Pose Attention-Guided Paired-Images Generation for Visible-Infrared Person Re-Identification
A key challenge of visible-infrared person re-identification (VI-ReID) comes from the modality difference between visible and infrared images, which further causes large intra-person and small inter-person distances. Most existing methods design feature extractors and loss functions to bridge the mo...
Saved in:
Published in | IEEE signal processing letters Vol. 31; pp. 346 - 350 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A key challenge of visible-infrared person re-identification (VI-ReID) comes from the modality difference between visible and infrared images, which further causes large intra-person and small inter-person distances. Most existing methods design feature extractors and loss functions to bridge the modality gap. However, the unpaired-images constrain the VI-ReID model's ability to learn instance-level alignment features. Different from these methods, in this paper, we propose a pose attention-guided paired-images generation network (PAPG) from the standpoint of data augmentation. PAPG can generate cross-modality paired-images with shape and appearance consistency with the real image to perform instance-level feature alignment by minimizing the distances of every pair of images. Furthermore, our method alleviates data insufficient and reduces the risk of VI-ReID model overfitting. Comprehensive experiments conducted on two publicly available datasets validate the effectiveness and generalizability of PAPG. Especially, on the SYSU-MM01 dataset, our method accomplishes 7.76% and 5.87% gains in Rank-1 and mAP. |
---|---|
AbstractList | A key challenge of visible-infrared person re-identification (VI-ReID) comes from the modality difference between visible and infrared images, which further causes large intra-person and small inter-person distances. Most existing methods design feature extractors and loss functions to bridge the modality gap. However, the unpaired-images constrain the VI-ReID model's ability to learn instance-level alignment features. Different from these methods, in this paper, we propose a pose attention-guided paired-images generation network (PAPG) from the standpoint of data augmentation. PAPG can generate cross-modality paired-images with shape and appearance consistency with the real image to perform instance-level feature alignment by minimizing the distances of every pair of images. Furthermore, our method alleviates data insufficient and reduces the risk of VI-ReID model overfitting. Comprehensive experiments conducted on two publicly available datasets validate the effectiveness and generalizability of PAPG. Especially, on the SYSU-MM01 dataset, our method accomplishes 7.76% and 5.87% gains in Rank-1 and mAP. |
Author | Tang, Su-Kit Qian, Yongheng |
Author_xml | – sequence: 1 givenname: Yongheng orcidid: 0009-0007-6986-0737 surname: Qian fullname: Qian, Yongheng organization: Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China – sequence: 2 givenname: Su-Kit orcidid: 0000-0001-8104-7887 surname: Tang fullname: Tang, Su-Kit organization: Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China |
BookMark | eNp1kM1LAzEQxYMoWKt3jwueU5Ps5utYitZCweLXSQjZZCIp7W5Ntgf_e3fbngRPM8z7vZnhXaHzpm0AoVtKJpQSfb98XU0YYdWkLHlFNTlDI8q5wqwU9LzviSRYa6Iu0VXOa0KIooqP0OeqzVBMuw6aLrYNnu-jB1-sbEzg8WJrvyAXc2gg2UEvQpuKj5hjvQG8aEKyaaAh5V576Ud-2BOiO9DX6CLYTYabUx2j98eHt9kTXj7PF7PpEjsmaYfBCQeylLXTylJmvQNwtXVKe64dswogBC6ocLQKlAUpJAdWa28rz20tyzG6O-7dpfZ7D7kz63afmv6kYZqKSgkqRU-JI-VSm3OCYFzsDn92ycaNocQMSZo-STMkaU5J9kbyx7hLcWvTz_-WX1yOeUg |
CitedBy_id | crossref_primary_10_1016_j_jvcir_2024_104265 crossref_primary_10_1109_ACCESS_2025_3536478 crossref_primary_10_1109_LSP_2024_3466792 crossref_primary_10_1007_s00371_024_03792_7 crossref_primary_10_1016_j_neucom_2024_128183 crossref_primary_10_1016_j_neunet_2024_106576 crossref_primary_10_3390_s25010192 |
Cites_doi | 10.1109/cvpr.2018.00431 10.1109/ICCV48922.2021.00029 10.1109/CVPR.2018.00813 10.1109/CVPR52729.2023.01786 10.1007/978-3-030-58520-4_14 10.1109/TMM.2019.2958756 10.1016/j.patcog.2022.109246 10.1609/aaai.v34i04.5891 10.1109/TMM.2021.3067760 10.1109/LSP.2023.3244747 10.1109/ACCESS.2023.3297891 10.1109/ICCV.2017.575 10.1609/aaai.v34i07.6894 10.1109/TCSVT.2022.3147813 10.1007/s11280-022-01014-5 10.1016/j.neucom.2021.02.088 10.3390/s17030605 10.1007/978-3-030-01240-3_40 10.1109/ICCV.2017.244 10.1007/s00371-020-02015-z 10.1109/TIFS.2020.3001665 10.1109/TPAMI.2021.3054775 10.1145/3474085.3475250 10.1109/TCSVT.2022.3168999 10.3156/jsoft.29.5_177_2 10.1109/TCSVT.2021.3072171 10.1109/CVPR.2017.143 10.1109/lsp.2021.3093865 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LSP.2024.3354190 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2361 |
EndPage | 350 |
ExternalDocumentID | 10_1109_LSP_2024_3354190 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ AAYXX ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TAE TN5 VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c271t-ec6ce737bc98a12adceecbac89d59c2a8eeff5616c14f12f7675e2b9da4d5ab73 |
ISSN | 1070-9908 |
IngestDate | Mon Jun 30 04:47:39 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Tue Jul 01 02:21:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c271t-ec6ce737bc98a12adceecbac89d59c2a8eeff5616c14f12f7675e2b9da4d5ab73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8104-7887 0009-0007-6986-0737 |
PQID | 2916486176 |
PQPubID | 75747 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2916486176 crossref_citationtrail_10_1109_LSP_2024_3354190 crossref_primary_10_1109_LSP_2024_3354190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE signal processing letters |
PublicationYear | 2024 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref2 doi: 10.1109/cvpr.2018.00431 – ident: ref18 doi: 10.1109/ICCV48922.2021.00029 – ident: ref22 doi: 10.1109/CVPR.2018.00813 – ident: ref14 doi: 10.1109/CVPR52729.2023.01786 – ident: ref10 doi: 10.1007/978-3-030-58520-4_14 – ident: ref1 doi: 10.1109/TMM.2019.2958756 – ident: ref4 doi: 10.1016/j.patcog.2022.109246 – ident: ref15 doi: 10.1609/aaai.v34i04.5891 – ident: ref28 doi: 10.1109/TMM.2021.3067760 – ident: ref12 doi: 10.1109/LSP.2023.3244747 – ident: ref26 doi: 10.1109/ACCESS.2023.3297891 – ident: ref5 doi: 10.1109/ICCV.2017.575 – ident: ref7 doi: 10.1609/aaai.v34i07.6894 – ident: ref11 doi: 10.1109/TCSVT.2022.3147813 – ident: ref9 doi: 10.1007/s11280-022-01014-5 – ident: ref20 doi: 10.1016/j.neucom.2021.02.088 – ident: ref25 doi: 10.3390/s17030605 – ident: ref3 doi: 10.1007/978-3-030-01240-3_40 – ident: ref23 doi: 10.1109/ICCV.2017.244 – ident: ref19 doi: 10.1007/s00371-020-02015-z – ident: ref16 doi: 10.1109/TIFS.2020.3001665 – ident: ref6 doi: 10.1109/TPAMI.2021.3054775 – ident: ref17 doi: 10.1145/3474085.3475250 – ident: ref8 doi: 10.1109/TCSVT.2022.3168999 – ident: ref24 doi: 10.3156/jsoft.29.5_177_2 – ident: ref27 doi: 10.1109/TCSVT.2021.3072171 – ident: ref21 doi: 10.1109/CVPR.2017.143 – ident: ref13 doi: 10.1109/lsp.2021.3093865 |
SSID | ssj0008185 |
Score | 2.4733446 |
Snippet | A key challenge of visible-infrared person re-identification (VI-ReID) comes from the modality difference between visible and infrared images, which further... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 346 |
SubjectTerms | Alignment Data augmentation Datasets Feature extraction Infrared imagery |
Title | Pose Attention-Guided Paired-Images Generation for Visible-Infrared Person Re-Identification |
URI | https://www.proquest.com/docview/2916486176 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZKuNBDxaNVKSnyoRdUOWS972OEKIFWKBVJRaVKK9tr00jpUqWbC7-escdZ8qBV4bJKVskk8YxnvpnMfCbkgzEQ1yCxYNKUhkWqGzKRl4KZQJfGZIkw0rF9Xib9UXRxHV8_nIrqpktq2VF3j86VPEercA_0aqdkn6DZRijcgMegX7iChuH6Xzoe2GbzXl1jyyI7m41LwI8DAW6sZOe_hOVvQF7ppqPw2xj2wESz88pMXe_5wEFuWGaGM7vGF_EWUavNCD_aTg87toWTBbbCMHGjQA0o_zrGYur32-rmp_YR0RUFfEl6xj6P68UyA841e58IXoFB0EI3qb2fjEEVIfKozx2pd-foCUNfWcSgGiK77Lq_dnSnX64GHfuZnTCMowCPD12mxl4JWU0joUthunkBEgorofASNsgmh7yB40BfE5otOsEmVPxF8_-tu_nx6ndYxinLYdphj-E2eeWTBtpDC9ghL3S1S14uUEnukR_WFuiqLdAlW6APtkDBFuiqLVC0BbpmC6_J6NPp8KTP_MkZTPE0qJlWidJpmEqVZyLgogQopKRQWV7GueIi09oYQM6JCiITcGMZfTSXsEmjMhYyDd-QVnVb6beEylhGkBUrrgygfwiPimuLaGITp7Y_YJ8cz9epUJ5W3p5uMin-ppt9ctS84zdSqvzjte350hd-4_0pOKQ0UQbQO3n3BFEHZMs-xfJZm7Tq6Uy_B0BZy0NnJPcc9HRS |
linkProvider | IEEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pose+Attention-Guided+Paired-Images+Generation+for+Visible-Infrared+Person+Re-Identification&rft.jtitle=IEEE+signal+processing+letters&rft.au=Qian%2C+Yongheng&rft.au=Tang%2C+Su-Kit&rft.date=2024&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=31&rft.spage=346&rft.epage=350&rft_id=info:doi/10.1109%2FLSP.2024.3354190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2024_3354190 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |