Numerical simulations and optimization of impinging jet configuration

Purpose Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate the effect of protrusions on the heat transfer by placing semi-circular protrusions on the concave surface at se...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of numerical methods for heat & fluid flow Vol. 31; no. 1; pp. 1 - 25
Main Authors Singh, Alankrita, Chakravarthy, Balaji, Prasad, BVSSS
Format Journal Article
LanguageEnglish
Published Bradford Emerald Group Publishing Limited 12.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate the effect of protrusions on the heat transfer by placing semi-circular protrusions on the concave surface at several positions. After identifying appropriate locations where the heat transfer is a maximum, multiple protrusions are placed at desired locations on the plate. The gap ratio, curvature ratio (d/D) and the dimensions of the plate are varied so as to obtain heat transfer data. The curvature ratio is varied first, keeping the concave diameter (D) fixed followed by a fixed slot width (d). A surrogate model based on an artificial neural network is developed to determine optimum locations of the protrusions that maximize the heat transfer from the concave surface. Design/methodology/approach The scope and objectives of the present study are two-dimensional numerical simulations of the problem by considering all the geometrical parameters (H/d, d p , Re, θ ) affecting heat transfer characteristics with the help of networking tool and numerical simulation. Development of a surrogate forward model with artificial neural networks (ANNs) with a view to explore the full parametric space. To quantitatively ascertain if protrusions hurt or help heat transfer for an impinging jet on a concave surface. Determination of the location of protrusions where higher heat transfer could be achieved by using exhaustive search with the surrogate model to replace the time consuming forward model. Findings A single protrusion has nearly no effect on the heat transfer. For a fixed diameter of concave surface, a smaller jet possesses high turbulence kinetic energy with greater heat transfer. ANN is a powerful tool to not only predict impingement heat transfer characteristics by considering multiple parameters but also to determine the optimum configuration from many thousands of candidate solutions. A maximum increase of 8 per cent in the heat transfer is obtained by the best configuration constituting of multiple protrusions, with respect to the baseline smooth configuration. Even this can be considered as marginal and so it can be concluded that first cut results for heat transfer for an impinging jet on a concave surface with protrusions can be obtained by geometrically modeling a much simpler plain concave surface without any significant loss of accuracy. Originality/value The heat transfer during impingement cooling depends on various geometrical parameters but, not all the pertinent parameters have been varied comprehensively in previous studies. It is known that a rough surface may improve or degrade the amount of heat transfer depending on their geometrical dimensions of the target and the rough geometry and the flow conditions. Furthermore, to the best of authors’ knowledge, scarce studies are available with inclusion of protrusions over a concave surface. The present study is devoted to development of a surrogate forward model with ANNs with a view to explore the full parametric space.
AbstractList Purpose Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate the effect of protrusions on the heat transfer by placing semi-circular protrusions on the concave surface at several positions. After identifying appropriate locations where the heat transfer is a maximum, multiple protrusions are placed at desired locations on the plate. The gap ratio, curvature ratio (d/D) and the dimensions of the plate are varied so as to obtain heat transfer data. The curvature ratio is varied first, keeping the concave diameter (D) fixed followed by a fixed slot width (d). A surrogate model based on an artificial neural network is developed to determine optimum locations of the protrusions that maximize the heat transfer from the concave surface. Design/methodology/approach The scope and objectives of the present study are two-dimensional numerical simulations of the problem by considering all the geometrical parameters (H/d, d p , Re, θ ) affecting heat transfer characteristics with the help of networking tool and numerical simulation. Development of a surrogate forward model with artificial neural networks (ANNs) with a view to explore the full parametric space. To quantitatively ascertain if protrusions hurt or help heat transfer for an impinging jet on a concave surface. Determination of the location of protrusions where higher heat transfer could be achieved by using exhaustive search with the surrogate model to replace the time consuming forward model. Findings A single protrusion has nearly no effect on the heat transfer. For a fixed diameter of concave surface, a smaller jet possesses high turbulence kinetic energy with greater heat transfer. ANN is a powerful tool to not only predict impingement heat transfer characteristics by considering multiple parameters but also to determine the optimum configuration from many thousands of candidate solutions. A maximum increase of 8 per cent in the heat transfer is obtained by the best configuration constituting of multiple protrusions, with respect to the baseline smooth configuration. Even this can be considered as marginal and so it can be concluded that first cut results for heat transfer for an impinging jet on a concave surface with protrusions can be obtained by geometrically modeling a much simpler plain concave surface without any significant loss of accuracy. Originality/value The heat transfer during impingement cooling depends on various geometrical parameters but, not all the pertinent parameters have been varied comprehensively in previous studies. It is known that a rough surface may improve or degrade the amount of heat transfer depending on their geometrical dimensions of the target and the rough geometry and the flow conditions. Furthermore, to the best of authors’ knowledge, scarce studies are available with inclusion of protrusions over a concave surface. The present study is devoted to development of a surrogate forward model with ANNs with a view to explore the full parametric space.
PurposeNumerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate the effect of protrusions on the heat transfer by placing semi-circular protrusions on the concave surface at several positions. After identifying appropriate locations where the heat transfer is a maximum, multiple protrusions are placed at desired locations on the plate. The gap ratio, curvature ratio (d/D) and the dimensions of the plate are varied so as to obtain heat transfer data. The curvature ratio is varied first, keeping the concave diameter (D) fixed followed by a fixed slot width (d). A surrogate model based on an artificial neural network is developed to determine optimum locations of the protrusions that maximize the heat transfer from the concave surface.Design/methodology/approachThe scope and objectives of the present study are two-dimensional numerical simulations of the problem by considering all the geometrical parameters (H/d, dp, Re, θ) affecting heat transfer characteristics with the help of networking tool and numerical simulation. Development of a surrogate forward model with artificial neural networks (ANNs) with a view to explore the full parametric space. To quantitatively ascertain if protrusions hurt or help heat transfer for an impinging jet on a concave surface. Determination of the location of protrusions where higher heat transfer could be achieved by using exhaustive search with the surrogate model to replace the time consuming forward model.FindingsA single protrusion has nearly no effect on the heat transfer. For a fixed diameter of concave surface, a smaller jet possesses high turbulence kinetic energy with greater heat transfer. ANN is a powerful tool to not only predict impingement heat transfer characteristics by considering multiple parameters but also to determine the optimum configuration from many thousands of candidate solutions. A maximum increase of 8 per cent in the heat transfer is obtained by the best configuration constituting of multiple protrusions, with respect to the baseline smooth configuration. Even this can be considered as marginal and so it can be concluded that first cut results for heat transfer for an impinging jet on a concave surface with protrusions can be obtained by geometrically modeling a much simpler plain concave surface without any significant loss of accuracy.Originality/valueThe heat transfer during impingement cooling depends on various geometrical parameters but, not all the pertinent parameters have been varied comprehensively in previous studies. It is known that a rough surface may improve or degrade the amount of heat transfer depending on their geometrical dimensions of the target and the rough geometry and the flow conditions. Furthermore, to the best of authors’ knowledge, scarce studies are available with inclusion of protrusions over a concave surface. The present study is devoted to development of a surrogate forward model with ANNs with a view to explore the full parametric space.
Author Singh, Alankrita
Chakravarthy, Balaji
Prasad, BVSSS
Author_xml – sequence: 1
  givenname: Alankrita
  surname: Singh
  fullname: Singh, Alankrita
– sequence: 2
  givenname: Balaji
  surname: Chakravarthy
  fullname: Chakravarthy, Balaji
– sequence: 3
  givenname: BVSSS
  surname: Prasad
  fullname: Prasad, BVSSS
BookMark eNotkE1LAzEQhoNUsFbvHgOeo5Nk83WU0lqh6EXPIbtNSkp3sya7B_31blthYGDm_YDnFs261HmEHig8UQr6ebNeE6CEAQMCIPgVmlMlNJFCixmag5GUCMHNDbot5QCTRFZyjlbvY-tzbNwRl9iORzfE1BXsuh1O_RDb-Hu-4BRwbPvY7afBBz_gJnUh7sd8ft-h6-COxd__7wX6Wq8-lxuy_Xh9W75sScMUHUiQRinBFa0CZdrU4ILeVSqoxlEBnDpjal8pVfmd4lB5qQx3WommZrWvaeAL9HjJ7XP6Hn0Z7CGNuZsqLZt8TBo95SwQXFRNTqVkH2yfY-vyj6VgT7DsBMsCtSdY9gSL_wGVnV55
CitedBy_id crossref_primary_10_1007_s12046_023_02347_1
crossref_primary_10_1016_j_applthermaleng_2023_120757
crossref_primary_10_1080_01457632_2023_2234767
crossref_primary_10_1016_j_applthermaleng_2022_119307
crossref_primary_10_1108_HFF_02_2023_0080
crossref_primary_10_3390_jmmp7060212
crossref_primary_10_3390_reactions5020014
crossref_primary_10_1108_HFF_03_2023_0157
Cites_doi 10.1016/j.applthermaleng.2016.04.070
10.1016/j.ijheatmasstransfer.2015.10.022
10.1115/1.2911214
10.1080/10407790902724602
10.1016/0017-9310(92)90320-R
10.1108/HFF-02-2015-0081
10.1115/1.1459729
10.1002/fld.1492
10.2514/3.51113
10.1007/s12206-008-1211-1
10.1016/j.ijheatmasstransfer.2006.03.039
10.1016/S0017-9310(98)00313-5
10.1108/HFF-05-2019-0393
10.1016/S0017-9310(02)00270-3
10.1080/08916150590953397
10.1016/j.ijheatmasstransfer.2013.07.014
10.1016/j.ijthermalsci.2009.07.017
10.1080/10407790701227328
10.1108/HFF-03-2016-0120
10.1016/j.ijheatmasstransfer.2017.11.054
10.1016/j.energy.2009.07.011
10.1108/HFF-05-2018-0194
10.1016/j.ijheatmasstransfer.2004.12.048
10.1108/IJICC-May-2012-0025
10.1016/j.applthermaleng.2017.07.190
10.1016/S0017-9310(00)00064-8
10.1108/HFF-12-2018-0792
ContentType Journal Article
Copyright Emerald Publishing Limited 2020
Copyright_xml – notice: Emerald Publishing Limited 2020
DBID AAYXX
CITATION
0U~
1-H
7SC
7TB
7U5
7WY
7WZ
7XB
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
F~G
GNUQQ
H8D
H96
HCIFZ
JQ2
K6~
KR7
L.-
L.0
L.G
L6V
L7M
L~C
L~D
M0C
M2P
M7S
P5Z
P62
PCBAR
PQBIZ
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
S0W
DOI 10.1108/HFF-01-2020-0053
DatabaseName CrossRef
Global News & ABI/Inform Professional
Trade PRO
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ABI-INFORM Complete
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest)
ProQuest Science Journals
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
One Business (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Trade PRO
ABI/INFORM Complete
Global News & ABI/Inform Professional
Natural Science Collection
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
Aerospace Database
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
DatabaseTitleList CrossRef
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1758-6585
EndPage 25
ExternalDocumentID 10_1108_HFF_01_2020_0053
GroupedDBID 0R~
29J
4.4
490
5GY
5VS
70U
7WY
8FE
8FG
8FH
8R4
8R5
9E0
AAGBP
AAMCF
AATHL
AAUDR
AAYXX
ABIJV
ABJCF
ABKQV
ABSDC
ABYQI
ACGFS
ACGOD
ACIWK
ACZLT
ADOMW
AEBZA
AENEX
AFKRA
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
AODMV
ARAPS
ASMFL
AUCOK
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
CS3
DU5
DWQXO
EBS
ECCUG
FNNZZ
GEI
GEL
GNUQQ
GQ.
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HZ~
IJT
IPNFZ
J1Y
JI-
JL0
K6~
KBGRL
L6V
LK5
M0C
M2P
M42
M7R
M7S
O9-
P2P
P62
PCBAR
PQBIZ
PQQKQ
PROAC
PTHSS
Q2X
RIG
S0W
SBBZN
~02
0U~
1-H
7SC
7TB
7U5
7XB
8FD
F1W
FR3
H8D
H96
JQ2
KR7
L.-
L.0
L.G
L7M
L~C
L~D
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c271t-f697753714f1289b0af8d47f7ca15031a99be4774ed7304e6793a875cb2beb1f3
IEDL.DBID GEI
ISSN 0961-5539
IngestDate Mon Nov 11 05:00:58 EST 2024
Thu Sep 12 18:47:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c271t-f697753714f1289b0af8d47f7ca15031a99be4774ed7304e6793a875cb2beb1f3
PQID 2477269850
PQPubID 25764
PageCount 25
ParticipantIDs proquest_journals_2477269850
crossref_primary_10_1108_HFF_01_2020_0053
PublicationCentury 2000
PublicationDate 2021-01-12
PublicationDateYYYYMMDD 2021-01-12
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-12
  day: 12
PublicationDecade 2020
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle International journal of numerical methods for heat & fluid flow
PublicationYear 2021
Publisher Emerald Group Publishing Limited
Publisher_xml – name: Emerald Group Publishing Limited
References (key2021043009374314900_ref005) 2019; 30
(key2021043009374314900_ref025) 2010; 49
(key2021043009374314900_ref010) 2006; 49
(key2021043009374314900_ref008) 2000; 43
(key2021043009374314900_ref027) 2007; 55
(key2021043009374314900_ref003) 1999; 42
(key2021043009374314900_ref022) 2016; 93
(key2021043009374314900_ref026) 2009; 23
(key2021043009374314900_ref019) 2010
(key2021043009374314900_ref020) 2019; 29
(key2021043009374314900_ref001) 1982; 20
(key2021043009374314900_ref028) 2005; 18
(key2021043009374314900_ref002) 2013; 66
(key2021043009374314900_ref007) 1992; 35
(key2021043009374314900_ref030) 2002; 124
(key2021043009374314900_ref004) 2016; 103
(key2021043009374314900_ref029) 2010; 132
(key2021043009374314900_ref009) 2007; 51
(key2021043009374314900_ref012) 2010; 38
(key2021043009374314900_ref015) 2019; 29
(key2021043009374314900_ref023) 2011; 31
(key2021043009374314900_ref017) 2013; 6
(key2021043009374314900_ref018) 2003; 46
(key2021043009374314900_ref021) 2006; 26
(key2021043009374314900_ref032) 2017; 127
(key2021043009374314900_ref031) 2005; 48
(key2021043009374314900_ref006) 1991; 113
(key2021043009374314900_ref013) 2009; 34
(key2021043009374314900_ref014) 2017; 27
(key2021043009374314900_ref033) 2018; 118
(key2021043009374314900_ref016) 2016; 26
(key2021043009374314900_ref011) 2007; 44
(key2021043009374314900_ref024) 2009; 55
References_xml – volume: 132
  year: 2010
  ident: key2021043009374314900_ref029
  article-title: Experimental and numerical investigation of heat transfer characteristics of inline and staggered arrays of impinging jets
  publication-title: ASME J. Heat Transfer
– volume: 103
  start-page: 481
  year: 2016
  ident: key2021043009374314900_ref004
  article-title: Numerical analysis of steady state heat transfer for jet impingement on patterend surfaces
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2016.04.070
– volume: 93
  start-page: 683
  year: 2016
  ident: key2021043009374314900_ref022
  article-title: Experimental and numerical investigation of impingement heat transfer on the surface with micro W-shaped ribs
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.10.022
– volume: 44
  start-page: 667
  issue: 6
  year: 2007
  ident: key2021043009374314900_ref011
  article-title: Computational flow and heat transfer of a row of circular jet impinging on a concave surface
  publication-title: Heat and Mass Transfer
– volume: 113
  start-page: 858
  issue: 4
  year: 1991
  ident: key2021043009374314900_ref006
  article-title: Surface curvature effect on slot-air-jet impingement cooling flow and heat transfer process
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.2911214
– volume: 55
  start-page: 273
  issue: 4
  year: 2009
  ident: key2021043009374314900_ref024
  article-title: Evaluation of turbulence models in the prediction of heat transfer due to slot jet impingement on plane and concave surfaces
  publication-title: Num. Heat Transf. Part B: Fundamentals
  doi: 10.1080/10407790902724602
– volume: 35
  start-page: 3009
  issue: 11
  year: 1992
  ident: key2021043009374314900_ref007
  article-title: Impingement cooling flow structure and heat transfer along triangular rib roughened walls
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(92)90320-R
– volume: 26
  start-page: 2175
  issue: 7
  year: 2016
  ident: key2021043009374314900_ref016
  article-title: A numerical investigation of dimple effects on internal heat transfer enhancement of a double wall cooling structure with jet impingement
  publication-title: International Journal of Numerical Methods for Heat and Fluid Flow
  doi: 10.1108/HFF-02-2015-0081
– volume: 124
  start-page: 762
  issue: 4
  year: 2002
  ident: key2021043009374314900_ref030
  article-title: Experimental study of surface-mounted obstacle effects on heat transfer enhancement by using liquid crystal thermography
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.1459729
– volume: 55
  start-page: 965
  issue: 10
  year: 2007
  ident: key2021043009374314900_ref027
  article-title: Numerical simulation of two-dimensional laminar slot-jet impingement flows confined by a parallel wall
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.1492
– volume: 20
  start-page: 577
  issue: 5
  year: 1982
  ident: key2021043009374314900_ref001
  article-title: Navier-Stokes computations of turbulent compressible two-dimensional impinging jet flow fields
  publication-title: AIAA Journal
  doi: 10.2514/3.51113
– volume: 23
  start-page: 624
  issue: 3
  year: 2009
  ident: key2021043009374314900_ref026
  article-title: Measurement of the heat transfer coefficient in the dimpled channel; effects of dimple arrangement and channel height
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-008-1211-1
– volume: 49
  start-page: 4013
  issue: 21-22
  year: 2006
  ident: key2021043009374314900_ref010
  article-title: Shape optimization of three-dimensional channel roughened by angled ribs with RANS analysis of turbulent heat transfer
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.03.039
– volume: 38
  start-page: 491
  issue: 5
  year: 2010
  ident: key2021043009374314900_ref012
  article-title: Application of grooved fins to enhance forced convection to transverse flow
  publication-title: Num. Heat Transfer, Part A: Applications
– volume: 42
  start-page: 2101
  issue: 11
  year: 1999
  ident: key2021043009374314900_ref003
  article-title: Heat transfer characteristics of an axisymmetric jet impinging on the rib-roughened convex surface
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(98)00313-5
– volume: 31
  start-page: 1114
  issue: 13
  year: 2011
  ident: key2021043009374314900_ref023
  article-title: Shape optimization of a dimpled channel to enhance heat transfer using a weighted-average surrogate model
  publication-title: Heat Transfer Engineering
– volume: 30
  start-page: 724
  issue: 2
  year: 2019
  ident: key2021043009374314900_ref005
  article-title: Enhanced heat transfer in a labyrinth channels with ribs of different shape
  publication-title: International Journal of Numerical Methods for Heat and Fluid Flow
  doi: 10.1108/HFF-05-2019-0393
– volume: 46
  start-page: 251
  issue: 2
  year: 2003
  ident: key2021043009374314900_ref018
  article-title: Streamline upwind simulation of two-dimensional confined impinging slot jets
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(02)00270-3
– volume: 18
  start-page: 179
  issue: 3
  year: 2005
  ident: key2021043009374314900_ref028
  article-title: Experimental investigation of local heat transfer in a square duct with continuous and truncated ribs
  publication-title: Experimental Heat Transfer
  doi: 10.1080/08916150590953397
– volume: 66
  start-page: 177
  year: 2013
  ident: key2021043009374314900_ref002
  article-title: Heat transfer and flow structure in turbulent channel flow over protrusions
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.07.014
– volume: 49
  start-page: 428
  issue: 2
  year: 2010
  ident: key2021043009374314900_ref025
  article-title: Parametric study of turbulent slot jet impingement heat transfer from concave cylindrical surfaces
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2009.07.017
– volume: 51
  start-page: 565
  issue: 6
  year: 2007
  ident: key2021043009374314900_ref009
  article-title: Calculations of steady and pulsating impinging jets-an assessment of 13 widely used turbulence models
  publication-title: Num. Heat Transf. Part B
  doi: 10.1080/10407790701227328
– volume: 27
  start-page: 1571
  issue: 7
  year: 2017
  ident: key2021043009374314900_ref014
  article-title: Enhancement of heat transfer in a channel by roughened surfaces in rib-elements and turbulent flow manipulation
  publication-title: International Journal of Numerical Methods for Heat and Fluid Flow
  doi: 10.1108/HFF-03-2016-0120
– volume: 118
  start-page: 1205
  year: 2018
  ident: key2021043009374314900_ref033
  article-title: Effect of slot-jet position on the cooling performance of the hybrid trapezoid channel and impingement module
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.11.054
– volume: 34
  start-page: 1770
  issue: 11
  year: 2009
  ident: key2021043009374314900_ref013
  article-title: Detailed measurement of heat/mass transfer with continuous and multiple V-shaped ribs in rectangular channel
  publication-title: Energy
  doi: 10.1016/j.energy.2009.07.011
– volume: 29
  start-page: 790
  issue: 2
  year: 2019
  ident: key2021043009374314900_ref015
  article-title: Multi-objective optimization of the dimple/protrusion channel with pin fins for heat transfer enhancement
  publication-title: International Journal of Numerical Methods for Heat and Fluid Flow
  doi: 10.1108/HFF-05-2018-0194
– volume: 48
  start-page: 2420
  issue: 12
  year: 2005
  ident: key2021043009374314900_ref031
  article-title: Experimental study of impinging heat transfer along rib-roughened walls by using transient liquid crystal technique
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.12.048
– volume: 26
  start-page: 1310
  issue: 11/12
  year: 2006
  ident: key2021043009374314900_ref021
  article-title: Heat transfer enhancement of multiple impinging slot jets with symmetric exhaust part and confinement surface protrusions
  publication-title: Applied Thermal Engineering
– volume: 6
  start-page: 182
  issue: 2
  year: 2013
  ident: key2021043009374314900_ref017
  article-title: Identification of crack in a structural member using improved radial basis function (IRBF) neural networks
  publication-title: International Journal of Intelligent Computing and Cybernetics
  doi: 10.1108/IJICC-May-2012-0025
– volume: 127
  start-page: 473
  year: 2017
  ident: key2021043009374314900_ref032
  article-title: Experimental and numerical investigation of heat transfer in an array of impingement jets on a concave surface
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2017.07.190
– start-page: 101
  volume-title: ASME Proceedings Heat Transfer GT 2010-22270
  year: 2010
  ident: key2021043009374314900_ref019
  article-title: A numerical study of an impingement array inside a three dimensional turbine vane
– volume: 43
  start-page: 4405
  issue: 24
  year: 2000
  ident: key2021043009374314900_ref008
  article-title: Flow and impingement cooling heat transfer along triangular rib- roughened walls
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(00)00064-8
– volume: 29
  start-page: 2775
  issue: 8
  year: 2019
  ident: key2021043009374314900_ref020
  article-title: Heat transfer analysis on dimple geometries and arrangements in dimple jacketed heat exchanger
  publication-title: International Journal of Numerical Methods for Heat and Fluid Flow
  doi: 10.1108/HFF-12-2018-0792
SSID ssj0005646
Score 2.4050612
Snippet Purpose Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of...
PurposeNumerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 1
SubjectTerms Aerodynamics
Artificial neural networks
Asymmetry
Computational fluid dynamics
Computer simulation
Configurations
Cooling
Curvature
Diameters
Dimensions
Experiments
Friction
Gas turbines
Geometry
Heat transfer
Impingement
Jet impingement
Kinetic energy
Locations (working)
Mathematical models
Optimization
Parameters
Reynolds number
Simulation
Turbines
Turbulence
Turbulence models
Velocity
Viscosity
Vortices
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgLDAgPkWhIA8sDFYTx3HsCSHUUDF0olK3yI5tVERTIOn_55w4Kl2QoizZ7uJ37_m-ELqXykQJzTjJqKMEGLEgGiIrcU6WTlujWNlWW8z4dM5eF-kiXLjVoayyx8QWqM269HfkY8qAB3Ip0ujx65v4rVE-uxpWaOyjg5hmmRdfIn_ZlnjwrlFH8pikaSL7NGUkxtM890KaevXkf8TdsLSLym2oyU_QceCI-Klz6inas9UZOvozOfAcTWabLtXyievlKqzgqrGqDF4DCKxCdyVeO7xc-ZYoePCHbTDIX7d833R-v0DzfPL2PCVhIwIpaRY3xHGga6kfsucgrkgdKScMy1xWKiB2Sayk1BYMxayBk8ssh9OnQJGUmmoAZZdcokG1ruwVwol1nDMDgGcMK4GmSAHvSCgtfNdgOkQPvUGKr27wRdEKhkgUYLwiigtvvMIbb4hGvcWKcATqYuuw6_8_36BD6gtFwB0xHaFB87OxtxDpG33XuvMXFIml7g
  priority: 102
  providerName: ProQuest
Title Numerical simulations and optimization of impinging jet configuration
URI https://www.proquest.com/docview/2477269850
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6VssDAG1EolQcWhrSJkzjxCKihYogQolK3KE5sKDQJounCr-ecB6IIMSFFWSJZl_P5u-_suzPABY9T06YeMzyqqIGM2DcEelZDKZ4oIdPYSapsi5BNps7dzJ11IGxrYaq0yno7psLpeb7UQepIJ24jCn81HNC310yCQAfDVEdA2phGesd69Fxmiw20dM9sS3_bhA9Wl-1wZhmua_P20PKXkdad1DpGV44n2IWiFbnON3kdrkoxTD5-dHP8v3_ag52Go5Kr2qj2oSPzA9j-1rnwEMbhqj7qWZDlPGuuAFuSOE9JgSCUNdWdpFBknumSLHzIiywJSqPmT6va7o5gGowfbyZGcyODkVDPKg3FkC66usmfQr_GhRkrP3U85SUxEkvbijkX0kFGKVNEDkcyXP0xRkSJoAKdgrKPoZsXuTwBYkvFmJMi4KapkyBN4j6-TT8Wvq5adHtw2U5B9FY33oiqgMX0I1RSZFqRVlKkldSDfjtHUbMElxFFOSjjvmue_v35DLaoTlRBtVu0D93yfSXPkWmUYgAbfnA7gM3rcXj_MKjM6RNt4ND-
link.rule.ids 315,783,787,970,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider Emerald
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgHYAB8SkKBTywMFhNHMeJJwSoVYFSIdRK3awktlERTQpJ_z_nxlXpghRlyfYuvnvP94XQjUiUF9CIk4gaSoARxySFyEqMEZlJtUpYtqy2GPL-mD1Pwom7cCtdWeXKJy4dtSoye0feoQx4IBdx6N3Nv4ndGmWzq26FxjZq2lFVIL6aD93h2_u6yIPXrTqC-yQMA7FKVHpxp9_rWSlNrX6yv-JmYNr0y8tg0ztA-44l4vvarIdoS-dHaO_P7MBj1B0u6mTLFy6nM7eEq8RJrnABbmDm-itxYfB0Zpui4MGfusIggM30Y1Fb_gSNe93RY5-4nQgko5FfEcOBsIV2zJ6ByCJSLzGxYpGJsgSoXeAnQqQaoGJawdllmsP5S0CTZClNwS2b4BQ18iLXZwgH2nDOFLg8pVgGREXE8PbiJI1t32DYQrcrQOS8Hn0hl5LBiyWAJz1fWvCkBa-F2ivEpDsEpVyb7Pz_z9dopz96HcjB0_DlAu1SWzYCpvFpGzWqn4W-hLhfpVfOuL_qUqo_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELaglRAMiKcoFPDAwmA1cRwnnhCPRuWhqEJU6mYlsY2K6AOS_n_OjaPCghRlyXZnf_dd7rs7hK5EpryARpxE1FACjDgmOURWYowoTK5VxoqV2iLlgxF7Godjp38qnayywcQVUKt5Yf-R9ygDHshFHHo942QRw4fkZvFF7AYpW2l16zQ2UTtiPPBaqH3XT4eva8EHr9t2BPdJGAaiKVp6cW-QJDatpjaXssfyb5D6i9GrwJPsoV3HGPFt7eJ9tKFnB2jn1xzBQ9RPl3Xh5ROXk6lbyFXibKbwHCBh6not8dzgydQ2SMGDP3SFIRk2k_dlfQqO0Cjpv90PiNuPQAoa-RUxHMhbaEfuGYgyIvcyEysWmajIgOYFfiZErsFsTCu4x0xzuIsZ5CdFTnOAaBMco9ZsPtMnCAfacM4UwJ9SrADSImJ4e3GWx7aHMOyg68YgclGPwZCr9MGLJRhPer60xpPWeB3UbSwm3YUo5dp9p_9_vkRb4Ff58pg-n6FtahUk4BmfdlGr-l7qc6AAVX7hfPsDtsGubQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+and+optimization+of+impinging+jet+configuration&rft.jtitle=International+journal+of+numerical+methods+for+heat+%26+fluid+flow&rft.au=Singh%2C+Alankrita&rft.au=Chakravarthy%2C+Balaji&rft.au=Prasad%2C+BVSSS&rft.date=2021-01-12&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=0961-5539&rft.eissn=1758-6585&rft.volume=31&rft.issue=1&rft.spage=1&rft.epage=25&rft_id=info:doi/10.1108%2FHFF-01-2020-0053&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-5539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-5539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-5539&client=summon