyrimidine‐terpy=4′‐(5‐pyrimidinyl)‐2,2′:6′,2“‐terpyridine) and [Co(Pyrimidine‐terpy)2](ClO4)2⋅2H2O (2⋅2H2O). Both compounds undergo the typical spin transitions and have a hydrogen‐bonding network consisting of anions with solvent water molecules. At 353 K and under 95 % relative humidity, the proton conductivity of 1⋅2H2O was 1.9×10−4 S cm−1 and that of 2⋅2H2O was 7.5×10−5 S cm−1. The activation energy analysis indicates that the proton conduction of 1⋅2H2O follows the Vehicle mechanism in the temperature range of 303–318 K, while the Grotthuss mechanism plays a dominant role in the higher temperature range of 323–353 K. Additionally, 2⋅2H2O also follows the Grotthuss mechanism in the temperature range of 338–353 K. This study provides new guidelines for the design of novel SCO molecular materials with proton conduction functionality. A Pair of Hydrogen‐Bonded Cobalt(II) Complexes showing the Proton Conduction and Spin Crossover Property is reported. A pair of hydrogen‐bonded cobalt(II) complexes was constructed by modified terpyridine ligands. Both of them showed the temperature‐dependent proton conduction and spin crossover properties, representing a new type of SCO molecular materials with proton conduction functionality.
AbstractList Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work we designed two spin‐crossover and proton‐conductive bifunctional Co(II) compounds, [Co(Pyrimidine‐terpy)2](BF4)2⋅2H2O (1⋅2H2O; Pyrimidine‐terpy=4′‐(5‐pyrimidinyl)‐2,2′:6′,2“‐terpyridine) and [Co(Pyrimidine‐terpy)2](ClO4)2⋅2H2O (2⋅2H2O). Both compounds undergo the typical spin transitions and have a hydrogen‐bonding network consisting of anions with solvent water molecules. At 353 K and under 95 % relative humidity, the proton conductivity of 1⋅2H2O was 1.9×10−4 S cm−1 and that of 2⋅2H2O was 7.5×10−5 S cm−1. The activation energy analysis indicates that the proton conduction of 1⋅2H2O follows the Vehicle mechanism in the temperature range of 303–318 K, while the Grotthuss mechanism plays a dominant role in the higher temperature range of 323–353 K. Additionally, 2⋅2H2O also follows the Grotthuss mechanism in the temperature range of 338–353 K. This study provides new guidelines for the design of novel SCO molecular materials with proton conduction functionality. A Pair of Hydrogen‐Bonded Cobalt(II) Complexes showing the Proton Conduction and Spin Crossover Property is reported. A pair of hydrogen‐bonded cobalt(II) complexes was constructed by modified terpyridine ligands. Both of them showed the temperature‐dependent proton conduction and spin crossover properties, representing a new type of SCO molecular materials with proton conduction functionality.
Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work we designed two spin‐crossover and proton‐conductive bifunctional Co(II) compounds, [Co(Pyrimidine‐terpy) 2 ](BF 4 ) 2 ⋅2H 2 O ( 1⋅2H 2 O ; Pyrimidine‐terpy=4′‐(5‐pyrimidinyl)‐2,2′:6′,2“‐terpyridine) and [Co(Pyrimidine‐terpy) 2 ](ClO 4 ) 2 ⋅2H 2 O (2⋅2H 2 O) . Both compounds undergo the typical spin transitions and have a hydrogen‐bonding network consisting of anions with solvent water molecules. At 353 K and under 95 % relative humidity, the proton conductivity of 1⋅2H 2 O was 1.9×10 −4 S cm −1 and that of 2⋅2H 2 O was 7.5×10 −5 S cm −1 . The activation energy analysis indicates that the proton conduction of 1⋅2H 2 O follows the Vehicle mechanism in the temperature range of 303–318 K, while the Grotthuss mechanism plays a dominant role in the higher temperature range of 323–353 K. Additionally, 2⋅2H 2 O also follows the Grotthuss mechanism in the temperature range of 338–353 K. This study provides new guidelines for the design of novel SCO molecular materials with proton conduction functionality.
Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work we designed two spin‐crossover and proton‐conductive bifunctional Co(II) compounds, [Co(Pyrimidine‐terpy)2](BF4)2⋅2H2O (1⋅2H2O; Pyrimidine‐terpy=4′‐(5‐pyrimidinyl)‐2,2′:6′,2“‐terpyridine) and [Co(Pyrimidine‐terpy)2](ClO4)2⋅2H2O (2⋅2H2O). Both compounds undergo the typical spin transitions and have a hydrogen‐bonding network consisting of anions with solvent water molecules. At 353 K and under 95 % relative humidity, the proton conductivity of 1⋅2H2O was 1.9×10−4 S cm−1 and that of 2⋅2H2O was 7.5×10−5 S cm−1. The activation energy analysis indicates that the proton conduction of 1⋅2H2O follows the Vehicle mechanism in the temperature range of 303–318 K, while the Grotthuss mechanism plays a dominant role in the higher temperature range of 323–353 K. Additionally, 2⋅2H2O also follows the Grotthuss mechanism in the temperature range of 338–353 K. This study provides new guidelines for the design of novel SCO molecular materials with proton conduction functionality.
Author Shang, Meng‐Jia
Zhang, Wen‐Jing
Lu, Han‐Han
Li, Jing
Meng, Yin‐Shan
Liu, Fu‐Bin
Liu, Tao
Kong, Cong
Author_xml – sequence: 1
  givenname: Fu‐Bin
  surname: Liu
  fullname: Liu, Fu‐Bin
  organization: Dalian University of Technology
– sequence: 2
  givenname: Meng‐Jia
  surname: Shang
  fullname: Shang, Meng‐Jia
  organization: Dalian University of Technology
– sequence: 3
  givenname: Han‐Han
  surname: Lu
  fullname: Lu, Han‐Han
  organization: Dalian University of Technology
– sequence: 4
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: Dalian University of Technology
– sequence: 5
  givenname: Cong
  surname: Kong
  fullname: Kong, Cong
  organization: Dalian University of Technology
– sequence: 6
  givenname: Wen‐Jing
  surname: Zhang
  fullname: Zhang, Wen‐Jing
  organization: Dalian University of Technology
– sequence: 7
  givenname: Yin‐Shan
  orcidid: 0000-0001-9963-4596
  surname: Meng
  fullname: Meng, Yin‐Shan
  email: mengys@dlut.edu.cn
  organization: Dalian University of Technology
– sequence: 8
  givenname: Tao
  orcidid: 0000-0003-2891-603X
  surname: Liu
  fullname: Liu, Tao
  email: liutao@dlut.edu.cn
  organization: Dalian University of Technology
BookMark eNqFkL9OwzAQxi1UJNrCyhyJBYaUs52_Y4kKDapEpXaPkvjSJmrt4KSUbDwCz8iT4KgIRpa7T77fdz59IzKQSiIh1xQmFIDdY1XmEwbMAfA9ekaGFMLQBi9gA6Md7tg0dIILMmqaCgA4cG9Iqqm1TEttqcKad0KrDcqvj88HJQUKK1JZumtv4_jOyH29w3dsrNVWHUu5sdotWkutWiXNUIpD3pZGplJYq7o0b1o1jXpD3UM16ra7JOdFumvw6qePyfpxto7m9uLlKY6mCztnPqM2g4KmGQiWhQx8RA6p7yJ1Q1NSnnmBYCxgIgiEy3PXQRr4XiaE4IGXFyHwMbk5ra21ej1g0yaVOmhpfkw49R0v9BzGDDU5UXl_p8YiqXW5T3WXUEj6OJM-zuQ3TmMIT4ZjucPuHzqZPcfRn_cbm0J7hQ
Cites_doi 10.1021/jp201585x
10.1039/c0dt00295j
10.1039/b915141a
10.1063/5.0103228
10.1021/acs.inorgchem.2c02822
10.1021/ja9040016
10.1021/acs.inorgchem.4c02575
10.1002/anie.202015322
10.1002/anie.201903281
10.1021/acs.inorgchem.4c00895
10.1021/acs.jpcb.4c00185
10.1039/D0SC02388D
10.1021/acs.inorgchem.0c00818
10.1039/b412182a
10.1021/acs.jpcc.4c03866
10.1021/acs.cgd.2c01251
10.1002/chem.200400799
10.1021/acs.inorgchem.3c01606
10.1039/D3SC05455A
10.1021/acs.inorgchem.3c04228
10.1038/nchem.1455
10.1246/bcsj.20200246
10.1021/acs.inorgchem.1c02312
10.1021/acs.cgd.1c00214
10.1021/ic502586a
10.1016/j.ccr.2014.08.006
10.1021/acs.inorgchem.3c01258
10.1038/s41557-021-00695-1
10.1021/ic060852l
10.1016/j.ica.2022.121006
10.1021/acs.cgd.2c00535
10.1021/ja100385f
10.1021/acs.inorgchem.6b03147
10.1021/jp109489g
10.1007/s11581-014-1109-0
10.1039/D4TA01716A
10.1021/acs.jpcb.1c08304
10.1021/acs.cgd.3c01515
10.1002/anie.198202082
10.1021/acs.cgd.3c01052
10.1016/j.ccr.2011.05.016
10.1021/cr020715f
10.1021/acs.inorgchem.2c00121
10.1021/acs.inorgchem.7b01965
10.1021/acs.inorgchem.8b01992
10.1021/acs.inorgchem.0c01375
10.1021/acs.inorgchem.1c01107
10.1021/acs.cgd.2c01243
10.1021/acs.inorgchem.4c01847
10.1002/chem.202202655
10.1021/cg401587r
10.1039/c1cs15046d
10.1021/acs.inorgchem.1c02165
10.1039/C8DT02367K
10.1039/D1DT01934A
ContentType Journal Article
Copyright 2025 Wiley-VCH GmbH
Copyright_xml – notice: 2025 Wiley-VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ejic.202400761
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0682
EndPage n/a
ExternalDocumentID 10_1002_ejic_202400761
EJIC202400761
Genre article
GrantInformation_xml – fundername: Liaoning Binhai Laboratory
  funderid: Grant LBLE-2023-02
– fundername: Fundamental Research Funds for the Central Universities
  funderid: DUT22LAB606
– fundername: National Natural Science Foundation of China
  funderid: 22222103; 22025101; 22173015
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
1OB
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
LH4
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c2721-20f1ab0d2b9207ee30a75e1595e1a3b68d2282d88d53c54e1876bddd386cf903
IEDL.DBID DR2
ISSN 1434-1948
IngestDate Wed Aug 13 08:10:17 EDT 2025
Thu Aug 14 00:06:05 EDT 2025
Fri Mar 07 09:41:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2721-20f1ab0d2b9207ee30a75e1595e1a3b68d2282d88d53c54e1876bddd386cf903
Notes These authors contributed equally to this work and shared the first authorship.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9963-4596
0000-0003-2891-603X
PQID 3174696422
PQPubID 2030176
PageCount 9
ParticipantIDs proquest_journals_3174696422
crossref_primary_10_1002_ejic_202400761
wiley_primary_10_1002_ejic_202400761_EJIC202400761
PublicationCentury 2000
PublicationDate March 3, 2025
PublicationDateYYYYMMDD 2025-03-03
PublicationDate_xml – month: 03
  year: 2025
  text: March 3, 2025
  day: 03
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of inorganic chemistry
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2021; 21
2004; 104
2015; 289–290
2024; 128
2010; 39
2021; 125
2011; 40
2015; 54
2019; 58
2020; 59
2024; 12
2020; 11
2022; 539
2022; 22
2009; 131
2021; 94
2021; 50
2024; 15
2011; 255
2022; 157
2018; 47
2014; 20
2021; 13
2023; 62
2013; 14
2023; 23
2006; 45
2023; 29
2022; 61
2017; 56
2010; 132
2024; 63
2024; 24
2021; 60
2012; 4
2005; 11
2003; 21
2018; 57
e_1_2_9_52_1
e_1_2_9_50_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_2
e_1_2_9_58_2
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_2
e_1_2_9_39_2
e_1_2_9_64_1
e_1_2_9_41_2
e_1_2_9_62_2
e_1_2_9_20_2
e_1_2_9_45_2
e_1_2_9_66_2
e_1_2_9_24_1
e_1_2_9_22_2
e_1_2_9_43_2
e_1_2_9_6_1
e_1_2_9_4_2
e_1_2_9_60_1
e_1_2_9_2_2
e_1_2_9_8_2
e_1_2_9_49_1
e_1_2_9_26_2
e_1_2_9_47_2
e_1_2_9_68_2
e_1_2_9_28_2
e_1_2_9_51_2
e_1_2_9_53_1
e_1_2_9_30_2
e_1_2_9_57_1
e_1_2_9_34_2
e_1_2_9_55_2
e_1_2_9_11_2
e_1_2_9_32_2
e_1_2_9_70_2
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_59_2
e_1_2_9_36_1
e_1_2_9_15_2
e_1_2_9_19_1
e_1_2_9_17_2
e_1_2_9_40_2
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_61_2
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_67_1
e_1_2_9_65_2
e_1_2_9_23_1
e_1_2_9_7_2
e_1_2_9_5_2
e_1_2_9_3_2
e_1_2_9_1_1
e_1_2_9_9_2
e_1_2_9_25_2
e_1_2_9_46_2
e_1_2_9_69_2
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_2
References_xml – volume: 60
  start-page: 10492
  year: 2021
  end-page: 10501
  publication-title: Inorg. Chem.
– volume: 40
  start-page: 4119
  year: 2011
  end-page: 4142
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 4956
  year: 2017
  end-page: 4965
  publication-title: Inorg. Chem.
– volume: 21
  start-page: 208
  year: 2003
  end-page: 209
  publication-title: Angew. Chem. Int. Ed.
– volume: 59
  start-page: 10243
  year: 2020
  end-page: 10252
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 6229
  year: 2020
  end-page: 6235
  publication-title: Chem. Sci.
– volume: 24
  start-page: 696
  year: 2024
  end-page: 702
  publication-title: Cryst. Growth Des.
– volume: 62
  start-page: 11570
  year: 2023
  end-page: 11580
  publication-title: Inorg. Chem.
– volume: 61
  start-page: 18545
  year: 2022
  end-page: 18553
  publication-title: Inorg. Chem.
– volume: 63
  start-page: 17747
  year: 2024
  end-page: 17754
  publication-title: Inorg. Chem.
– volume: 115
  start-page: 3003
  year: 2011
  end-page: 3012
  publication-title: J. Phys. Chem. B.
– volume: 11
  start-page: 1479
  year: 2005
  end-page: 1494
  publication-title: Chem. – Eur. J.
– volume: 24
  start-page: 2202
  year: 2024
  end-page: 2209
  publication-title: Cryst. Growth Des.
– volume: 289–290
  start-page: 2
  year: 2015
  end-page: 12
  publication-title: Coord. Chem. Rev.
– volume: 15
  start-page: 2725
  year: 2024
  end-page: 2730
  publication-title: Chem. Sci.
– volume: 58
  start-page: 8789
  year: 2019
  end-page: 8793
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 11243
  year: 2021
  end-page: 11248
  publication-title: Dalton Trans.
– volume: 4
  start-page: 921
  year: 2012
  end-page: 926
  publication-title: Nat. Chem.
– volume: 157
  year: 2022
  publication-title: J. Phys. Chem.
– volume: 54
  start-page: 1597
  year: 2015
  end-page: 1605
  publication-title: Inorg. Chem.
– volume: 22
  start-page: 5441
  year: 2022
  end-page: 5448
  publication-title: Cryst. Growth Des.
– volume: 255
  start-page: 1981
  year: 2011
  end-page: 1990
  publication-title: Coord. Chem. Rev.
– volume: 125
  start-page: 12627
  year: 2021
  end-page: 12635
  publication-title: J. Phys. Chem. B.
– volume: 14
  start-page: 310
  year: 2013
  end-page: 325
  publication-title: Cryst. Growth Des.
– volume: 61
  start-page: 6819
  year: 2022
  end-page: 6828
  publication-title: Inorg. Chem.
– volume: 13
  start-page: 698
  year: 2021
  end-page: 704
  publication-title: Nat. Chem.
– volume: 12
  start-page: 18440
  year: 2024
  end-page: 18451
  publication-title: J. Mater. Chem. A.
– volume: 47
  start-page: 13809
  year: 2018
  end-page: 13814
  publication-title: Dalton Trans.
– volume: 115
  start-page: 8176
  year: 2011
  end-page: 8182
  publication-title: J. Phys. Chem. B.
– volume: 62
  start-page: 17093
  year: 2023
  end-page: 17101
  publication-title: Inorg. Chem.
– volume: 21
  start-page: 3908
  year: 2021
  end-page: 3915
  publication-title: Cryst. Growth Des.
– volume: 63
  start-page: 17478
  year: 2024
  end-page: 17487
  publication-title: Inorg. Chem.
– volume: 39
  start-page: 9008
  year: 2010
  end-page: 9012
  publication-title: Dalton Trans.
– volume: 539
  year: 2022
  publication-title: Inorg. Chim. Acta
– volume: 132
  start-page: 6620
  year: 2010
  end-page: 6621
  publication-title: J. Am. Chem. Soc.
– volume: 63
  start-page: 10278
  year: 2024
  end-page: 10287
  publication-title: Inorg. Chem.
– volume: 63
  start-page: 3870
  year: 2024
  end-page: 3881
  publication-title: Inorg. Chem.
– volume: 60
  start-page: 12717
  year: 2021
  end-page: 12722
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  year: 2023
  publication-title: Chem.–Eur. J.
– volume: 131
  start-page: 9906
  year: 2009
  end-page: 9907
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 1104
  year: 2023
  end-page: 1118
  publication-title: Cryst. Growth Des.
– volume: 45
  start-page: 5739
  year: 2006
  end-page: 5741
  publication-title: Inorg. Chem.
– volume: 94
  start-page: 158
  year: 2021
  end-page: 163
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 60
  start-page: 16337
  year: 2021
  end-page: 16345
  publication-title: Inorg. Chem.
– volume: 60
  start-page: 16474
  year: 2021
  end-page: 16483
  publication-title: Inorg. Chem.
– volume: 104
  start-page: 4637
  year: 2004
  end-page: 4678
  publication-title: Chem. Rev.
– volume: 128
  start-page: 3499
  year: 2024
  end-page: 3507
  publication-title: J. Phys. Chem. B.
– volume: 59
  start-page: 16843
  year: 2020
  end-page: 16852
  publication-title: Inorg. Chem.
– volume: 20
  start-page: 1399
  year: 2014
  end-page: 1406
  publication-title: Ionics
– volume: 128
  start-page: 14834
  year: 2024
  end-page: 14841
  publication-title: J. Phys. Chem. C.
– volume: 56
  start-page: 13865
  year: 2017
  end-page: 13877
  publication-title: Inorg. Chem.
– volume: 57
  start-page: 13415
  year: 2018
  end-page: 13422
  publication-title: Inorg. Chem.
– volume: 39
  start-page: 4370
  year: 2010
  end-page: 4387
  publication-title: Chem. Soc. Rev.
– volume: 23
  start-page: 1633
  year: 2023
  end-page: 1640
  publication-title: Cryst. Growth Des.
– ident: e_1_2_9_42_1
– ident: e_1_2_9_40_2
  doi: 10.1021/jp201585x
– ident: e_1_2_9_50_2
  doi: 10.1039/c0dt00295j
– ident: e_1_2_9_3_2
  doi: 10.1039/b915141a
– ident: e_1_2_9_53_1
  doi: 10.1063/5.0103228
– ident: e_1_2_9_29_2
  doi: 10.1021/acs.inorgchem.2c02822
– ident: e_1_2_9_66_2
  doi: 10.1021/ja9040016
– ident: e_1_2_9_18_2
  doi: 10.1021/acs.inorgchem.4c02575
– ident: e_1_2_9_46_2
  doi: 10.1002/anie.202015322
– ident: e_1_2_9_47_2
  doi: 10.1002/anie.201903281
– ident: e_1_2_9_11_2
  doi: 10.1021/acs.inorgchem.4c00895
– ident: e_1_2_9_13_2
  doi: 10.1021/acs.jpcb.4c00185
– ident: e_1_2_9_45_2
  doi: 10.1039/D0SC02388D
– ident: e_1_2_9_16_1
– ident: e_1_2_9_51_2
  doi: 10.1021/acs.inorgchem.0c00818
– ident: e_1_2_9_43_2
  doi: 10.1039/b412182a
– ident: e_1_2_9_7_2
  doi: 10.1021/acs.jpcc.4c03866
– ident: e_1_2_9_23_1
  doi: 10.1021/acs.cgd.2c01251
– ident: e_1_2_9_24_1
– ident: e_1_2_9_60_1
– ident: e_1_2_9_63_1
  doi: 10.1002/chem.200400799
– ident: e_1_2_9_34_2
  doi: 10.1021/acs.inorgchem.3c01606
– ident: e_1_2_9_27_1
– ident: e_1_2_9_71_1
– ident: e_1_2_9_68_2
  doi: 10.1039/D3SC05455A
– ident: e_1_2_9_14_2
  doi: 10.1021/acs.inorgchem.3c04228
– ident: e_1_2_9_38_2
  doi: 10.1038/nchem.1455
– ident: e_1_2_9_56_2
  doi: 10.1246/bcsj.20200246
– ident: e_1_2_9_57_1
– ident: e_1_2_9_20_2
  doi: 10.1021/acs.inorgchem.1c02312
– ident: e_1_2_9_49_1
– ident: e_1_2_9_17_2
  doi: 10.1021/acs.cgd.1c00214
– ident: e_1_2_9_31_2
  doi: 10.1021/ic502586a
– ident: e_1_2_9_59_2
  doi: 10.1016/j.ccr.2014.08.006
– ident: e_1_2_9_5_2
  doi: 10.1021/acs.inorgchem.3c01258
– ident: e_1_2_9_39_2
  doi: 10.1038/s41557-021-00695-1
– ident: e_1_2_9_44_2
  doi: 10.1021/ic060852l
– ident: e_1_2_9_70_2
  doi: 10.1016/j.ica.2022.121006
– ident: e_1_2_9_21_2
  doi: 10.1021/acs.cgd.2c00535
– ident: e_1_2_9_35_1
  doi: 10.1021/ja100385f
– ident: e_1_2_9_6_1
– ident: e_1_2_9_32_2
  doi: 10.1021/acs.inorgchem.6b03147
– ident: e_1_2_9_41_2
  doi: 10.1021/jp109489g
– ident: e_1_2_9_67_1
– ident: e_1_2_9_69_2
  doi: 10.1007/s11581-014-1109-0
– ident: e_1_2_9_8_2
  doi: 10.1039/D4TA01716A
– ident: e_1_2_9_12_2
  doi: 10.1021/acs.jpcb.1c08304
– ident: e_1_2_9_54_1
– ident: e_1_2_9_1_1
– ident: e_1_2_9_22_2
  doi: 10.1021/acs.cgd.3c01515
– ident: e_1_2_9_65_2
  doi: 10.1002/anie.198202082
– ident: e_1_2_9_19_1
– ident: e_1_2_9_26_2
  doi: 10.1021/acs.cgd.3c01052
– ident: e_1_2_9_55_2
  doi: 10.1016/j.ccr.2011.05.016
– ident: e_1_2_9_2_2
  doi: 10.1021/cr020715f
– ident: e_1_2_9_25_2
  doi: 10.1021/acs.inorgchem.2c00121
– ident: e_1_2_9_30_2
  doi: 10.1021/acs.inorgchem.7b01965
– ident: e_1_2_9_33_2
  doi: 10.1021/acs.inorgchem.8b01992
– ident: e_1_2_9_10_1
– ident: e_1_2_9_9_2
  doi: 10.1021/acs.inorgchem.0c01375
– ident: e_1_2_9_4_2
  doi: 10.1021/acs.inorgchem.1c01107
– ident: e_1_2_9_48_1
  doi: 10.1021/acs.cgd.2c01243
– ident: e_1_2_9_28_2
  doi: 10.1021/acs.inorgchem.4c01847
– ident: e_1_2_9_52_1
  doi: 10.1002/chem.202202655
– ident: e_1_2_9_37_1
– ident: e_1_2_9_36_1
  doi: 10.1021/cg401587r
– ident: e_1_2_9_58_2
  doi: 10.1039/c1cs15046d
– ident: e_1_2_9_15_2
  doi: 10.1021/acs.inorgchem.1c02165
– ident: e_1_2_9_61_2
  doi: 10.1039/C8DT02367K
– ident: e_1_2_9_64_1
– ident: e_1_2_9_62_2
  doi: 10.1039/D1DT01934A
SSID ssj0003036
Score 2.445775
Snippet Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Cobalt compounds
Hydrogen
Hydrogen-bonding network
Intramolecular interactions
Proton conduction
Pyrimidines
Relative humidity
Spin crossover
Spin transition
Spintronics
Title A Pair of Hydrogen‐Bonded Cobalt(II) Complexes Showing the Proton Conduction and Spin Crossover Property
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.202400761
https://www.proquest.com/docview/3174696422
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqexDUQ9p0k26SYyktbUEptkJvIfsItkpS0hYfJ3-Cv9Ff4kzS9OFF0Esgj12S2Z2Zb8LMN4RcghcKua2l4TnSNGzbEgZWFBsaXHGFe660BRY4397x1oPdGVQHK1X8GT_E4ocbakZqr1HBAzEpL0lD9WiIFISYA-mk8Q8mbCEqul_yR6F9TsuLLNuAaN3NWRtNVl4fvu6VllBzFbCmHqe5S4L8XbNEk6fSbCpK8v0HjeN_PmaP7MzhKK1l-2efbOjogGzV8y5wh2RUo91gmNA4pK03lcSw374-PrEZsVa0jmQi0-t2-4aiXXnWr3pCe4_xC_hDCsiSdpMYsCXcjFTGUkuDSNHeeAjXUBCYP4oPjZHh94j0m41-vWXM-zMYkkHgCAoWVgJhKiY8ZjpaW2bgVDXgIzgEluCuYhDQKddVVUtWbV0ByyuUUpbLZeiZ1jHZjOJInxAqHCU4BFc81BgPVSAsZ4EjhZChFFrzArnKl8cfZywcfsa3zHwUnb8QXYEU89Xz59o48QEj2dyDmVmBsHQZfpnFb3Ta9cXZ6V8GnZFthq2CMV3NKpLNaTLT54BfpuIi3aPfQ1Xnmw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5ReqCXvisCFPbQqu3BYK83a_vQAwqgmJdQSSVuK-_DagDZURJE4cRP6E_pX-lf6C_pjB0nwKVSJQ69WPJrZc97VjPfALxDL5RL4YyXRMb3hAi1Rx3FnkNXHMgkNkJTg_PBoex-Fbsn7ZM5-Nn0wtT4ENMNN9KMyl6TgtOG9MYMNdSd9gmDkIogMRef1FXuuatLzNpGn9MtZPF7zne2e52uNxks4BmOGQ9KRh5k2rdcJ9yPnAv9LGo7dOx4yEItY8sxE7FxbNuhaQsXoMnQ1towliZP_BCXfQSPaYo4ofVvfZkBVpFDqPqZQuEFiYgbmEifb9z93LtucBbb3o6QKxe38wx-NcSpK1vO1i_Get1c38ON_J-o9xyeTuJttlkryAuYc8VLWOg0Y-5ewekmO8r6Q1bmrHtlhyUq1O-bHzRt2VnWIbSU8cc0_cTIcJ67727Ejr-Vl-jwGYbO7GhYYvCMNwtbw_CyrLDseNDHa0R4KpClhwYEYfwaeg_xp29gvigLtwhMR1ZLzB5l7ijhC2JMbLLIaG1yo52TLfjQiIMa1DAjqgaU5oo4paacasFKIy1qYm5GCoNAIRNcmbeAV2z_yypqezftTM-W_uWlNVjo9g721X56uLcMTzjNRabavHAF5sfDC_cWg7WxXq30g4F6YIn6AxOyQ6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qRQI2vCsCfcwCRFm4tceTsb1gUSWN4r4UtUXqbuR5WKQgO0pSlbLiE_gTfoVv4Eu4146Tlg0SUhdsIjm2R_bc57HuPRfgNUahXApnvCQyvidEqD3qKPYchuJAJrERmhqcD49k_4PYO2ufLcGPphem5oeYf3Ajy6j8NRn4yObbC9JQdz4kCkKqgUQoPiur3HdXlwjaJu_TLkr4Dee93dNO35vNFfAMR8CDipEHmfYt1wn3I-dCP4vaDuM6_mShlrHlCERsHNt2aNrCBegxtLU2jKXJEz_EZe_AXSH9hGZFdI8XfFUUD6p2plB4QSLihiXS59s3H_dmFFykttcT5CrC9R7Bz2Zv6sKWT1sXU71lvv5BG_kfbd5jeDjLttlObR5PYMkVT-F-pxly9wzOd9ggG45ZmbP-lR2XaE6_vn2nWcvOsg5xpUw30_QdI7f52X1xE3bysbzEcM8wcWaDcYmpM54sbE3Cy7LCspPREP-jfafyWLpoRATGz-H0Nt50BZaLsnAvgOnIaonYUeaO4F4QI6zJIqO1yY12TrbgbaMNalSTjKiaTporkpSaS6oFq42yqJmzmShMAYVMcGXeAl5J_S-rqN29tDM_evkvN23AvUG3pw7So_1X8IDTUGQqzAtXYXk6vnBrmKlN9XplHQzULSvUb99VQk8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pair+of+Hydrogen%E2%80%90Bonded+Cobalt%28II%29+Complexes+Showing+the+Proton+Conduction+and+Spin+Crossover+Property&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Liu%2C+Fu%E2%80%90Bin&rft.au=Shang%2C+Meng%E2%80%90Jia&rft.au=Lu%2C+Han%E2%80%90Han&rft.au=Li%2C+Jing&rft.date=2025-03-03&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=28&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fejic.202400761&rft.externalDBID=10.1002%252Fejic.202400761&rft.externalDocID=EJIC202400761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon