3DGraphSeg: A Unified Graph Representation- Based Point Cloud Segmentation Framework for Full-Range High-Speed Railway Environments

Point cloud semantic segmentation (PCSS) is crucial for digital twins of high-speed railways. By now, the concerned subjects are confined within the interior infrastructures of railways. However, the surrounding environments are also important for the safe operation. Concerning this issue, a full-ra...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 19; no. 12; pp. 11430 - 11443
Main Authors Geng, Yixuan, Wang, Zhipeng, Jia, Limin, Qin, Yong, Chai, Yuanyuan, Liu, Keyan, Tong, Lei
Format Journal Article
LanguageEnglish
Published Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Point cloud semantic segmentation (PCSS) is crucial for digital twins of high-speed railways. By now, the concerned subjects are confined within the interior infrastructures of railways. However, the surrounding environments are also important for the safe operation. Concerning this issue, a full-range high-speed railway scanning scheme based on unmanned-aerial-vehicle-borne LiDAR is utilized. However, the massive data volume and data distribution imbalance pose great challenges for PCSS. To address these issues, a novel PCSS framework called 3DGraphSeg is proposed in this article. To cope with the massive data volume, a structural representation algorithm named local embedding super-point graph is proposed to represent the vast point cloud into a concise graph while retain the data's inherent topology structure by local spatial embedding. Then, the gated integration graph convolutional network (GIGCN) is proposed to contextual segment the graph. In the GIGCN, to prevent the gradients from vanishing or exploding, the hidden states of gated recurrent units in every layer are integrated using a new layer named gated hidden states integration (GHSI). GHSI strengthens the back propagation by giving the loss function direct access to each layer and absorbs the features of different layers comprehensively, which enables the network to produce a smoother decision boundary and prevents the overfitting problem. Besides, to enhance its robustness to data imbalance, we propose a loss function: adaptive weighted cross entropy. Finally, five experiments are designed for verification. The proposed framework has excelled in different datasets and outperforms state-of-the-art approaches on the SemanticRail dataset.
AbstractList Point cloud semantic segmentation (PCSS) is crucial for digital twins of high-speed railways. By now, the concerned subjects are confined within the interior infrastructures of railways. However, the surrounding environments are also important for the safe operation. Concerning this issue, a full-range high-speed railway scanning scheme based on unmanned-aerial-vehicle-borne LiDAR is utilized. However, the massive data volume and data distribution imbalance pose great challenges for PCSS. To address these issues, a novel PCSS framework called 3DGraphSeg is proposed in this article. To cope with the massive data volume, a structural representation algorithm named local embedding super-point graph is proposed to represent the vast point cloud into a concise graph while retain the data's inherent topology structure by local spatial embedding. Then, the gated integration graph convolutional network (GIGCN) is proposed to contextual segment the graph. In the GIGCN, to prevent the gradients from vanishing or exploding, the hidden states of gated recurrent units in every layer are integrated using a new layer named gated hidden states integration (GHSI). GHSI strengthens the back propagation by giving the loss function direct access to each layer and absorbs the features of different layers comprehensively, which enables the network to produce a smoother decision boundary and prevents the overfitting problem. Besides, to enhance its robustness to data imbalance, we propose a loss function: adaptive weighted cross entropy. Finally, five experiments are designed for verification. The proposed framework has excelled in different datasets and outperforms state-of-the-art approaches on the SemanticRail dataset.
Author Geng, Yixuan
Jia, Limin
Liu, Keyan
Wang, Zhipeng
Qin, Yong
Tong, Lei
Chai, Yuanyuan
Author_xml – sequence: 1
  givenname: Yixuan
  orcidid: 0000-0002-8942-2562
  surname: Geng
  fullname: Geng, Yixuan
  organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Zhipeng
  orcidid: 0000-0003-3039-7582
  surname: Wang
  fullname: Wang, Zhipeng
  organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Limin
  orcidid: 0000-0003-2161-4637
  surname: Jia
  fullname: Jia, Limin
  organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Yong
  orcidid: 0000-0002-6519-8316
  surname: Qin
  fullname: Qin, Yong
  organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China
– sequence: 5
  givenname: Yuanyuan
  surname: Chai
  fullname: Chai, Yuanyuan
  organization: JIT Research Institute, Jilin University Zhengyuan Information Technologies Co., Ltd., Beijing, China
– sequence: 6
  givenname: Keyan
  surname: Liu
  fullname: Liu, Keyan
  organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China
– sequence: 7
  givenname: Lei
  surname: Tong
  fullname: Tong, Lei
  organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China
BookMark eNp1kEtPwzAMgCMEEjC4c4zEucN5NG24wWAPaRJowLkKWboFuqQkHWhn_jgZgwsSJ1u2P1v-jtG-884gdEagTwjIi8fJpE-Bsj6jXHBJ99ARkZxkADnspzzPScYosEN0HOMLACuAySP0yW5GQbXLB7O4xFf4ydnamjn-ruGZaYOJxnWqs95l-FrF1Lv31nV40Pj1HCds9dvHw6BW5sOHV1z7gIfrpslmyi0MHtvFMntoTYJnyjYfaoNv3bsN3m3heIIOatVEc_oTe-hpePs4GGfTu9FkcDXNNC1Il9U8L4kGDkY8U8FrAc_aSMWFyInKCSidS9CUa05VQYmeU1nIUmhNUyaMYT10vtvbBv-2NrGrXvw6uHSyomUhWUlKIGkKdlM6-BiDqas22JUKm4pAtVVdJdXVVnX1ozoh4g-i7c5JF9K__4NfqkOEgg
CitedBy_id crossref_primary_10_1016_j_jag_2024_104105
crossref_primary_10_1016_j_measurement_2024_115504
crossref_primary_10_3390_electronics12173642
crossref_primary_10_1016_j_isprsjprs_2025_01_031
crossref_primary_10_1109_TITS_2023_3274256
crossref_primary_10_1109_TIM_2024_3369157
crossref_primary_10_1016_j_autcon_2024_105812
crossref_primary_10_3390_app13148226
crossref_primary_10_1109_TII_2024_3441635
crossref_primary_10_1111_mice_13004
crossref_primary_10_3390_rs16142518
crossref_primary_10_1016_j_ymssp_2023_110653
crossref_primary_10_1080_01431161_2023_2297177
crossref_primary_10_1109_TITS_2023_3281352
Cites_doi 10.1109/3DV.2017.00067
10.3390/rs71114916
10.1109/JIOT.2022.3162295
10.1137/17M1113436
10.1109/TIM.2020.3045801
10.1109/CVPR46437.2021.00494
10.1109/CVPR42600.2020.01112
10.1109/ICCV.2019.00651
10.1109/ICCV48922.2021.00508
10.1109/CVPR.2019.01054
10.1109/CVPR.2018.00479
10.1109/ICCV.2019.00169
10.1109/3DV.2018.00052
10.5194/isprs-archives-XLII-1-W1-151-2017
10.1109/TITS.2021.3109949
10.1109/CVPR.2017.16
10.1109/JSEN.2021.3132460
10.1109/5.163414
10.1007/s11263-021-01554-9
10.14358/PERS.84.5.297
10.1109/TITS.2021.3134318
10.3115/v1/D14-1179
10.1109/TII.2020.3045196
10.2312/3dor.20171047
10.1109/CVPR.2017.11
10.3390/s20082212
10.1109/TITS.2021.3071445
10.1111/mice.12625
10.1111/mice.12710
10.1016/j.cag.2015.01.006
10.1016/j.patrec.2021.07.014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2023.3246492
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 11443
ExternalDocumentID 10_1109_TII_2023_3246492
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYXX
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c271t-f4581c040e6b264f60bce9a46651a510ac590c24c42a721cd297986cc2d296ee3
ISSN 1551-3203
IngestDate Mon Jun 30 08:43:31 EDT 2025
Thu Apr 24 23:13:00 EDT 2025
Tue Jul 01 03:00:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c271t-f4581c040e6b264f60bce9a46651a510ac590c24c42a721cd297986cc2d296ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8942-2562
0000-0003-3039-7582
0000-0002-6519-8316
0000-0003-2161-4637
PQID 2879381801
PQPubID 85507
PageCount 14
ParticipantIDs proquest_journals_2879381801
crossref_primary_10_1109_TII_2023_3246492
crossref_citationtrail_10_1109_TII_2023_3246492
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationYear 2023
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref33
ref10
ref32
roynard (ref29) 0
ref2
ref1
ref17
ref16
ref19
ref18
bishop (ref26) 2006
ba (ref25) 2016
ref24
brilakis (ref11) 2020
ref23
qi (ref35) 0
ref20
ref21
li (ref22) 0
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – start-page: 181
  year: 2020
  ident: ref11
  article-title: Automatic detection of railway masts in air-borne LiDAR data
  publication-title: Proc 8th Transport Res Arena
– ident: ref13
  doi: 10.1109/3DV.2017.00067
– ident: ref17
  doi: 10.3390/rs71114916
– year: 0
  ident: ref29
  article-title: Classification of point cloud for road scene understanding with multiscale voxel deep network
  publication-title: Proc 10th Workshop Planning Perceptionand Navigation Intell Vehicules
– ident: ref1
  doi: 10.1109/JIOT.2022.3162295
– ident: ref20
  doi: 10.1137/17M1113436
– ident: ref9
  doi: 10.1109/TIM.2020.3045801
– ident: ref37
  doi: 10.1109/CVPR46437.2021.00494
– ident: ref34
  doi: 10.1109/CVPR42600.2020.01112
– ident: ref33
  doi: 10.1109/ICCV.2019.00651
– ident: ref27
  doi: 10.1109/ICCV48922.2021.00508
– ident: ref32
  doi: 10.1109/CVPR.2019.01054
– ident: ref16
  doi: 10.1109/CVPR.2018.00479
– ident: ref31
  doi: 10.1109/ICCV.2019.00169
– ident: ref30
  doi: 10.1109/3DV.2018.00052
– ident: ref19
  doi: 10.5194/isprs-archives-XLII-1-W1-151-2017
– start-page: 5100
  year: 0
  ident: ref35
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/TITS.2021.3109949
– ident: ref15
  doi: 10.1109/CVPR.2017.16
– ident: ref2
  doi: 10.1109/JSEN.2021.3132460
– year: 2006
  ident: ref26
  publication-title: Pattern Recognition and Machine Learning
– ident: ref21
  doi: 10.1109/5.163414
– ident: ref36
  doi: 10.1007/s11263-021-01554-9
– ident: ref28
  doi: 10.14358/PERS.84.5.297
– year: 0
  ident: ref22
  article-title: Gated graph sequence neural networks
  publication-title: Proc 4th Int Conf Learn Representations
– ident: ref7
  doi: 10.1109/TITS.2021.3134318
– ident: ref24
  doi: 10.3115/v1/D14-1179
– ident: ref6
  doi: 10.1109/TII.2020.3045196
– year: 2016
  ident: ref25
  article-title: Layer normalization
– ident: ref14
  doi: 10.2312/3dor.20171047
– ident: ref23
  doi: 10.1109/CVPR.2017.11
– ident: ref12
  doi: 10.3390/s20082212
– ident: ref10
  doi: 10.1109/TITS.2021.3071445
– ident: ref3
  doi: 10.1111/mice.12625
– ident: ref5
  doi: 10.1111/mice.12710
– ident: ref18
  doi: 10.1016/j.cag.2015.01.006
– ident: ref8
  doi: 10.1016/j.patrec.2021.07.014
SSID ssj0037039
Score 2.5068474
Snippet Point cloud semantic segmentation (PCSS) is crucial for digital twins of high-speed railways. By now, the concerned subjects are confined within the interior...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 11430
SubjectTerms Algorithms
Artificial neural networks
Back propagation
Datasets
Digital twins
Embedding
Entropy (Information theory)
Graph representations
Graphical representations
High speed rail
Image segmentation
Railway engineering
Semantic segmentation
Topology
Title 3DGraphSeg: A Unified Graph Representation- Based Point Cloud Segmentation Framework for Full-Range High-Speed Railway Environments
URI https://www.proquest.com/docview/2879381801
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoED4ikKBe2BC7I2tdfrtZdbKaUtEgjaVLRcLO9mXSwFJwJHPK78M34Zsw8_Eh6iXCxn46yczJeZb7wz3yL0iEop0pIpMuVSEya4IEKVKUlSnYmkKJWysosvX_GDE_biNDkdjX4MqpaWjRyrb7_tK_kfq8IY2NV0yV7Ast2kMADnYF84goXh-E82jp_tG73pY33uGsyBQJaGUtpRw6373qKaBE8hYE2D1_OqboLd2XwJTFOff2jfNxTWlWnZykOTmpIj03lgS0HI8QLCXHBUVLPPxddgb9AeN6S3JnU0u060W5DbtYhqsDtI7TlyX2K_r523Oau-LHukvvWPsd-9rxbaB1dT5-NKe01XVnfpG6eCcDb3l_lHGDQelIN4r5tEJKah83TajQkWEaNOs-KqxRCSdOB4Ia3z6zu6fe3kn34NEVZhdXJ4ODa3MgZCyZnbjm9VjXstSna1izZrCkUOM-RmhtzPcAldppCq-B7Clg3E4FGF1ez1X7FdKg_F9vo9rFKjVWZg6c7kOrrm8xS840B3A410fRNdHahX3kLfe_g9wTvYgw_bMbwGPmzBhy34sAUfHoIPd-DDABDcgw_34MMefHgIvtvo5PneZPeA-D09iKJp1JCSJVmkIHJoLoGLlzyUSouCcZ5EBcSHQiUiVJQpRouURmpKRSoyU9wPZ1zr-A7aqOe1votwoaXKtODgURjk7UlWlDFjOlaJFKGM2Sbabn_OXHnBe7Pvyiz_kwk30ePuEwsn9vKXa7daC-XeJXzKaQbhzqgnRPcuMNV9dKX_V2yhjebjUj8AqtvIhxZLPwFl-aaW
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3DGraphSeg%3A+A+Unified+Graph+Representation-+Based+Point+Cloud+Segmentation+Framework+for+Full-Range+High-Speed+Railway+Environments&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Geng%2C+Yixuan&rft.au=Wang%2C+Zhipeng&rft.au=Jia%2C+Limin&rft.au=Qin%2C+Yong&rft.date=2023-12-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=19&rft.issue=12&rft.spage=11430&rft.epage=11443&rft_id=info:doi/10.1109%2FTII.2023.3246492&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2023_3246492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon