Independent Phase Control in Gap‐Tuned Metasurfaces for Dual‐Function Switching
Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable wavefronts under external stimuli. Among various active phase control mechanisms, a mechanical method based on gap tuning, termed as gap‐tuned...
Saved in:
Published in | Laser & photonics reviews Vol. 18; no. 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable wavefronts under external stimuli. Among various active phase control mechanisms, a mechanical method based on gap tuning, termed as gap‐tuned metasurface here, has shown promise in continuous phase adjustment. However, previous studies face limitations in independent and complete phase control at different gap distances, which is crucial in dual‐function switching applications. In this study, a novel type of gap‐tuned metasurfaces are proposed, which can overcome the above limitations through simultaneously manipulating the Pancharatnam–Berry phase and gap‐induced dynamic phase under circularly polarized incidences. Two exemplary gap‐tuned metasurfaces capable of orbital angular momentum (OAM) switching and focusing‐polarity switching are experimentally demonstrated. Furthermore, the special dynamic phase design also exhibits phase conjugate property similar to the Pancharatnam–Berry phase, making circular polarization handedness an alternative route for dual‐function switching. This method provides a straightforward and effective means for the development of active wavefront control devices.
A novel mechanical method for achieving dual‐function switching is proposed using gap‐tuned metasurfaces. The special design allows independent control over the reflection phases and wavefronts at two gap states through manipulating Pancharatnam–Berry phase and dynamic phase. Two metasurfaces capable of switching orbital angular momentum and focusing polarity are presented. This method offers a robust pathway to realize dynamic devices. |
---|---|
AbstractList | Abstract Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable wavefronts under external stimuli. Among various active phase control mechanisms, a mechanical method based on gap tuning, termed as gap‐tuned metasurface here, has shown promise in continuous phase adjustment. However, previous studies face limitations in independent and complete phase control at different gap distances, which is crucial in dual‐function switching applications. In this study, a novel type of gap‐tuned metasurfaces are proposed, which can overcome the above limitations through simultaneously manipulating the Pancharatnam–Berry phase and gap‐induced dynamic phase under circularly polarized incidences. Two exemplary gap‐tuned metasurfaces capable of orbital angular momentum (OAM) switching and focusing‐polarity switching are experimentally demonstrated. Furthermore, the special dynamic phase design also exhibits phase conjugate property similar to the Pancharatnam–Berry phase, making circular polarization handedness an alternative route for dual‐function switching. This method provides a straightforward and effective means for the development of active wavefront control devices. Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable wavefronts under external stimuli. Among various active phase control mechanisms, a mechanical method based on gap tuning, termed as gap‐tuned metasurface here, has shown promise in continuous phase adjustment. However, previous studies face limitations in independent and complete phase control at different gap distances, which is crucial in dual‐function switching applications. In this study, a novel type of gap‐tuned metasurfaces are proposed, which can overcome the above limitations through simultaneously manipulating the Pancharatnam–Berry phase and gap‐induced dynamic phase under circularly polarized incidences. Two exemplary gap‐tuned metasurfaces capable of orbital angular momentum (OAM) switching and focusing‐polarity switching are experimentally demonstrated. Furthermore, the special dynamic phase design also exhibits phase conjugate property similar to the Pancharatnam–Berry phase, making circular polarization handedness an alternative route for dual‐function switching. This method provides a straightforward and effective means for the development of active wavefront control devices. A novel mechanical method for achieving dual‐function switching is proposed using gap‐tuned metasurfaces. The special design allows independent control over the reflection phases and wavefronts at two gap states through manipulating Pancharatnam–Berry phase and dynamic phase. Two metasurfaces capable of switching orbital angular momentum and focusing polarity are presented. This method offers a robust pathway to realize dynamic devices. Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable wavefronts under external stimuli. Among various active phase control mechanisms, a mechanical method based on gap tuning, termed as gap‐tuned metasurface here, has shown promise in continuous phase adjustment. However, previous studies face limitations in independent and complete phase control at different gap distances, which is crucial in dual‐function switching applications. In this study, a novel type of gap‐tuned metasurfaces are proposed, which can overcome the above limitations through simultaneously manipulating the Pancharatnam–Berry phase and gap‐induced dynamic phase under circularly polarized incidences. Two exemplary gap‐tuned metasurfaces capable of orbital angular momentum (OAM) switching and focusing‐polarity switching are experimentally demonstrated. Furthermore, the special dynamic phase design also exhibits phase conjugate property similar to the Pancharatnam–Berry phase, making circular polarization handedness an alternative route for dual‐function switching. This method provides a straightforward and effective means for the development of active wavefront control devices. |
Author | Liao, Yi Zhang, Xueqian Niu, Li Gu, Jianqiang Su, Xiaoqiang Wu, Tong Zhang, Huifang Chen, Kaiji Xu, Quan |
Author_xml | – sequence: 1 givenname: Yi surname: Liao fullname: Liao, Yi organization: Tianjin University – sequence: 2 givenname: Kaiji surname: Chen fullname: Chen, Kaiji organization: Nanyang Technological University – sequence: 3 givenname: Xiaoqiang surname: Su fullname: Su, Xiaoqiang email: xiaoqiang.su@sxdtdx.edu.cn organization: Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials – sequence: 4 givenname: Quan surname: Xu fullname: Xu, Quan organization: Tianjin University – sequence: 5 givenname: Li surname: Niu fullname: Niu, Li organization: Tianjin University – sequence: 6 givenname: Tong surname: Wu fullname: Wu, Tong organization: Tianjin University – sequence: 7 givenname: Huifang surname: Zhang fullname: Zhang, Huifang organization: University of Electronic Science and Technology of China – sequence: 8 givenname: Jianqiang surname: Gu fullname: Gu, Jianqiang email: gjq@tju.edu.cn organization: Tianjin University – sequence: 9 givenname: Xueqian orcidid: 0000-0001-7712-3365 surname: Zhang fullname: Zhang, Xueqian email: alearn1988@tju.edu.cn organization: Tianjin University |
BookMark | eNqFkM9OAjEQxhuDiYBePTfxDE67S7s9GhQkwUAEz01pu7Jkbdd2N4abj-Az-iQuweDROcyfzPfNJL8e6jjvLELXBIYEgN6WlQ9DCjQFaOcz1CUZSwZZJkTn1GdwgXox7gBGbbAuWs2csZVtk6vxcquixWPv6uBLXDg8VdX359e6cdbgJ1ur2IRcaRtx7gO-b1TZbieN03XhHV59FLXeFu71Ep3nqoz26rf20cvkYT1-HMwX09n4bj7QlFMYGKqUBauNFgISLpgiyqSKC77ZJBvGTEa5NSphXOc55bkAyDmzRAiTpAYg6aOb490q-PfGxlrufBNc-1ImhDAKbJSOWtXwqNLBxxhsLqtQvKmwlwTkAZw8gJMncK1BHA0fRWn3_6jlfLl4_vP-AFtEdkE |
Cites_doi | 10.1038/s41377-023-01177-4 10.1515/nanoph-2020-0112 10.1364/AOP.11.000380 10.1021/acsnano.9b09277 10.1103/PhysRevLett.118.113901 10.1038/s41565-020-00787-y 10.1117/1.AP.4.2.024001 10.1021/acs.nanolett.1c02372 10.1002/adfm.202300639 10.3788/PI.2023.R02 10.1021/acsami.1c10881 10.1002/lpor.202300720 10.1126/sciadv.adi7565 10.1038/s41377-023-01228-w 10.1021/acsphotonics.9b01047 10.1002/adom.202101223 10.1038/s41467-022-29798-0 10.1038/s41467-021-22462-z 10.1126/science.aax5961 10.1021/acs.nanolett.7b00807 10.1038/s41565-020-0768-4 10.1016/j.carbon.2023.03.062 10.1038/s41377-022-01046-6 10.1364/OPTICA.6.001190 10.1126/science.aam8100 10.1038/s41377-021-00497-7 10.1126/sciadv.abn7905 10.1038/s41467-018-03155-6 10.1038/s41467-021-23814-5 10.1021/acsphotonics.6b00564 10.1038/s41377-019-0209-z 10.1002/advs.202100885 10.1126/science.aat3100 10.1002/adfm.201704295 10.1038/s41377-022-00879-5 10.1002/adom.202000570 10.1117/1.AP.3.3.036003 10.1002/lpor.201600144 10.34133/research.0274 10.1002/adma.201204850 10.1021/acsphotonics.0c01599 10.1038/s41467-019-11030-1 10.1002/adfm.202111000 10.1002/adom.201900175 10.1002/adfm.202110022 10.1021/acs.nanolett.0c04775 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202400100 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202400100 LPOR202400100 |
Genre | article |
GrantInformation_xml | – fundername: Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province funderid: 20230037 – fundername: National Natural Science Foundation of China funderid: 62075158; 62375203; 62335011; 62027820 – fundername: Basic Research Program of Shanxi Province funderid: 202203021211328 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c2720-d2aae0ecdc9903796a1ad4a797bb3b66d827eda367cff27f900f76e199d34d003 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Mon Oct 14 13:25:25 EDT 2024 Wed Oct 16 15:30:44 EDT 2024 Mon Oct 14 09:52:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2720-d2aae0ecdc9903796a1ad4a797bb3b66d827eda367cff27f900f76e199d34d003 |
ORCID | 0000-0001-7712-3365 |
PQID | 3116206545 |
PQPubID | 1016358 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3116206545 crossref_primary_10_1002_lpor_202400100 wiley_primary_10_1002_lpor_202400100_LPOR202400100 |
PublicationCentury | 2000 |
PublicationDate | October 2024 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2019; 7 2021; 8 2017; 7 2021; 21 2013; 25 2019; 6 2023; 33 2021; 3 2023; 12 2019; 11 2023; 6 2017; 27 2019; 10 2023; 9 2016; 10 2020; 15 2020; 14 2023; 208 2023; 2 2019; 364 2024; 18 2017; 358 2019; 365 2017; 118 2020; 8 2021; 13 2021; 16 2018; 9 2021; 10 2021; 12 2016; 3 2022; 4 2017; 17 2022; 8 2020; 9 2022; 13 2022; 10 2022; 32 2022; 11 e_1_2_9_31_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 Xu Q. (e_1_2_9_39_1) 2022; 4 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Chen K. (e_1_2_9_46_1) 2021; 13 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Kamali S. M. (e_1_2_9_21_1) 2017; 7 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 10 start-page: 2986 year: 2019 publication-title: Nat. Commun. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 1 year: 2021 publication-title: IEEE Photonics J – volume: 21 start-page: 7699 year: 2021 publication-title: Nano Lett. – volume: 8 year: 2020 publication-title: Adv Opt Mater – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 4567 year: 2013 publication-title: Adv. Mater. – volume: 12 start-page: 3614 year: 2021 publication-title: Nat. Commun. – volume: 11 start-page: 380 year: 2019 publication-title: Adv. Opt. Photon. – volume: 12 start-page: 136 year: 2023 publication-title: Light: Sci. Appl. – volume: 4 year: 2022 publication-title: Adv. Photon. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 10 start-page: 63 year: 2021 publication-title: Light: Sci. Appl. – volume: 9 start-page: 812 year: 2018 publication-title: Nat. Commun. – volume: 6 start-page: 1190 year: 2019 publication-title: Optica – volume: 11 start-page: 191 year: 2022 publication-title: Light: Sci. Appl. – volume: 208 start-page: 345 year: 2023 publication-title: Carbon – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 364 year: 2019 publication-title: Science – volume: 365 start-page: 257 year: 2019 publication-title: Science – volume: 9 start-page: 3393 year: 2020 publication-title: Nanophoton – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 0274 year: 2023 publication-title: Research – volume: 3 year: 2021 publication-title: Adv. Photon. – volume: 6 start-page: 2933 year: 2019 publication-title: ACS Photonics – volume: 16 start-page: 69 year: 2021 publication-title: Nat. Nanotechnol. – volume: 18 year: 2024 publication-title: Laser Photo. Rev. – volume: 21 start-page: 2081 year: 2021 publication-title: Nano Lett. – volume: 17 start-page: 3641 year: 2017 publication-title: Nano Lett. – volume: 10 start-page: 1002 year: 2016 publication-title: Laser & Photon. Rev. – volume: 3 start-page: 2022 year: 2016 publication-title: ACS Photonics – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 27 year: 2017 publication-title: Adv. Func. Mater. – volume: 8 start-page: 97 year: 2019 publication-title: Light: Sci. Appl. – volume: 12 start-page: 14 year: 2023 publication-title: Light: Sci. Appl. – volume: 12 start-page: 2230 year: 2021 publication-title: Nat. Commun. – volume: 7 year: 2017 publication-title: Phys. Rev. X – volume: 8 start-page: 567 year: 2021 publication-title: ACS Photonics – volume: 12 start-page: 191 year: 2023 publication-title: Light: Sci. Appl. – volume: 358 year: 2017 publication-title: Science – volume: 118 year: 2017 publication-title: Phys. Rev. Lett. – volume: 2 start-page: R02 year: 2023 publication-title: Photon. Insights – volume: 14 start-page: 1166 year: 2020 publication-title: ACS Nano – volume: 15 start-page: 948 year: 2020 publication-title: Nat. Nanotechnol. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 13 start-page: 2071 year: 2022 publication-title: Nat. Commun. – ident: e_1_2_9_25_1 doi: 10.1038/s41377-023-01177-4 – ident: e_1_2_9_6_1 doi: 10.1515/nanoph-2020-0112 – ident: e_1_2_9_1_1 doi: 10.1364/AOP.11.000380 – ident: e_1_2_9_31_1 doi: 10.1021/acsnano.9b09277 – ident: e_1_2_9_15_1 doi: 10.1103/PhysRevLett.118.113901 – ident: e_1_2_9_33_1 doi: 10.1038/s41565-020-00787-y – ident: e_1_2_9_23_1 doi: 10.1117/1.AP.4.2.024001 – ident: e_1_2_9_11_1 doi: 10.1021/acs.nanolett.1c02372 – ident: e_1_2_9_12_1 doi: 10.1002/adfm.202300639 – ident: e_1_2_9_9_1 doi: 10.3788/PI.2023.R02 – ident: e_1_2_9_20_1 doi: 10.1021/acsami.1c10881 – ident: e_1_2_9_44_1 doi: 10.1002/lpor.202300720 – ident: e_1_2_9_26_1 doi: 10.1126/sciadv.adi7565 – ident: e_1_2_9_32_1 doi: 10.1038/s41377-023-01228-w – ident: e_1_2_9_3_1 doi: 10.1021/acsphotonics.9b01047 – ident: e_1_2_9_7_1 doi: 10.1002/adom.202101223 – ident: e_1_2_9_47_1 doi: 10.1038/s41467-022-29798-0 – ident: e_1_2_9_17_1 doi: 10.1038/s41467-021-22462-z – ident: e_1_2_9_45_1 doi: 10.1126/science.aax5961 – ident: e_1_2_9_36_1 doi: 10.1021/acs.nanolett.7b00807 – ident: e_1_2_9_19_1 doi: 10.1038/s41565-020-0768-4 – ident: e_1_2_9_30_1 doi: 10.1016/j.carbon.2023.03.062 – ident: e_1_2_9_43_1 doi: 10.1038/s41377-022-01046-6 – ident: e_1_2_9_8_1 doi: 10.1364/OPTICA.6.001190 – ident: e_1_2_9_4_1 doi: 10.1126/science.aam8100 – volume: 4 year: 2022 ident: e_1_2_9_39_1 publication-title: Adv. Photon. contributor: fullname: Xu Q. – ident: e_1_2_9_16_1 doi: 10.1038/s41377-021-00497-7 – ident: e_1_2_9_40_1 doi: 10.1126/sciadv.abn7905 – ident: e_1_2_9_38_1 doi: 10.1038/s41467-018-03155-6 – ident: e_1_2_9_28_1 doi: 10.1038/s41467-021-23814-5 – ident: e_1_2_9_13_1 doi: 10.1021/acsphotonics.6b00564 – ident: e_1_2_9_34_1 doi: 10.1038/s41377-019-0209-z – ident: e_1_2_9_42_1 doi: 10.1002/advs.202100885 – ident: e_1_2_9_22_1 doi: 10.1126/science.aat3100 – ident: e_1_2_9_14_1 doi: 10.1002/adfm.201704295 – ident: e_1_2_9_29_1 doi: 10.1038/s41377-022-00879-5 – ident: e_1_2_9_35_1 doi: 10.1002/adom.202000570 – ident: e_1_2_9_41_1 doi: 10.1117/1.AP.3.3.036003 – ident: e_1_2_9_37_1 doi: 10.1002/lpor.201600144 – volume: 7 year: 2017 ident: e_1_2_9_21_1 publication-title: Phys. Rev. X contributor: fullname: Kamali S. M. – ident: e_1_2_9_48_1 doi: 10.34133/research.0274 – volume: 13 start-page: 1 year: 2021 ident: e_1_2_9_46_1 publication-title: IEEE Photonics J contributor: fullname: Chen K. – ident: e_1_2_9_2_1 doi: 10.1002/adma.201204850 – ident: e_1_2_9_27_1 doi: 10.1021/acsphotonics.0c01599 – ident: e_1_2_9_18_1 doi: 10.1038/s41467-019-11030-1 – ident: e_1_2_9_10_1 doi: 10.1002/adfm.202111000 – ident: e_1_2_9_24_1 doi: 10.1002/adom.201900175 – ident: e_1_2_9_49_1 doi: 10.1002/adfm.202110022 – ident: e_1_2_9_5_1 doi: 10.1021/acs.nanolett.0c04775 |
SSID | ssj0055556 |
Score | 2.4557807 |
Snippet | Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve controllable... Abstract Seeking new ways to actively control the phase using metasurfaces has gained significant attention in recent years, which is the key to achieve... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Angular momentum Circular polarization Control equipment Controllability dual‐function switching dynamic phase gap‐tuned metasurface independent phase control Metasurfaces Pancharatnam–Berry phase Phase control Switching (polarity) Wave front control Wave fronts |
Title | Independent Phase Control in Gap‐Tuned Metasurfaces for Dual‐Function Switching |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202400100 https://www.proquest.com/docview/3116206545 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT1woqygU5AMSp7SJndjJEbWUgliqLlJvkR3boqIKFU2ExIlP4Bv5EuxsLVyQIKcscuSMPTPPzvMzAGc6SSLJBbe4x7HlIptZgUK-pQgWrmA-86OMbXFP-hP3ZupN11bx5_oQ1YSb8YwsXhsHZ3zZXomGzjU-1eM7w4HUd3QQdjA1nK7usNKP8vSRLS_yCbb0UM8uVRtt1P5e_HtWWkHNdcCaZZxeHbCyrjnR5KmVJrwVvf2QcfzPx2yDrQKOwou8_-yADRnvgnoBTWHh-Ms9MLqutstN4OBRpz7YyUnucBbDK7b4fP8YpzpkwzuZmFlHZaheUCNi2E3ZXD_t6QRqOgEcvc6SjMC5Dya9y3GnbxX7MViR-VtrCcSYtGUkIp3CMA0Ic5hwGQ0o55gTInxEpWCY0EgpRFVg24oS6QSBwK7Q4eMA1OLnWB4CKI3MmxRYRcJxmTDquDIgDqMqVyhsgPOyPcJFLrsR5gLLKDS2CitbNUCzbK6wcL9liB2HILNs1msAlNn9l7eEt4OHYXV19JdCx2DTnOdEvyaoJS-pPNGAJeGnWaf8Auhu5Qo |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOcCFsoqy-oDEKSWxEyc5Ikop0Jaqi8QtsmNbIFBBkAqJE5_AN_Il2NlKuSBBbnHkKLZnPM_Om2eAQx0kseSCW9zjxHKxzaxQ4cBSlAhXsIAFccq26NLWyL288Qo2ocmFyfQhyg034xnpfG0c3GxIH09VQx80QNULPEOC1CXzsKB9npjTGxr9UkHK01eaYBRQYunFnl3oNtr4eLb-bFyags3vkDWNOc0q8OJrM6rJfX2S8Hr89kPI8V_NWYHlHJGik8yEVmFOjtegmqNTlPv-yzoMLsoTcxPUu9XRD51mPHd0N0bn7Onz_WM40bM26sjEbDwqw_ZCGhSjxoQ96KdNHUONHaDB612Scjg3YNQ8G562rPxIBis2P2wtgRmTtoxFrKMY8UPKHCZc5oc-54RTKgLsS8EI9WOlsK9C21Y-lU4YCuIKPYNsQmX8OJZbgKRRepOCqFg4LhNGIFeG1GG-ykQKa3BUDEj0lClvRJnGMo5MX0VlX9VgtxivKPfAl4g4DsUmc9arAU47_pe3RO3edb-82_5LpQNYbA077ah90b3agSVTnvH-dqGSPE_knsYvCd9PLfQLOAXpIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LToQwFL3RMTFuHJ9xdNQuTFyh0EILSzOKb534SNyRlrZxosGJQkxc-Ql-o19iCww-NibKjpIS2t7HaTk9BdgwSRIrIYUjAkEcH7vciTQOHU2J9CUPeZiWbIszenDtH90EN1928Vf6EM2Cm_WMMl5bBx9Kvf0pGnpv8KmZ31kOpCkZhwmfGvhrYdFFIyAVmKvcXxRS4pi5njuSbXTx9vf639PSJ9b8iljLlBO3gY8-tmKa3G0VudhKX37oOP6nNTMwXeNRtFMZ0CyMqWwO2jU2RbXnP83D5WFzXm6O-rcm96FexXJHgwzt8-H769tVYWI2OlW5XXbUluuFDCRGuwW_N09jk0GtFaDL50FeMjgX4Dreu-odOPWBDE5qf9c6EnOuXJXK1OQwwiLKPS59ziImBBGUyhAzJTmhLNUaMx25rmZUeVEkiS9N_FiEVvaQqSVAyuq8KUl0Kj2fSyuPqyLqcaYricIObI7GIxlWuhtJpbCME9tXSdNXHeiOhiup_e8pIZ5Hsd03G3QAl_3-y1uSk_75RXO3_JdK6zDZ342Tk8Oz4xWYssUV6a8LrfyxUKsGvORirbTPD5HZ59E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+Phase+Control+in+Gap%E2%80%90Tuned+Metasurfaces+for+Dual%E2%80%90Function+Switching&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Liao%2C+Yi&rft.au=Chen%2C+Kaiji&rft.au=Su%2C+Xiaoqiang&rft.au=Xu%2C+Quan&rft.date=2024-10-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=18&rft.issue=10&rft_id=info:doi/10.1002%2Flpor.202400100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202400100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |