Pose Attention-Guided Paired-Images Generation for Visible-Infrared Person Re-Identification

A key challenge of visible-infrared person re-identification (VI-ReID) comes from the modality difference between visible and infrared images, which further causes large intra-person and small inter-person distances. Most existing methods design feature extractors and loss functions to bridge the mo...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 31; pp. 346 - 350
Main Authors Qian, Yongheng, Tang, Su-Kit
Format Journal Article
LanguageEnglish
Published New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A key challenge of visible-infrared person re-identification (VI-ReID) comes from the modality difference between visible and infrared images, which further causes large intra-person and small inter-person distances. Most existing methods design feature extractors and loss functions to bridge the modality gap. However, the unpaired-images constrain the VI-ReID model's ability to learn instance-level alignment features. Different from these methods, in this paper, we propose a pose attention-guided paired-images generation network (PAPG) from the standpoint of data augmentation. PAPG can generate cross-modality paired-images with shape and appearance consistency with the real image to perform instance-level feature alignment by minimizing the distances of every pair of images. Furthermore, our method alleviates data insufficient and reduces the risk of VI-ReID model overfitting. Comprehensive experiments conducted on two publicly available datasets validate the effectiveness and generalizability of PAPG. Especially, on the SYSU-MM01 dataset, our method accomplishes 7.76% and 5.87% gains in Rank-1 and mAP.
AbstractList A key challenge of visible-infrared person re-identification (VI-ReID) comes from the modality difference between visible and infrared images, which further causes large intra-person and small inter-person distances. Most existing methods design feature extractors and loss functions to bridge the modality gap. However, the unpaired-images constrain the VI-ReID model's ability to learn instance-level alignment features. Different from these methods, in this paper, we propose a pose attention-guided paired-images generation network (PAPG) from the standpoint of data augmentation. PAPG can generate cross-modality paired-images with shape and appearance consistency with the real image to perform instance-level feature alignment by minimizing the distances of every pair of images. Furthermore, our method alleviates data insufficient and reduces the risk of VI-ReID model overfitting. Comprehensive experiments conducted on two publicly available datasets validate the effectiveness and generalizability of PAPG. Especially, on the SYSU-MM01 dataset, our method accomplishes 7.76% and 5.87% gains in Rank-1 and mAP.
Author Tang, Su-Kit
Qian, Yongheng
Author_xml – sequence: 1
  givenname: Yongheng
  orcidid: 0009-0007-6986-0737
  surname: Qian
  fullname: Qian, Yongheng
  organization: Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China
– sequence: 2
  givenname: Su-Kit
  orcidid: 0000-0001-8104-7887
  surname: Tang
  fullname: Tang, Su-Kit
  organization: Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China
BookMark eNp1kM1LAzEQxYMoWKt3jwueU5Ps5utYitZCweLXSQjZZCIp7W5Ntgf_e3fbngRPM8z7vZnhXaHzpm0AoVtKJpQSfb98XU0YYdWkLHlFNTlDI8q5wqwU9LzviSRYa6Iu0VXOa0KIooqP0OeqzVBMuw6aLrYNnu-jB1-sbEzg8WJrvyAXc2gg2UEvQpuKj5hjvQG8aEKyaaAh5V576Ud-2BOiO9DX6CLYTYabUx2j98eHt9kTXj7PF7PpEjsmaYfBCQeylLXTylJmvQNwtXVKe64dswogBC6ocLQKlAUpJAdWa28rz20tyzG6O-7dpfZ7D7kz63afmv6kYZqKSgkqRU-JI-VSm3OCYFzsDn92ycaNocQMSZo-STMkaU5J9kbyx7hLcWvTz_-WX1yOeUg
CitedBy_id crossref_primary_10_1016_j_jvcir_2024_104265
crossref_primary_10_1109_ACCESS_2025_3536478
crossref_primary_10_1109_LSP_2024_3466792
crossref_primary_10_1007_s00371_024_03792_7
crossref_primary_10_1016_j_neucom_2024_128183
crossref_primary_10_1016_j_neunet_2024_106576
crossref_primary_10_3390_s25010192
Cites_doi 10.1109/cvpr.2018.00431
10.1109/ICCV48922.2021.00029
10.1109/CVPR.2018.00813
10.1109/CVPR52729.2023.01786
10.1007/978-3-030-58520-4_14
10.1109/TMM.2019.2958756
10.1016/j.patcog.2022.109246
10.1609/aaai.v34i04.5891
10.1109/TMM.2021.3067760
10.1109/LSP.2023.3244747
10.1109/ACCESS.2023.3297891
10.1109/ICCV.2017.575
10.1609/aaai.v34i07.6894
10.1109/TCSVT.2022.3147813
10.1007/s11280-022-01014-5
10.1016/j.neucom.2021.02.088
10.3390/s17030605
10.1007/978-3-030-01240-3_40
10.1109/ICCV.2017.244
10.1007/s00371-020-02015-z
10.1109/TIFS.2020.3001665
10.1109/TPAMI.2021.3054775
10.1145/3474085.3475250
10.1109/TCSVT.2022.3168999
10.3156/jsoft.29.5_177_2
10.1109/TCSVT.2021.3072171
10.1109/CVPR.2017.143
10.1109/lsp.2021.3093865
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2024.3354190
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 350
ExternalDocumentID 10_1109_LSP_2024_3354190
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
AAYXX
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c271t-ec6ce737bc98a12adceecbac89d59c2a8eeff5616c14f12f7675e2b9da4d5ab73
ISSN 1070-9908
IngestDate Mon Jun 30 04:47:39 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Tue Jul 01 02:21:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c271t-ec6ce737bc98a12adceecbac89d59c2a8eeff5616c14f12f7675e2b9da4d5ab73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8104-7887
0009-0007-6986-0737
PQID 2916486176
PQPubID 75747
PageCount 5
ParticipantIDs proquest_journals_2916486176
crossref_citationtrail_10_1109_LSP_2024_3354190
crossref_primary_10_1109_LSP_2024_3354190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/cvpr.2018.00431
– ident: ref18
  doi: 10.1109/ICCV48922.2021.00029
– ident: ref22
  doi: 10.1109/CVPR.2018.00813
– ident: ref14
  doi: 10.1109/CVPR52729.2023.01786
– ident: ref10
  doi: 10.1007/978-3-030-58520-4_14
– ident: ref1
  doi: 10.1109/TMM.2019.2958756
– ident: ref4
  doi: 10.1016/j.patcog.2022.109246
– ident: ref15
  doi: 10.1609/aaai.v34i04.5891
– ident: ref28
  doi: 10.1109/TMM.2021.3067760
– ident: ref12
  doi: 10.1109/LSP.2023.3244747
– ident: ref26
  doi: 10.1109/ACCESS.2023.3297891
– ident: ref5
  doi: 10.1109/ICCV.2017.575
– ident: ref7
  doi: 10.1609/aaai.v34i07.6894
– ident: ref11
  doi: 10.1109/TCSVT.2022.3147813
– ident: ref9
  doi: 10.1007/s11280-022-01014-5
– ident: ref20
  doi: 10.1016/j.neucom.2021.02.088
– ident: ref25
  doi: 10.3390/s17030605
– ident: ref3
  doi: 10.1007/978-3-030-01240-3_40
– ident: ref23
  doi: 10.1109/ICCV.2017.244
– ident: ref19
  doi: 10.1007/s00371-020-02015-z
– ident: ref16
  doi: 10.1109/TIFS.2020.3001665
– ident: ref6
  doi: 10.1109/TPAMI.2021.3054775
– ident: ref17
  doi: 10.1145/3474085.3475250
– ident: ref8
  doi: 10.1109/TCSVT.2022.3168999
– ident: ref24
  doi: 10.3156/jsoft.29.5_177_2
– ident: ref27
  doi: 10.1109/TCSVT.2021.3072171
– ident: ref21
  doi: 10.1109/CVPR.2017.143
– ident: ref13
  doi: 10.1109/lsp.2021.3093865
SSID ssj0008185
Score 2.4733446
Snippet A key challenge of visible-infrared person re-identification (VI-ReID) comes from the modality difference between visible and infrared images, which further...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 346
SubjectTerms Alignment
Data augmentation
Datasets
Feature extraction
Infrared imagery
Title Pose Attention-Guided Paired-Images Generation for Visible-Infrared Person Re-Identification
URI https://www.proquest.com/docview/2916486176
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZKuNBDxaNVKSnyoRdUOWS972OEKIFWKBVJRaVKK9tr00jpUqWbC7-escdZ8qBV4bJKVskk8YxnvpnMfCbkgzEQ1yCxYNKUhkWqGzKRl4KZQJfGZIkw0rF9Xib9UXRxHV8_nIrqpktq2VF3j86VPEercA_0aqdkn6DZRijcgMegX7iChuH6Xzoe2GbzXl1jyyI7m41LwI8DAW6sZOe_hOVvQF7ppqPw2xj2wESz88pMXe_5wEFuWGaGM7vGF_EWUavNCD_aTg87toWTBbbCMHGjQA0o_zrGYur32-rmp_YR0RUFfEl6xj6P68UyA841e58IXoFB0EI3qb2fjEEVIfKozx2pd-foCUNfWcSgGiK77Lq_dnSnX64GHfuZnTCMowCPD12mxl4JWU0joUthunkBEgorofASNsgmh7yB40BfE5otOsEmVPxF8_-tu_nx6ndYxinLYdphj-E2eeWTBtpDC9ghL3S1S14uUEnukR_WFuiqLdAlW6APtkDBFuiqLVC0BbpmC6_J6NPp8KTP_MkZTPE0qJlWidJpmEqVZyLgogQopKRQWV7GueIi09oYQM6JCiITcGMZfTSXsEmjMhYyDd-QVnVb6beEylhGkBUrrgygfwiPimuLaGITp7Y_YJ8cz9epUJ5W3p5uMin-ppt9ctS84zdSqvzjte350hd-4_0pOKQ0UQbQO3n3BFEHZMs-xfJZm7Tq6Uy_B0BZy0NnJPcc9HRS
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pose+Attention-Guided+Paired-Images+Generation+for+Visible-Infrared+Person+Re-Identification&rft.jtitle=IEEE+signal+processing+letters&rft.au=Qian%2C+Yongheng&rft.au=Tang%2C+Su-Kit&rft.date=2024&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=31&rft.spage=346&rft.epage=350&rft_id=info:doi/10.1109%2FLSP.2024.3354190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2024_3354190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon