A Pair of Hydrogen‐Bonded Cobalt(II) Complexes Showing the Proton Conduction and Spin Crossover Property
Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work we designed two spin‐crossover and proton‐conductive bifunctional Co(II) compounds, [Co(Pyrimidine‐terpy)2](BF4)2⋅2H2O (1⋅2H2O; Pyrimidine‐te...
Saved in:
Published in | European journal of inorganic chemistry Vol. 28; no. 7 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
03.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work we designed two spin‐crossover and proton‐conductive bifunctional Co(II) compounds, [Co(Pyrimidine‐terpy)2](BF4)2⋅2H2O (1⋅2H2O; Pyrimidine‐terpy=4′‐(5‐pyrimidinyl)‐2,2′:6′,2“‐terpyridine) and [Co(Pyrimidine‐terpy)2](ClO4)2⋅2H2O (2⋅2H2O). Both compounds undergo the typical spin transitions and have a hydrogen‐bonding network consisting of anions with solvent water molecules. At 353 K and under 95 % relative humidity, the proton conductivity of 1⋅2H2O was 1.9×10−4 S cm−1 and that of 2⋅2H2O was 7.5×10−5 S cm−1. The activation energy analysis indicates that the proton conduction of 1⋅2H2O follows the Vehicle mechanism in the temperature range of 303–318 K, while the Grotthuss mechanism plays a dominant role in the higher temperature range of 323–353 K. Additionally, 2⋅2H2O also follows the Grotthuss mechanism in the temperature range of 338–353 K. This study provides new guidelines for the design of novel SCO molecular materials with proton conduction functionality.
A Pair of Hydrogen‐Bonded Cobalt(II) Complexes showing the Proton Conduction and Spin Crossover Property is reported. A pair of hydrogen‐bonded cobalt(II) complexes was constructed by modified terpyridine ligands. Both of them showed the temperature‐dependent proton conduction and spin crossover properties, representing a new type of SCO molecular materials with proton conduction functionality. |
---|---|
AbstractList | Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work we designed two spin‐crossover and proton‐conductive bifunctional Co(II) compounds, [Co(Pyrimidine‐terpy)2](BF4)2⋅2H2O (1⋅2H2O; Pyrimidine‐terpy=4′‐(5‐pyrimidinyl)‐2,2′:6′,2“‐terpyridine) and [Co(Pyrimidine‐terpy)2](ClO4)2⋅2H2O (2⋅2H2O). Both compounds undergo the typical spin transitions and have a hydrogen‐bonding network consisting of anions with solvent water molecules. At 353 K and under 95 % relative humidity, the proton conductivity of 1⋅2H2O was 1.9×10−4 S cm−1 and that of 2⋅2H2O was 7.5×10−5 S cm−1. The activation energy analysis indicates that the proton conduction of 1⋅2H2O follows the Vehicle mechanism in the temperature range of 303–318 K, while the Grotthuss mechanism plays a dominant role in the higher temperature range of 323–353 K. Additionally, 2⋅2H2O also follows the Grotthuss mechanism in the temperature range of 338–353 K. This study provides new guidelines for the design of novel SCO molecular materials with proton conduction functionality.
A Pair of Hydrogen‐Bonded Cobalt(II) Complexes showing the Proton Conduction and Spin Crossover Property is reported. A pair of hydrogen‐bonded cobalt(II) complexes was constructed by modified terpyridine ligands. Both of them showed the temperature‐dependent proton conduction and spin crossover properties, representing a new type of SCO molecular materials with proton conduction functionality. Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work we designed two spin‐crossover and proton‐conductive bifunctional Co(II) compounds, [Co(Pyrimidine‐terpy) 2 ](BF 4 ) 2 ⋅2H 2 O ( 1⋅2H 2 O ; Pyrimidine‐terpy=4′‐(5‐pyrimidinyl)‐2,2′:6′,2“‐terpyridine) and [Co(Pyrimidine‐terpy) 2 ](ClO 4 ) 2 ⋅2H 2 O (2⋅2H 2 O) . Both compounds undergo the typical spin transitions and have a hydrogen‐bonding network consisting of anions with solvent water molecules. At 353 K and under 95 % relative humidity, the proton conductivity of 1⋅2H 2 O was 1.9×10 −4 S cm −1 and that of 2⋅2H 2 O was 7.5×10 −5 S cm −1 . The activation energy analysis indicates that the proton conduction of 1⋅2H 2 O follows the Vehicle mechanism in the temperature range of 303–318 K, while the Grotthuss mechanism plays a dominant role in the higher temperature range of 323–353 K. Additionally, 2⋅2H 2 O also follows the Grotthuss mechanism in the temperature range of 338–353 K. This study provides new guidelines for the design of novel SCO molecular materials with proton conduction functionality. Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work we designed two spin‐crossover and proton‐conductive bifunctional Co(II) compounds, [Co(Pyrimidine‐terpy)2](BF4)2⋅2H2O (1⋅2H2O; Pyrimidine‐terpy=4′‐(5‐pyrimidinyl)‐2,2′:6′,2“‐terpyridine) and [Co(Pyrimidine‐terpy)2](ClO4)2⋅2H2O (2⋅2H2O). Both compounds undergo the typical spin transitions and have a hydrogen‐bonding network consisting of anions with solvent water molecules. At 353 K and under 95 % relative humidity, the proton conductivity of 1⋅2H2O was 1.9×10−4 S cm−1 and that of 2⋅2H2O was 7.5×10−5 S cm−1. The activation energy analysis indicates that the proton conduction of 1⋅2H2O follows the Vehicle mechanism in the temperature range of 303–318 K, while the Grotthuss mechanism plays a dominant role in the higher temperature range of 323–353 K. Additionally, 2⋅2H2O also follows the Grotthuss mechanism in the temperature range of 338–353 K. This study provides new guidelines for the design of novel SCO molecular materials with proton conduction functionality. |
Author | Shang, Meng‐Jia Zhang, Wen‐Jing Lu, Han‐Han Li, Jing Meng, Yin‐Shan Liu, Fu‐Bin Liu, Tao Kong, Cong |
Author_xml | – sequence: 1 givenname: Fu‐Bin surname: Liu fullname: Liu, Fu‐Bin organization: Dalian University of Technology – sequence: 2 givenname: Meng‐Jia surname: Shang fullname: Shang, Meng‐Jia organization: Dalian University of Technology – sequence: 3 givenname: Han‐Han surname: Lu fullname: Lu, Han‐Han organization: Dalian University of Technology – sequence: 4 givenname: Jing surname: Li fullname: Li, Jing organization: Dalian University of Technology – sequence: 5 givenname: Cong surname: Kong fullname: Kong, Cong organization: Dalian University of Technology – sequence: 6 givenname: Wen‐Jing surname: Zhang fullname: Zhang, Wen‐Jing organization: Dalian University of Technology – sequence: 7 givenname: Yin‐Shan orcidid: 0000-0001-9963-4596 surname: Meng fullname: Meng, Yin‐Shan email: mengys@dlut.edu.cn organization: Dalian University of Technology – sequence: 8 givenname: Tao orcidid: 0000-0003-2891-603X surname: Liu fullname: Liu, Tao email: liutao@dlut.edu.cn organization: Dalian University of Technology |
BookMark | eNqFkL9OwzAQxi1UJNrCyhyJBYaUs52_Y4kKDapEpXaPkvjSJmrt4KSUbDwCz8iT4KgIRpa7T77fdz59IzKQSiIh1xQmFIDdY1XmEwbMAfA9ekaGFMLQBi9gA6Md7tg0dIILMmqaCgA4cG9Iqqm1TEttqcKad0KrDcqvj88HJQUKK1JZumtv4_jOyH29w3dsrNVWHUu5sdotWkutWiXNUIpD3pZGplJYq7o0b1o1jXpD3UM16ra7JOdFumvw6qePyfpxto7m9uLlKY6mCztnPqM2g4KmGQiWhQx8RA6p7yJ1Q1NSnnmBYCxgIgiEy3PXQRr4XiaE4IGXFyHwMbk5ra21ej1g0yaVOmhpfkw49R0v9BzGDDU5UXl_p8YiqXW5T3WXUEj6OJM-zuQ3TmMIT4ZjucPuHzqZPcfRn_cbm0J7hQ |
Cites_doi | 10.1021/jp201585x 10.1039/c0dt00295j 10.1039/b915141a 10.1063/5.0103228 10.1021/acs.inorgchem.2c02822 10.1021/ja9040016 10.1021/acs.inorgchem.4c02575 10.1002/anie.202015322 10.1002/anie.201903281 10.1021/acs.inorgchem.4c00895 10.1021/acs.jpcb.4c00185 10.1039/D0SC02388D 10.1021/acs.inorgchem.0c00818 10.1039/b412182a 10.1021/acs.jpcc.4c03866 10.1021/acs.cgd.2c01251 10.1002/chem.200400799 10.1021/acs.inorgchem.3c01606 10.1039/D3SC05455A 10.1021/acs.inorgchem.3c04228 10.1038/nchem.1455 10.1246/bcsj.20200246 10.1021/acs.inorgchem.1c02312 10.1021/acs.cgd.1c00214 10.1021/ic502586a 10.1016/j.ccr.2014.08.006 10.1021/acs.inorgchem.3c01258 10.1038/s41557-021-00695-1 10.1021/ic060852l 10.1016/j.ica.2022.121006 10.1021/acs.cgd.2c00535 10.1021/ja100385f 10.1021/acs.inorgchem.6b03147 10.1021/jp109489g 10.1007/s11581-014-1109-0 10.1039/D4TA01716A 10.1021/acs.jpcb.1c08304 10.1021/acs.cgd.3c01515 10.1002/anie.198202082 10.1021/acs.cgd.3c01052 10.1016/j.ccr.2011.05.016 10.1021/cr020715f 10.1021/acs.inorgchem.2c00121 10.1021/acs.inorgchem.7b01965 10.1021/acs.inorgchem.8b01992 10.1021/acs.inorgchem.0c01375 10.1021/acs.inorgchem.1c01107 10.1021/acs.cgd.2c01243 10.1021/acs.inorgchem.4c01847 10.1002/chem.202202655 10.1021/cg401587r 10.1039/c1cs15046d 10.1021/acs.inorgchem.1c02165 10.1039/C8DT02367K 10.1039/D1DT01934A |
ContentType | Journal Article |
Copyright | 2025 Wiley-VCH GmbH |
Copyright_xml | – notice: 2025 Wiley-VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ejic.202400761 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-0682 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ejic_202400761 EJIC202400761 |
Genre | article |
GrantInformation_xml | – fundername: Liaoning Binhai Laboratory funderid: Grant LBLE-2023-02 – fundername: Fundamental Research Funds for the Central Universities funderid: DUT22LAB606 – fundername: National Natural Science Foundation of China funderid: 22222103; 22025101; 22173015 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA HBH HGLYW HHY HHZ HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT 1OB AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION LH4 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c2721-20f1ab0d2b9207ee30a75e1595e1a3b68d2282d88d53c54e1876bddd386cf903 |
IEDL.DBID | DR2 |
ISSN | 1434-1948 |
IngestDate | Wed Aug 13 08:10:17 EDT 2025 Thu Aug 14 00:06:05 EDT 2025 Fri Mar 07 09:41:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2721-20f1ab0d2b9207ee30a75e1595e1a3b68d2282d88d53c54e1876bddd386cf903 |
Notes | These authors contributed equally to this work and shared the first authorship. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9963-4596 0000-0003-2891-603X |
PQID | 3174696422 |
PQPubID | 2030176 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3174696422 crossref_primary_10_1002_ejic_202400761 wiley_primary_10_1002_ejic_202400761_EJIC202400761 |
PublicationCentury | 2000 |
PublicationDate | March 3, 2025 |
PublicationDateYYYYMMDD | 2025-03-03 |
PublicationDate_xml | – month: 03 year: 2025 text: March 3, 2025 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | European journal of inorganic chemistry |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 2021; 21 2004; 104 2015; 289–290 2024; 128 2010; 39 2021; 125 2011; 40 2015; 54 2019; 58 2020; 59 2024; 12 2020; 11 2022; 539 2022; 22 2009; 131 2021; 94 2021; 50 2024; 15 2011; 255 2022; 157 2018; 47 2014; 20 2021; 13 2023; 62 2013; 14 2023; 23 2006; 45 2023; 29 2022; 61 2017; 56 2010; 132 2024; 63 2024; 24 2021; 60 2012; 4 2005; 11 2003; 21 2018; 57 e_1_2_9_52_1 e_1_2_9_50_2 e_1_2_9_33_2 e_1_2_9_56_2 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_2 e_1_2_9_58_2 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_2 e_1_2_9_39_2 e_1_2_9_64_1 e_1_2_9_41_2 e_1_2_9_62_2 e_1_2_9_20_2 e_1_2_9_45_2 e_1_2_9_66_2 e_1_2_9_24_1 e_1_2_9_22_2 e_1_2_9_43_2 e_1_2_9_6_1 e_1_2_9_4_2 e_1_2_9_60_1 e_1_2_9_2_2 e_1_2_9_8_2 e_1_2_9_49_1 e_1_2_9_26_2 e_1_2_9_47_2 e_1_2_9_68_2 e_1_2_9_28_2 e_1_2_9_51_2 e_1_2_9_53_1 e_1_2_9_30_2 e_1_2_9_57_1 e_1_2_9_34_2 e_1_2_9_55_2 e_1_2_9_11_2 e_1_2_9_32_2 e_1_2_9_70_2 e_1_2_9_13_2 e_1_2_9_38_2 e_1_2_9_59_2 e_1_2_9_36_1 e_1_2_9_15_2 e_1_2_9_19_1 e_1_2_9_17_2 e_1_2_9_40_2 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_61_2 e_1_2_9_21_2 e_1_2_9_44_2 e_1_2_9_67_1 e_1_2_9_65_2 e_1_2_9_23_1 e_1_2_9_7_2 e_1_2_9_5_2 e_1_2_9_3_2 e_1_2_9_1_1 e_1_2_9_9_2 e_1_2_9_25_2 e_1_2_9_46_2 e_1_2_9_69_2 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_2 |
References_xml | – volume: 60 start-page: 10492 year: 2021 end-page: 10501 publication-title: Inorg. Chem. – volume: 40 start-page: 4119 year: 2011 end-page: 4142 publication-title: Chem. Soc. Rev. – volume: 56 start-page: 4956 year: 2017 end-page: 4965 publication-title: Inorg. Chem. – volume: 21 start-page: 208 year: 2003 end-page: 209 publication-title: Angew. Chem. Int. Ed. – volume: 59 start-page: 10243 year: 2020 end-page: 10252 publication-title: Inorg. Chem. – volume: 11 start-page: 6229 year: 2020 end-page: 6235 publication-title: Chem. Sci. – volume: 24 start-page: 696 year: 2024 end-page: 702 publication-title: Cryst. Growth Des. – volume: 62 start-page: 11570 year: 2023 end-page: 11580 publication-title: Inorg. Chem. – volume: 61 start-page: 18545 year: 2022 end-page: 18553 publication-title: Inorg. Chem. – volume: 63 start-page: 17747 year: 2024 end-page: 17754 publication-title: Inorg. Chem. – volume: 115 start-page: 3003 year: 2011 end-page: 3012 publication-title: J. Phys. Chem. B. – volume: 11 start-page: 1479 year: 2005 end-page: 1494 publication-title: Chem. – Eur. J. – volume: 24 start-page: 2202 year: 2024 end-page: 2209 publication-title: Cryst. Growth Des. – volume: 289–290 start-page: 2 year: 2015 end-page: 12 publication-title: Coord. Chem. Rev. – volume: 15 start-page: 2725 year: 2024 end-page: 2730 publication-title: Chem. Sci. – volume: 58 start-page: 8789 year: 2019 end-page: 8793 publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 11243 year: 2021 end-page: 11248 publication-title: Dalton Trans. – volume: 4 start-page: 921 year: 2012 end-page: 926 publication-title: Nat. Chem. – volume: 157 year: 2022 publication-title: J. Phys. Chem. – volume: 54 start-page: 1597 year: 2015 end-page: 1605 publication-title: Inorg. Chem. – volume: 22 start-page: 5441 year: 2022 end-page: 5448 publication-title: Cryst. Growth Des. – volume: 255 start-page: 1981 year: 2011 end-page: 1990 publication-title: Coord. Chem. Rev. – volume: 125 start-page: 12627 year: 2021 end-page: 12635 publication-title: J. Phys. Chem. B. – volume: 14 start-page: 310 year: 2013 end-page: 325 publication-title: Cryst. Growth Des. – volume: 61 start-page: 6819 year: 2022 end-page: 6828 publication-title: Inorg. Chem. – volume: 13 start-page: 698 year: 2021 end-page: 704 publication-title: Nat. Chem. – volume: 12 start-page: 18440 year: 2024 end-page: 18451 publication-title: J. Mater. Chem. A. – volume: 47 start-page: 13809 year: 2018 end-page: 13814 publication-title: Dalton Trans. – volume: 115 start-page: 8176 year: 2011 end-page: 8182 publication-title: J. Phys. Chem. B. – volume: 62 start-page: 17093 year: 2023 end-page: 17101 publication-title: Inorg. Chem. – volume: 21 start-page: 3908 year: 2021 end-page: 3915 publication-title: Cryst. Growth Des. – volume: 63 start-page: 17478 year: 2024 end-page: 17487 publication-title: Inorg. Chem. – volume: 39 start-page: 9008 year: 2010 end-page: 9012 publication-title: Dalton Trans. – volume: 539 year: 2022 publication-title: Inorg. Chim. Acta – volume: 132 start-page: 6620 year: 2010 end-page: 6621 publication-title: J. Am. Chem. Soc. – volume: 63 start-page: 10278 year: 2024 end-page: 10287 publication-title: Inorg. Chem. – volume: 63 start-page: 3870 year: 2024 end-page: 3881 publication-title: Inorg. Chem. – volume: 60 start-page: 12717 year: 2021 end-page: 12722 publication-title: Angew. Chem. Int. Ed. – volume: 29 year: 2023 publication-title: Chem.–Eur. J. – volume: 131 start-page: 9906 year: 2009 end-page: 9907 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 1104 year: 2023 end-page: 1118 publication-title: Cryst. Growth Des. – volume: 45 start-page: 5739 year: 2006 end-page: 5741 publication-title: Inorg. Chem. – volume: 94 start-page: 158 year: 2021 end-page: 163 publication-title: Bull. Chem. Soc. Jpn. – volume: 60 start-page: 16337 year: 2021 end-page: 16345 publication-title: Inorg. Chem. – volume: 60 start-page: 16474 year: 2021 end-page: 16483 publication-title: Inorg. Chem. – volume: 104 start-page: 4637 year: 2004 end-page: 4678 publication-title: Chem. Rev. – volume: 128 start-page: 3499 year: 2024 end-page: 3507 publication-title: J. Phys. Chem. B. – volume: 59 start-page: 16843 year: 2020 end-page: 16852 publication-title: Inorg. Chem. – volume: 20 start-page: 1399 year: 2014 end-page: 1406 publication-title: Ionics – volume: 128 start-page: 14834 year: 2024 end-page: 14841 publication-title: J. Phys. Chem. C. – volume: 56 start-page: 13865 year: 2017 end-page: 13877 publication-title: Inorg. Chem. – volume: 57 start-page: 13415 year: 2018 end-page: 13422 publication-title: Inorg. Chem. – volume: 39 start-page: 4370 year: 2010 end-page: 4387 publication-title: Chem. Soc. Rev. – volume: 23 start-page: 1633 year: 2023 end-page: 1640 publication-title: Cryst. Growth Des. – ident: e_1_2_9_42_1 – ident: e_1_2_9_40_2 doi: 10.1021/jp201585x – ident: e_1_2_9_50_2 doi: 10.1039/c0dt00295j – ident: e_1_2_9_3_2 doi: 10.1039/b915141a – ident: e_1_2_9_53_1 doi: 10.1063/5.0103228 – ident: e_1_2_9_29_2 doi: 10.1021/acs.inorgchem.2c02822 – ident: e_1_2_9_66_2 doi: 10.1021/ja9040016 – ident: e_1_2_9_18_2 doi: 10.1021/acs.inorgchem.4c02575 – ident: e_1_2_9_46_2 doi: 10.1002/anie.202015322 – ident: e_1_2_9_47_2 doi: 10.1002/anie.201903281 – ident: e_1_2_9_11_2 doi: 10.1021/acs.inorgchem.4c00895 – ident: e_1_2_9_13_2 doi: 10.1021/acs.jpcb.4c00185 – ident: e_1_2_9_45_2 doi: 10.1039/D0SC02388D – ident: e_1_2_9_16_1 – ident: e_1_2_9_51_2 doi: 10.1021/acs.inorgchem.0c00818 – ident: e_1_2_9_43_2 doi: 10.1039/b412182a – ident: e_1_2_9_7_2 doi: 10.1021/acs.jpcc.4c03866 – ident: e_1_2_9_23_1 doi: 10.1021/acs.cgd.2c01251 – ident: e_1_2_9_24_1 – ident: e_1_2_9_60_1 – ident: e_1_2_9_63_1 doi: 10.1002/chem.200400799 – ident: e_1_2_9_34_2 doi: 10.1021/acs.inorgchem.3c01606 – ident: e_1_2_9_27_1 – ident: e_1_2_9_71_1 – ident: e_1_2_9_68_2 doi: 10.1039/D3SC05455A – ident: e_1_2_9_14_2 doi: 10.1021/acs.inorgchem.3c04228 – ident: e_1_2_9_38_2 doi: 10.1038/nchem.1455 – ident: e_1_2_9_56_2 doi: 10.1246/bcsj.20200246 – ident: e_1_2_9_57_1 – ident: e_1_2_9_20_2 doi: 10.1021/acs.inorgchem.1c02312 – ident: e_1_2_9_49_1 – ident: e_1_2_9_17_2 doi: 10.1021/acs.cgd.1c00214 – ident: e_1_2_9_31_2 doi: 10.1021/ic502586a – ident: e_1_2_9_59_2 doi: 10.1016/j.ccr.2014.08.006 – ident: e_1_2_9_5_2 doi: 10.1021/acs.inorgchem.3c01258 – ident: e_1_2_9_39_2 doi: 10.1038/s41557-021-00695-1 – ident: e_1_2_9_44_2 doi: 10.1021/ic060852l – ident: e_1_2_9_70_2 doi: 10.1016/j.ica.2022.121006 – ident: e_1_2_9_21_2 doi: 10.1021/acs.cgd.2c00535 – ident: e_1_2_9_35_1 doi: 10.1021/ja100385f – ident: e_1_2_9_6_1 – ident: e_1_2_9_32_2 doi: 10.1021/acs.inorgchem.6b03147 – ident: e_1_2_9_41_2 doi: 10.1021/jp109489g – ident: e_1_2_9_67_1 – ident: e_1_2_9_69_2 doi: 10.1007/s11581-014-1109-0 – ident: e_1_2_9_8_2 doi: 10.1039/D4TA01716A – ident: e_1_2_9_12_2 doi: 10.1021/acs.jpcb.1c08304 – ident: e_1_2_9_54_1 – ident: e_1_2_9_1_1 – ident: e_1_2_9_22_2 doi: 10.1021/acs.cgd.3c01515 – ident: e_1_2_9_65_2 doi: 10.1002/anie.198202082 – ident: e_1_2_9_19_1 – ident: e_1_2_9_26_2 doi: 10.1021/acs.cgd.3c01052 – ident: e_1_2_9_55_2 doi: 10.1016/j.ccr.2011.05.016 – ident: e_1_2_9_2_2 doi: 10.1021/cr020715f – ident: e_1_2_9_25_2 doi: 10.1021/acs.inorgchem.2c00121 – ident: e_1_2_9_30_2 doi: 10.1021/acs.inorgchem.7b01965 – ident: e_1_2_9_33_2 doi: 10.1021/acs.inorgchem.8b01992 – ident: e_1_2_9_10_1 – ident: e_1_2_9_9_2 doi: 10.1021/acs.inorgchem.0c01375 – ident: e_1_2_9_4_2 doi: 10.1021/acs.inorgchem.1c01107 – ident: e_1_2_9_48_1 doi: 10.1021/acs.cgd.2c01243 – ident: e_1_2_9_28_2 doi: 10.1021/acs.inorgchem.4c01847 – ident: e_1_2_9_52_1 doi: 10.1002/chem.202202655 – ident: e_1_2_9_37_1 – ident: e_1_2_9_36_1 doi: 10.1021/cg401587r – ident: e_1_2_9_58_2 doi: 10.1039/c1cs15046d – ident: e_1_2_9_15_2 doi: 10.1021/acs.inorgchem.1c02165 – ident: e_1_2_9_61_2 doi: 10.1039/C8DT02367K – ident: e_1_2_9_64_1 – ident: e_1_2_9_62_2 doi: 10.1039/D1DT01934A |
SSID | ssj0003036 |
Score | 2.445775 |
Snippet | Achieving high proton conductivity in spin‐crossover (SCO) compounds is promising for the development of magnetoelectric and spintronics devices. In this work... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Cobalt compounds Hydrogen Hydrogen-bonding network Intramolecular interactions Proton conduction Pyrimidines Relative humidity Spin crossover Spin transition Spintronics |
Title | A Pair of Hydrogen‐Bonded Cobalt(II) Complexes Showing the Proton Conduction and Spin Crossover Property |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.202400761 https://www.proquest.com/docview/3174696422 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqexDUQ9p0k26SYyktbUEptkJvIfsItkpS0hYfJ3-Cv9Ff4kzS9OFF0Esgj12S2Z2Zb8LMN4RcghcKua2l4TnSNGzbEgZWFBsaXHGFe660BRY4397x1oPdGVQHK1X8GT_E4ocbakZqr1HBAzEpL0lD9WiIFISYA-mk8Q8mbCEqul_yR6F9TsuLLNuAaN3NWRtNVl4fvu6VllBzFbCmHqe5S4L8XbNEk6fSbCpK8v0HjeN_PmaP7MzhKK1l-2efbOjogGzV8y5wh2RUo91gmNA4pK03lcSw374-PrEZsVa0jmQi0-t2-4aiXXnWr3pCe4_xC_hDCsiSdpMYsCXcjFTGUkuDSNHeeAjXUBCYP4oPjZHh94j0m41-vWXM-zMYkkHgCAoWVgJhKiY8ZjpaW2bgVDXgIzgEluCuYhDQKddVVUtWbV0ByyuUUpbLZeiZ1jHZjOJInxAqHCU4BFc81BgPVSAsZ4EjhZChFFrzArnKl8cfZywcfsa3zHwUnb8QXYEU89Xz59o48QEj2dyDmVmBsHQZfpnFb3Ta9cXZ6V8GnZFthq2CMV3NKpLNaTLT54BfpuIi3aPfQ1Xnmw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5ReqCXvisCFPbQqu3BYK83a_vQAwqgmJdQSSVuK-_DagDZURJE4cRP6E_pX-lf6C_pjB0nwKVSJQ69WPJrZc97VjPfALxDL5RL4YyXRMb3hAi1Rx3FnkNXHMgkNkJTg_PBoex-Fbsn7ZM5-Nn0wtT4ENMNN9KMyl6TgtOG9MYMNdSd9gmDkIogMRef1FXuuatLzNpGn9MtZPF7zne2e52uNxks4BmOGQ9KRh5k2rdcJ9yPnAv9LGo7dOx4yEItY8sxE7FxbNuhaQsXoMnQ1towliZP_BCXfQSPaYo4ofVvfZkBVpFDqPqZQuEFiYgbmEifb9z93LtucBbb3o6QKxe38wx-NcSpK1vO1i_Get1c38ON_J-o9xyeTuJttlkryAuYc8VLWOg0Y-5ewekmO8r6Q1bmrHtlhyUq1O-bHzRt2VnWIbSU8cc0_cTIcJ67727Ejr-Vl-jwGYbO7GhYYvCMNwtbw_CyrLDseNDHa0R4KpClhwYEYfwaeg_xp29gvigLtwhMR1ZLzB5l7ijhC2JMbLLIaG1yo52TLfjQiIMa1DAjqgaU5oo4paacasFKIy1qYm5GCoNAIRNcmbeAV2z_yypqezftTM-W_uWlNVjo9g721X56uLcMTzjNRabavHAF5sfDC_cWg7WxXq30g4F6YIn6AxOyQ6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qRQI2vCsCfcwCRFm4tceTsb1gUSWN4r4UtUXqbuR5WKQgO0pSlbLiE_gTfoVv4Eu4146Tlg0SUhdsIjm2R_bc57HuPRfgNUahXApnvCQyvidEqD3qKPYchuJAJrERmhqcD49k_4PYO2ufLcGPphem5oeYf3Ajy6j8NRn4yObbC9JQdz4kCkKqgUQoPiur3HdXlwjaJu_TLkr4Dee93dNO35vNFfAMR8CDipEHmfYt1wn3I-dCP4vaDuM6_mShlrHlCERsHNt2aNrCBegxtLU2jKXJEz_EZe_AXSH9hGZFdI8XfFUUD6p2plB4QSLihiXS59s3H_dmFFykttcT5CrC9R7Bz2Zv6sKWT1sXU71lvv5BG_kfbd5jeDjLttlObR5PYMkVT-F-pxly9wzOd9ggG45ZmbP-lR2XaE6_vn2nWcvOsg5xpUw30_QdI7f52X1xE3bysbzEcM8wcWaDcYmpM54sbE3Cy7LCspPREP-jfafyWLpoRATGz-H0Nt50BZaLsnAvgOnIaonYUeaO4F4QI6zJIqO1yY12TrbgbaMNalSTjKiaTporkpSaS6oFq42yqJmzmShMAYVMcGXeAl5J_S-rqN29tDM_evkvN23AvUG3pw7So_1X8IDTUGQqzAtXYXk6vnBrmKlN9XplHQzULSvUb99VQk8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pair+of+Hydrogen%E2%80%90Bonded+Cobalt%28II%29+Complexes+Showing+the+Proton+Conduction+and+Spin+Crossover+Property&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Liu%2C+Fu%E2%80%90Bin&rft.au=Shang%2C+Meng%E2%80%90Jia&rft.au=Lu%2C+Han%E2%80%90Han&rft.au=Li%2C+Jing&rft.date=2025-03-03&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=28&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fejic.202400761&rft.externalDBID=10.1002%252Fejic.202400761&rft.externalDocID=EJIC202400761 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon |