Independent Phase Control in Gap‐Tuned Metasurfaces for Dual‐Function Switching

Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable wavefronts under external stimuli. Among various active phase control mechanisms, a mechanical method based on gap tuning, termed as gap‐tuned...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 18; no. 10
Main Authors Liao, Yi, Chen, Kaiji, Su, Xiaoqiang, Xu, Quan, Niu, Li, Wu, Tong, Zhang, Huifang, Gu, Jianqiang, Zhang, Xueqian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable wavefronts under external stimuli. Among various active phase control mechanisms, a mechanical method based on gap tuning, termed as gap‐tuned metasurface here, has shown promise in continuous phase adjustment. However, previous studies face limitations in independent and complete phase control at different gap distances, which is crucial in dual‐function switching applications. In this study, a novel type of gap‐tuned metasurfaces are proposed, which can overcome the above limitations through simultaneously manipulating the Pancharatnam–Berry phase and gap‐induced dynamic phase under circularly polarized incidences. Two exemplary gap‐tuned metasurfaces capable of orbital angular momentum (OAM) switching and focusing‐polarity switching are experimentally demonstrated. Furthermore, the special dynamic phase design also exhibits phase conjugate property similar to the Pancharatnam–Berry phase, making circular polarization handedness an alternative route for dual‐function switching. This method provides a straightforward and effective means for the development of active wavefront control devices. A novel mechanical method for achieving dual‐function switching is proposed using gap‐tuned metasurfaces. The special design allows independent control over the reflection phases and wavefronts at two gap states through manipulating Pancharatnam–Berry phase and dynamic phase. Two metasurfaces capable of switching orbital angular momentum and focusing polarity are presented. This method offers a robust pathway to realize dynamic devices.
AbstractList Abstract Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable wavefronts under external stimuli. Among various active phase control mechanisms, a mechanical method based on gap tuning, termed as gap‐tuned metasurface here, has shown promise in continuous phase adjustment. However, previous studies face limitations in independent and complete phase control at different gap distances, which is crucial in dual‐function switching applications. In this study, a novel type of gap‐tuned metasurfaces are proposed, which can overcome the above limitations through simultaneously manipulating the Pancharatnam–Berry phase and gap‐induced dynamic phase under circularly polarized incidences. Two exemplary gap‐tuned metasurfaces capable of orbital angular momentum (OAM) switching and focusing‐polarity switching are experimentally demonstrated. Furthermore, the special dynamic phase design also exhibits phase conjugate property similar to the Pancharatnam–Berry phase, making circular polarization handedness an alternative route for dual‐function switching. This method provides a straightforward and effective means for the development of active wavefront control devices.
Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable wavefronts under external stimuli. Among various active phase control mechanisms, a mechanical method based on gap tuning, termed as gap‐tuned metasurface here, has shown promise in continuous phase adjustment. However, previous studies face limitations in independent and complete phase control at different gap distances, which is crucial in dual‐function switching applications. In this study, a novel type of gap‐tuned metasurfaces are proposed, which can overcome the above limitations through simultaneously manipulating the Pancharatnam–Berry phase and gap‐induced dynamic phase under circularly polarized incidences. Two exemplary gap‐tuned metasurfaces capable of orbital angular momentum (OAM) switching and focusing‐polarity switching are experimentally demonstrated. Furthermore, the special dynamic phase design also exhibits phase conjugate property similar to the Pancharatnam–Berry phase, making circular polarization handedness an alternative route for dual‐function switching. This method provides a straightforward and effective means for the development of active wavefront control devices. A novel mechanical method for achieving dual‐function switching is proposed using gap‐tuned metasurfaces. The special design allows independent control over the reflection phases and wavefronts at two gap states through manipulating Pancharatnam–Berry phase and dynamic phase. Two metasurfaces capable of switching orbital angular momentum and focusing polarity are presented. This method offers a robust pathway to realize dynamic devices.
Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable wavefronts under external stimuli. Among various active phase control mechanisms, a mechanical method based on gap tuning, termed as gap‐tuned metasurface here, has shown promise in continuous phase adjustment. However, previous studies face limitations in independent and complete phase control at different gap distances, which is crucial in dual‐function switching applications. In this study, a novel type of gap‐tuned metasurfaces are proposed, which can overcome the above limitations through simultaneously manipulating the Pancharatnam–Berry phase and gap‐induced dynamic phase under circularly polarized incidences. Two exemplary gap‐tuned metasurfaces capable of orbital angular momentum (OAM) switching and focusing‐polarity switching are experimentally demonstrated. Furthermore, the special dynamic phase design also exhibits phase conjugate property similar to the Pancharatnam–Berry phase, making circular polarization handedness an alternative route for dual‐function switching. This method provides a straightforward and effective means for the development of active wavefront control devices.
Author Liao, Yi
Zhang, Xueqian
Niu, Li
Gu, Jianqiang
Su, Xiaoqiang
Wu, Tong
Zhang, Huifang
Chen, Kaiji
Xu, Quan
Author_xml – sequence: 1
  givenname: Yi
  surname: Liao
  fullname: Liao, Yi
  organization: Tianjin University
– sequence: 2
  givenname: Kaiji
  surname: Chen
  fullname: Chen, Kaiji
  organization: Nanyang Technological University
– sequence: 3
  givenname: Xiaoqiang
  surname: Su
  fullname: Su, Xiaoqiang
  email: xiaoqiang.su@sxdtdx.edu.cn
  organization: Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials
– sequence: 4
  givenname: Quan
  surname: Xu
  fullname: Xu, Quan
  organization: Tianjin University
– sequence: 5
  givenname: Li
  surname: Niu
  fullname: Niu, Li
  organization: Tianjin University
– sequence: 6
  givenname: Tong
  surname: Wu
  fullname: Wu, Tong
  organization: Tianjin University
– sequence: 7
  givenname: Huifang
  surname: Zhang
  fullname: Zhang, Huifang
  organization: University of Electronic Science and Technology of China
– sequence: 8
  givenname: Jianqiang
  surname: Gu
  fullname: Gu, Jianqiang
  email: gjq@tju.edu.cn
  organization: Tianjin University
– sequence: 9
  givenname: Xueqian
  orcidid: 0000-0001-7712-3365
  surname: Zhang
  fullname: Zhang, Xueqian
  email: alearn1988@tju.edu.cn
  organization: Tianjin University
BookMark eNqFkM9OAjEQxhuDiYBePTfxDE67S7s9GhQkwUAEz01pu7Jkbdd2N4abj-Az-iQuweDROcyfzPfNJL8e6jjvLELXBIYEgN6WlQ9DCjQFaOcz1CUZSwZZJkTn1GdwgXox7gBGbbAuWs2csZVtk6vxcquixWPv6uBLXDg8VdX359e6cdbgJ1ur2IRcaRtx7gO-b1TZbieN03XhHV59FLXeFu71Ep3nqoz26rf20cvkYT1-HMwX09n4bj7QlFMYGKqUBauNFgISLpgiyqSKC77ZJBvGTEa5NSphXOc55bkAyDmzRAiTpAYg6aOb490q-PfGxlrufBNc-1ImhDAKbJSOWtXwqNLBxxhsLqtQvKmwlwTkAZw8gJMncK1BHA0fRWn3_6jlfLl4_vP-AFtEdkE
Cites_doi 10.1038/s41377-023-01177-4
10.1515/nanoph-2020-0112
10.1364/AOP.11.000380
10.1021/acsnano.9b09277
10.1103/PhysRevLett.118.113901
10.1038/s41565-020-00787-y
10.1117/1.AP.4.2.024001
10.1021/acs.nanolett.1c02372
10.1002/adfm.202300639
10.3788/PI.2023.R02
10.1021/acsami.1c10881
10.1002/lpor.202300720
10.1126/sciadv.adi7565
10.1038/s41377-023-01228-w
10.1021/acsphotonics.9b01047
10.1002/adom.202101223
10.1038/s41467-022-29798-0
10.1038/s41467-021-22462-z
10.1126/science.aax5961
10.1021/acs.nanolett.7b00807
10.1038/s41565-020-0768-4
10.1016/j.carbon.2023.03.062
10.1038/s41377-022-01046-6
10.1364/OPTICA.6.001190
10.1126/science.aam8100
10.1038/s41377-021-00497-7
10.1126/sciadv.abn7905
10.1038/s41467-018-03155-6
10.1038/s41467-021-23814-5
10.1021/acsphotonics.6b00564
10.1038/s41377-019-0209-z
10.1002/advs.202100885
10.1126/science.aat3100
10.1002/adfm.201704295
10.1038/s41377-022-00879-5
10.1002/adom.202000570
10.1117/1.AP.3.3.036003
10.1002/lpor.201600144
10.34133/research.0274
10.1002/adma.201204850
10.1021/acsphotonics.0c01599
10.1038/s41467-019-11030-1
10.1002/adfm.202111000
10.1002/adom.201900175
10.1002/adfm.202110022
10.1021/acs.nanolett.0c04775
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202400100
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202400100
LPOR202400100
Genre article
GrantInformation_xml – fundername: Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province
  funderid: 20230037
– fundername: National Natural Science Foundation of China
  funderid: 62075158; 62375203; 62335011; 62027820
– fundername: Basic Research Program of Shanxi Province
  funderid: 202203021211328
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c2720-d2aae0ecdc9903796a1ad4a797bb3b66d827eda367cff27f900f76e199d34d003
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Mon Oct 14 13:25:25 EDT 2024
Wed Oct 16 15:30:44 EDT 2024
Mon Oct 14 09:52:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2720-d2aae0ecdc9903796a1ad4a797bb3b66d827eda367cff27f900f76e199d34d003
ORCID 0000-0001-7712-3365
PQID 3116206545
PQPubID 1016358
PageCount 9
ParticipantIDs proquest_journals_3116206545
crossref_primary_10_1002_lpor_202400100
wiley_primary_10_1002_lpor_202400100_LPOR202400100
PublicationCentury 2000
PublicationDate October 2024
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2019; 7
2021; 8
2017; 7
2021; 21
2013; 25
2019; 6
2023; 33
2021; 3
2023; 12
2019; 11
2023; 6
2017; 27
2019; 10
2023; 9
2016; 10
2020; 15
2020; 14
2023; 208
2023; 2
2019; 364
2024; 18
2017; 358
2019; 365
2017; 118
2020; 8
2021; 13
2021; 16
2018; 9
2021; 10
2021; 12
2016; 3
2022; 4
2017; 17
2022; 8
2020; 9
2022; 13
2022; 10
2022; 32
2022; 11
e_1_2_9_31_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
Xu Q. (e_1_2_9_39_1) 2022; 4
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Chen K. (e_1_2_9_46_1) 2021; 13
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Kamali S. M. (e_1_2_9_21_1) 2017; 7
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 10
  start-page: 2986
  year: 2019
  publication-title: Nat. Commun.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 1
  year: 2021
  publication-title: IEEE Photonics J
– volume: 21
  start-page: 7699
  year: 2021
  publication-title: Nano Lett.
– volume: 8
  year: 2020
  publication-title: Adv Opt Mater
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 4567
  year: 2013
  publication-title: Adv. Mater.
– volume: 12
  start-page: 3614
  year: 2021
  publication-title: Nat. Commun.
– volume: 11
  start-page: 380
  year: 2019
  publication-title: Adv. Opt. Photon.
– volume: 12
  start-page: 136
  year: 2023
  publication-title: Light: Sci. Appl.
– volume: 4
  year: 2022
  publication-title: Adv. Photon.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 10
  start-page: 63
  year: 2021
  publication-title: Light: Sci. Appl.
– volume: 9
  start-page: 812
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1190
  year: 2019
  publication-title: Optica
– volume: 11
  start-page: 191
  year: 2022
  publication-title: Light: Sci. Appl.
– volume: 208
  start-page: 345
  year: 2023
  publication-title: Carbon
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 364
  year: 2019
  publication-title: Science
– volume: 365
  start-page: 257
  year: 2019
  publication-title: Science
– volume: 9
  start-page: 3393
  year: 2020
  publication-title: Nanophoton
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 0274
  year: 2023
  publication-title: Research
– volume: 3
  year: 2021
  publication-title: Adv. Photon.
– volume: 6
  start-page: 2933
  year: 2019
  publication-title: ACS Photonics
– volume: 16
  start-page: 69
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 18
  year: 2024
  publication-title: Laser Photo. Rev.
– volume: 21
  start-page: 2081
  year: 2021
  publication-title: Nano Lett.
– volume: 17
  start-page: 3641
  year: 2017
  publication-title: Nano Lett.
– volume: 10
  start-page: 1002
  year: 2016
  publication-title: Laser & Photon. Rev.
– volume: 3
  start-page: 2022
  year: 2016
  publication-title: ACS Photonics
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 27
  year: 2017
  publication-title: Adv. Func. Mater.
– volume: 8
  start-page: 97
  year: 2019
  publication-title: Light: Sci. Appl.
– volume: 12
  start-page: 14
  year: 2023
  publication-title: Light: Sci. Appl.
– volume: 12
  start-page: 2230
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  year: 2017
  publication-title: Phys. Rev. X
– volume: 8
  start-page: 567
  year: 2021
  publication-title: ACS Photonics
– volume: 12
  start-page: 191
  year: 2023
  publication-title: Light: Sci. Appl.
– volume: 358
  year: 2017
  publication-title: Science
– volume: 118
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: R02
  year: 2023
  publication-title: Photon. Insights
– volume: 14
  start-page: 1166
  year: 2020
  publication-title: ACS Nano
– volume: 15
  start-page: 948
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 13
  start-page: 2071
  year: 2022
  publication-title: Nat. Commun.
– ident: e_1_2_9_25_1
  doi: 10.1038/s41377-023-01177-4
– ident: e_1_2_9_6_1
  doi: 10.1515/nanoph-2020-0112
– ident: e_1_2_9_1_1
  doi: 10.1364/AOP.11.000380
– ident: e_1_2_9_31_1
  doi: 10.1021/acsnano.9b09277
– ident: e_1_2_9_15_1
  doi: 10.1103/PhysRevLett.118.113901
– ident: e_1_2_9_33_1
  doi: 10.1038/s41565-020-00787-y
– ident: e_1_2_9_23_1
  doi: 10.1117/1.AP.4.2.024001
– ident: e_1_2_9_11_1
  doi: 10.1021/acs.nanolett.1c02372
– ident: e_1_2_9_12_1
  doi: 10.1002/adfm.202300639
– ident: e_1_2_9_9_1
  doi: 10.3788/PI.2023.R02
– ident: e_1_2_9_20_1
  doi: 10.1021/acsami.1c10881
– ident: e_1_2_9_44_1
  doi: 10.1002/lpor.202300720
– ident: e_1_2_9_26_1
  doi: 10.1126/sciadv.adi7565
– ident: e_1_2_9_32_1
  doi: 10.1038/s41377-023-01228-w
– ident: e_1_2_9_3_1
  doi: 10.1021/acsphotonics.9b01047
– ident: e_1_2_9_7_1
  doi: 10.1002/adom.202101223
– ident: e_1_2_9_47_1
  doi: 10.1038/s41467-022-29798-0
– ident: e_1_2_9_17_1
  doi: 10.1038/s41467-021-22462-z
– ident: e_1_2_9_45_1
  doi: 10.1126/science.aax5961
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.nanolett.7b00807
– ident: e_1_2_9_19_1
  doi: 10.1038/s41565-020-0768-4
– ident: e_1_2_9_30_1
  doi: 10.1016/j.carbon.2023.03.062
– ident: e_1_2_9_43_1
  doi: 10.1038/s41377-022-01046-6
– ident: e_1_2_9_8_1
  doi: 10.1364/OPTICA.6.001190
– ident: e_1_2_9_4_1
  doi: 10.1126/science.aam8100
– volume: 4
  year: 2022
  ident: e_1_2_9_39_1
  publication-title: Adv. Photon.
  contributor:
    fullname: Xu Q.
– ident: e_1_2_9_16_1
  doi: 10.1038/s41377-021-00497-7
– ident: e_1_2_9_40_1
  doi: 10.1126/sciadv.abn7905
– ident: e_1_2_9_38_1
  doi: 10.1038/s41467-018-03155-6
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-021-23814-5
– ident: e_1_2_9_13_1
  doi: 10.1021/acsphotonics.6b00564
– ident: e_1_2_9_34_1
  doi: 10.1038/s41377-019-0209-z
– ident: e_1_2_9_42_1
  doi: 10.1002/advs.202100885
– ident: e_1_2_9_22_1
  doi: 10.1126/science.aat3100
– ident: e_1_2_9_14_1
  doi: 10.1002/adfm.201704295
– ident: e_1_2_9_29_1
  doi: 10.1038/s41377-022-00879-5
– ident: e_1_2_9_35_1
  doi: 10.1002/adom.202000570
– ident: e_1_2_9_41_1
  doi: 10.1117/1.AP.3.3.036003
– ident: e_1_2_9_37_1
  doi: 10.1002/lpor.201600144
– volume: 7
  year: 2017
  ident: e_1_2_9_21_1
  publication-title: Phys. Rev. X
  contributor:
    fullname: Kamali S. M.
– ident: e_1_2_9_48_1
  doi: 10.34133/research.0274
– volume: 13
  start-page: 1
  year: 2021
  ident: e_1_2_9_46_1
  publication-title: IEEE Photonics J
  contributor:
    fullname: Chen K.
– ident: e_1_2_9_2_1
  doi: 10.1002/adma.201204850
– ident: e_1_2_9_27_1
  doi: 10.1021/acsphotonics.0c01599
– ident: e_1_2_9_18_1
  doi: 10.1038/s41467-019-11030-1
– ident: e_1_2_9_10_1
  doi: 10.1002/adfm.202111000
– ident: e_1_2_9_24_1
  doi: 10.1002/adom.201900175
– ident: e_1_2_9_49_1
  doi: 10.1002/adfm.202110022
– ident: e_1_2_9_5_1
  doi: 10.1021/acs.nanolett.0c04775
SSID ssj0055556
Score 2.4557807
Snippet Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable...
Abstract Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Angular momentum
Circular polarization
Control equipment
Controllability
dual‐function switching
dynamic phase
gap‐tuned metasurface
independent phase control
Metasurfaces
Pancharatnam–Berry phase
Phase control
Switching (polarity)
Wave front control
Wave fronts
Title Independent Phase Control in Gap‐Tuned Metasurfaces for Dual‐Function Switching
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202400100
https://www.proquest.com/docview/3116206545
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT1woqygU5AMSp7SJndjJEbWUgliqLlJvkR3boqIKFU2ExIlP4Bv5EuxsLVyQIKcscuSMPTPPzvMzAGc6SSLJBbe4x7HlIptZgUK-pQgWrmA-86OMbXFP-hP3ZupN11bx5_oQ1YSb8YwsXhsHZ3zZXomGzjU-1eM7w4HUd3QQdjA1nK7usNKP8vSRLS_yCbb0UM8uVRtt1P5e_HtWWkHNdcCaZZxeHbCyrjnR5KmVJrwVvf2QcfzPx2yDrQKOwou8_-yADRnvgnoBTWHh-Ms9MLqutstN4OBRpz7YyUnucBbDK7b4fP8YpzpkwzuZmFlHZaheUCNi2E3ZXD_t6QRqOgEcvc6SjMC5Dya9y3GnbxX7MViR-VtrCcSYtGUkIp3CMA0Ic5hwGQ0o55gTInxEpWCY0EgpRFVg24oS6QSBwK7Q4eMA1OLnWB4CKI3MmxRYRcJxmTDquDIgDqMqVyhsgPOyPcJFLrsR5gLLKDS2CitbNUCzbK6wcL9liB2HILNs1msAlNn9l7eEt4OHYXV19JdCx2DTnOdEvyaoJS-pPNGAJeGnWaf8Auhu5Qo
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOcCFsoqy-oDEKSWxEyc5Ikop0Jaqi8QtsmNbIFBBkAqJE5_AN_Il2NlKuSBBbnHkKLZnPM_Om2eAQx0kseSCW9zjxHKxzaxQ4cBSlAhXsIAFccq26NLWyL288Qo2ocmFyfQhyg034xnpfG0c3GxIH09VQx80QNULPEOC1CXzsKB9npjTGxr9UkHK01eaYBRQYunFnl3oNtr4eLb-bFyags3vkDWNOc0q8OJrM6rJfX2S8Hr89kPI8V_NWYHlHJGik8yEVmFOjtegmqNTlPv-yzoMLsoTcxPUu9XRD51mPHd0N0bn7Onz_WM40bM26sjEbDwqw_ZCGhSjxoQ96KdNHUONHaDB612Scjg3YNQ8G562rPxIBis2P2wtgRmTtoxFrKMY8UPKHCZc5oc-54RTKgLsS8EI9WOlsK9C21Y-lU4YCuIKPYNsQmX8OJZbgKRRepOCqFg4LhNGIFeG1GG-ykQKa3BUDEj0lClvRJnGMo5MX0VlX9VgtxivKPfAl4g4DsUmc9arAU47_pe3RO3edb-82_5LpQNYbA077ah90b3agSVTnvH-dqGSPE_knsYvCd9PLfQLOAXpIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LToQwFL3RMTFuHJ9xdNQuTFyh0EILSzOKb534SNyRlrZxosGJQkxc-Ql-o19iCww-NibKjpIS2t7HaTk9BdgwSRIrIYUjAkEcH7vciTQOHU2J9CUPeZiWbIszenDtH90EN1928Vf6EM2Cm_WMMl5bBx9Kvf0pGnpv8KmZ31kOpCkZhwmfGvhrYdFFIyAVmKvcXxRS4pi5njuSbXTx9vf639PSJ9b8iljLlBO3gY8-tmKa3G0VudhKX37oOP6nNTMwXeNRtFMZ0CyMqWwO2jU2RbXnP83D5WFzXm6O-rcm96FexXJHgwzt8-H769tVYWI2OlW5XXbUluuFDCRGuwW_N09jk0GtFaDL50FeMjgX4Dreu-odOPWBDE5qf9c6EnOuXJXK1OQwwiLKPS59ziImBBGUyhAzJTmhLNUaMx25rmZUeVEkiS9N_FiEVvaQqSVAyuq8KUl0Kj2fSyuPqyLqcaYricIObI7GIxlWuhtJpbCME9tXSdNXHeiOhiup_e8pIZ5Hsd03G3QAl_3-y1uSk_75RXO3_JdK6zDZ342Tk8Oz4xWYssUV6a8LrfyxUKsGvORirbTPD5HZ59E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+Phase+Control+in+Gap%E2%80%90Tuned+Metasurfaces+for+Dual%E2%80%90Function+Switching&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Liao%2C+Yi&rft.au=Chen%2C+Kaiji&rft.au=Su%2C+Xiaoqiang&rft.au=Xu%2C+Quan&rft.date=2024-10-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=18&rft.issue=10&rft_id=info:doi/10.1002%2Flpor.202400100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202400100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon