3DGraphSeg: A Unified Graph Representation- Based Point Cloud Segmentation Framework for Full-Range High-Speed Railway Environments
Point cloud semantic segmentation (PCSS) is crucial for digital twins of high-speed railways. By now, the concerned subjects are confined within the interior infrastructures of railways. However, the surrounding environments are also important for the safe operation. Concerning this issue, a full-ra...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 19; no. 12; pp. 11430 - 11443 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Point cloud semantic segmentation (PCSS) is crucial for digital twins of high-speed railways. By now, the concerned subjects are confined within the interior infrastructures of railways. However, the surrounding environments are also important for the safe operation. Concerning this issue, a full-range high-speed railway scanning scheme based on unmanned-aerial-vehicle-borne LiDAR is utilized. However, the massive data volume and data distribution imbalance pose great challenges for PCSS. To address these issues, a novel PCSS framework called 3DGraphSeg is proposed in this article. To cope with the massive data volume, a structural representation algorithm named local embedding super-point graph is proposed to represent the vast point cloud into a concise graph while retain the data's inherent topology structure by local spatial embedding. Then, the gated integration graph convolutional network (GIGCN) is proposed to contextual segment the graph. In the GIGCN, to prevent the gradients from vanishing or exploding, the hidden states of gated recurrent units in every layer are integrated using a new layer named gated hidden states integration (GHSI). GHSI strengthens the back propagation by giving the loss function direct access to each layer and absorbs the features of different layers comprehensively, which enables the network to produce a smoother decision boundary and prevents the overfitting problem. Besides, to enhance its robustness to data imbalance, we propose a loss function: adaptive weighted cross entropy. Finally, five experiments are designed for verification. The proposed framework has excelled in different datasets and outperforms state-of-the-art approaches on the SemanticRail dataset. |
---|---|
AbstractList | Point cloud semantic segmentation (PCSS) is crucial for digital twins of high-speed railways. By now, the concerned subjects are confined within the interior infrastructures of railways. However, the surrounding environments are also important for the safe operation. Concerning this issue, a full-range high-speed railway scanning scheme based on unmanned-aerial-vehicle-borne LiDAR is utilized. However, the massive data volume and data distribution imbalance pose great challenges for PCSS. To address these issues, a novel PCSS framework called 3DGraphSeg is proposed in this article. To cope with the massive data volume, a structural representation algorithm named local embedding super-point graph is proposed to represent the vast point cloud into a concise graph while retain the data's inherent topology structure by local spatial embedding. Then, the gated integration graph convolutional network (GIGCN) is proposed to contextual segment the graph. In the GIGCN, to prevent the gradients from vanishing or exploding, the hidden states of gated recurrent units in every layer are integrated using a new layer named gated hidden states integration (GHSI). GHSI strengthens the back propagation by giving the loss function direct access to each layer and absorbs the features of different layers comprehensively, which enables the network to produce a smoother decision boundary and prevents the overfitting problem. Besides, to enhance its robustness to data imbalance, we propose a loss function: adaptive weighted cross entropy. Finally, five experiments are designed for verification. The proposed framework has excelled in different datasets and outperforms state-of-the-art approaches on the SemanticRail dataset. |
Author | Geng, Yixuan Jia, Limin Liu, Keyan Wang, Zhipeng Qin, Yong Tong, Lei Chai, Yuanyuan |
Author_xml | – sequence: 1 givenname: Yixuan orcidid: 0000-0002-8942-2562 surname: Geng fullname: Geng, Yixuan organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Zhipeng orcidid: 0000-0003-3039-7582 surname: Wang fullname: Wang, Zhipeng organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Limin orcidid: 0000-0003-2161-4637 surname: Jia fullname: Jia, Limin organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China – sequence: 4 givenname: Yong orcidid: 0000-0002-6519-8316 surname: Qin fullname: Qin, Yong organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China – sequence: 5 givenname: Yuanyuan surname: Chai fullname: Chai, Yuanyuan organization: JIT Research Institute, Jilin University Zhengyuan Information Technologies Co., Ltd., Beijing, China – sequence: 6 givenname: Keyan surname: Liu fullname: Liu, Keyan organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China – sequence: 7 givenname: Lei surname: Tong fullname: Tong, Lei organization: State Key Laboratory of Rail Traffic Control and Safety and the Key Laboratory of Railway Industry of Proactive Safety and Risk Control, Beijing Jiaotong University, Beijing, China |
BookMark | eNp1kEtPwzAMgCMEEjC4c4zEucN5NG24wWAPaRJowLkKWboFuqQkHWhn_jgZgwsSJ1u2P1v-jtG-884gdEagTwjIi8fJpE-Bsj6jXHBJ99ARkZxkADnspzzPScYosEN0HOMLACuAySP0yW5GQbXLB7O4xFf4ydnamjn-ruGZaYOJxnWqs95l-FrF1Lv31nV40Pj1HCds9dvHw6BW5sOHV1z7gIfrpslmyi0MHtvFMntoTYJnyjYfaoNv3bsN3m3heIIOatVEc_oTe-hpePs4GGfTu9FkcDXNNC1Il9U8L4kGDkY8U8FrAc_aSMWFyInKCSidS9CUa05VQYmeU1nIUmhNUyaMYT10vtvbBv-2NrGrXvw6uHSyomUhWUlKIGkKdlM6-BiDqas22JUKm4pAtVVdJdXVVnX1ozoh4g-i7c5JF9K__4NfqkOEgg |
CitedBy_id | crossref_primary_10_1016_j_jag_2024_104105 crossref_primary_10_1016_j_measurement_2024_115504 crossref_primary_10_3390_electronics12173642 crossref_primary_10_1016_j_isprsjprs_2025_01_031 crossref_primary_10_1109_TITS_2023_3274256 crossref_primary_10_1109_TIM_2024_3369157 crossref_primary_10_1016_j_autcon_2024_105812 crossref_primary_10_3390_app13148226 crossref_primary_10_1109_TII_2024_3441635 crossref_primary_10_1111_mice_13004 crossref_primary_10_3390_rs16142518 crossref_primary_10_1016_j_ymssp_2023_110653 crossref_primary_10_1080_01431161_2023_2297177 crossref_primary_10_1109_TITS_2023_3281352 |
Cites_doi | 10.1109/3DV.2017.00067 10.3390/rs71114916 10.1109/JIOT.2022.3162295 10.1137/17M1113436 10.1109/TIM.2020.3045801 10.1109/CVPR46437.2021.00494 10.1109/CVPR42600.2020.01112 10.1109/ICCV.2019.00651 10.1109/ICCV48922.2021.00508 10.1109/CVPR.2019.01054 10.1109/CVPR.2018.00479 10.1109/ICCV.2019.00169 10.1109/3DV.2018.00052 10.5194/isprs-archives-XLII-1-W1-151-2017 10.1109/TITS.2021.3109949 10.1109/CVPR.2017.16 10.1109/JSEN.2021.3132460 10.1109/5.163414 10.1007/s11263-021-01554-9 10.14358/PERS.84.5.297 10.1109/TITS.2021.3134318 10.3115/v1/D14-1179 10.1109/TII.2020.3045196 10.2312/3dor.20171047 10.1109/CVPR.2017.11 10.3390/s20082212 10.1109/TITS.2021.3071445 10.1111/mice.12625 10.1111/mice.12710 10.1016/j.cag.2015.01.006 10.1016/j.patrec.2021.07.014 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2023.3246492 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 11443 |
ExternalDocumentID | 10_1109_TII_2023_3246492 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH AAYXX ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c271t-f4581c040e6b264f60bce9a46651a510ac590c24c42a721cd297986cc2d296ee3 |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 08:43:31 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Tue Jul 01 03:00:23 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c271t-f4581c040e6b264f60bce9a46651a510ac590c24c42a721cd297986cc2d296ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8942-2562 0000-0003-3039-7582 0000-0002-6519-8316 0000-0003-2161-4637 |
PQID | 2879381801 |
PQPubID | 85507 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2879381801 crossref_primary_10_1109_TII_2023_3246492 crossref_citationtrail_10_1109_TII_2023_3246492 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationYear | 2023 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref33 ref10 ref32 roynard (ref29) 0 ref2 ref1 ref17 ref16 ref19 ref18 bishop (ref26) 2006 ba (ref25) 2016 ref24 brilakis (ref11) 2020 ref23 qi (ref35) 0 ref20 ref21 li (ref22) 0 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – start-page: 181 year: 2020 ident: ref11 article-title: Automatic detection of railway masts in air-borne LiDAR data publication-title: Proc 8th Transport Res Arena – ident: ref13 doi: 10.1109/3DV.2017.00067 – ident: ref17 doi: 10.3390/rs71114916 – year: 0 ident: ref29 article-title: Classification of point cloud for road scene understanding with multiscale voxel deep network publication-title: Proc 10th Workshop Planning Perceptionand Navigation Intell Vehicules – ident: ref1 doi: 10.1109/JIOT.2022.3162295 – ident: ref20 doi: 10.1137/17M1113436 – ident: ref9 doi: 10.1109/TIM.2020.3045801 – ident: ref37 doi: 10.1109/CVPR46437.2021.00494 – ident: ref34 doi: 10.1109/CVPR42600.2020.01112 – ident: ref33 doi: 10.1109/ICCV.2019.00651 – ident: ref27 doi: 10.1109/ICCV48922.2021.00508 – ident: ref32 doi: 10.1109/CVPR.2019.01054 – ident: ref16 doi: 10.1109/CVPR.2018.00479 – ident: ref31 doi: 10.1109/ICCV.2019.00169 – ident: ref30 doi: 10.1109/3DV.2018.00052 – ident: ref19 doi: 10.5194/isprs-archives-XLII-1-W1-151-2017 – start-page: 5100 year: 0 ident: ref35 article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space publication-title: Proc Adv Neural Inf Process Syst – ident: ref4 doi: 10.1109/TITS.2021.3109949 – ident: ref15 doi: 10.1109/CVPR.2017.16 – ident: ref2 doi: 10.1109/JSEN.2021.3132460 – year: 2006 ident: ref26 publication-title: Pattern Recognition and Machine Learning – ident: ref21 doi: 10.1109/5.163414 – ident: ref36 doi: 10.1007/s11263-021-01554-9 – ident: ref28 doi: 10.14358/PERS.84.5.297 – year: 0 ident: ref22 article-title: Gated graph sequence neural networks publication-title: Proc 4th Int Conf Learn Representations – ident: ref7 doi: 10.1109/TITS.2021.3134318 – ident: ref24 doi: 10.3115/v1/D14-1179 – ident: ref6 doi: 10.1109/TII.2020.3045196 – year: 2016 ident: ref25 article-title: Layer normalization – ident: ref14 doi: 10.2312/3dor.20171047 – ident: ref23 doi: 10.1109/CVPR.2017.11 – ident: ref12 doi: 10.3390/s20082212 – ident: ref10 doi: 10.1109/TITS.2021.3071445 – ident: ref3 doi: 10.1111/mice.12625 – ident: ref5 doi: 10.1111/mice.12710 – ident: ref18 doi: 10.1016/j.cag.2015.01.006 – ident: ref8 doi: 10.1016/j.patrec.2021.07.014 |
SSID | ssj0037039 |
Score | 2.5068474 |
Snippet | Point cloud semantic segmentation (PCSS) is crucial for digital twins of high-speed railways. By now, the concerned subjects are confined within the interior... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 11430 |
SubjectTerms | Algorithms Artificial neural networks Back propagation Datasets Digital twins Embedding Entropy (Information theory) Graph representations Graphical representations High speed rail Image segmentation Railway engineering Semantic segmentation Topology |
Title | 3DGraphSeg: A Unified Graph Representation- Based Point Cloud Segmentation Framework for Full-Range High-Speed Railway Environments |
URI | https://www.proquest.com/docview/2879381801 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoED4ikKBe2BC7I2tdfrtZdbKaUtEgjaVLRcLO9mXSwFJwJHPK78M34Zsw8_Eh6iXCxn46yczJeZb7wz3yL0iEop0pIpMuVSEya4IEKVKUlSnYmkKJWysosvX_GDE_biNDkdjX4MqpaWjRyrb7_tK_kfq8IY2NV0yV7Ast2kMADnYF84goXh-E82jp_tG73pY33uGsyBQJaGUtpRw6373qKaBE8hYE2D1_OqboLd2XwJTFOff2jfNxTWlWnZykOTmpIj03lgS0HI8QLCXHBUVLPPxddgb9AeN6S3JnU0u060W5DbtYhqsDtI7TlyX2K_r523Oau-LHukvvWPsd-9rxbaB1dT5-NKe01XVnfpG6eCcDb3l_lHGDQelIN4r5tEJKah83TajQkWEaNOs-KqxRCSdOB4Ia3z6zu6fe3kn34NEVZhdXJ4ODa3MgZCyZnbjm9VjXstSna1izZrCkUOM-RmhtzPcAldppCq-B7Clg3E4FGF1ez1X7FdKg_F9vo9rFKjVWZg6c7kOrrm8xS840B3A410fRNdHahX3kLfe_g9wTvYgw_bMbwGPmzBhy34sAUfHoIPd-DDABDcgw_34MMefHgIvtvo5PneZPeA-D09iKJp1JCSJVmkIHJoLoGLlzyUSouCcZ5EBcSHQiUiVJQpRouURmpKRSoyU9wPZ1zr-A7aqOe1votwoaXKtODgURjk7UlWlDFjOlaJFKGM2Sbabn_OXHnBe7Pvyiz_kwk30ePuEwsn9vKXa7daC-XeJXzKaQbhzqgnRPcuMNV9dKX_V2yhjebjUj8AqtvIhxZLPwFl-aaW |
linkProvider | IEEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3DGraphSeg%3A+A+Unified+Graph+Representation-+Based+Point+Cloud+Segmentation+Framework+for+Full-Range+High-Speed+Railway+Environments&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Geng%2C+Yixuan&rft.au=Wang%2C+Zhipeng&rft.au=Jia%2C+Limin&rft.au=Qin%2C+Yong&rft.date=2023-12-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=19&rft.issue=12&rft.spage=11430&rft.epage=11443&rft_id=info:doi/10.1109%2FTII.2023.3246492&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2023_3246492 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |