Modeling and thermodynamic analysis of liquid carbon dioxide discharge process under backflow-style self-pressurization
[Display omitted] •A liquid CO2 discharge system under backflow-style self-pressurization is proposed.•A thermal multi-zone model is developed to describe the discharge process.•Thermodynamic analysis on the pressurization rate is carried out.•The effects of many initial conditions on the pressure e...
Saved in:
Published in | Applied thermal engineering Vol. 264; p. 125473 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-4311 |
DOI | 10.1016/j.applthermaleng.2025.125473 |
Cover
Abstract | [Display omitted]
•A liquid CO2 discharge system under backflow-style self-pressurization is proposed.•A thermal multi-zone model is developed to describe the discharge process.•Thermodynamic analysis on the pressurization rate is carried out.•The effects of many initial conditions on the pressure evolution are discussed.
For most CO2 applications, the feed of liquid CO2 with stable pressure is an issue that is gradually attracting attention. In this paper, a backflow-style self-pressurization scheme with simple configuration and high performance is proposed, aiming to prevent the pressure drops during the feed process. A thermal multi-zone model (TMZM) considering heat and mass transfer is developed to describe this process and validated against experimental results, showing an error of less than 4.56 %. In addition, a thermodynamic analysis method is proposed to quantitatively analyze the dominant mechanisms of the effects of key parameters on pressurization rate. Firstly, the evolutions of thermal properties, the proportion of heating rate, and the thermodynamic analysis under different discharge flow rate are discussed, respectively. Then the effects of heating rate and backflow rate, vapor superheating and liquid subcooling, initial pressure and initial density on pressure evolution are investigated comprehensively. The model results show that the backflow-style self-pressurization scheme can keep the pressure stable throughout the liquid CO2 discharge process (fluctuation range of 0.16 MPa) under appropriate initial conditions. In order to avoid the pressure dropping, the conditions of small subcooled degree of liquid, high filling mass and low initial pressure should be adopted. This research provides a reference for the design and optimization of liquid CO2 or other liquid media feed systems. |
---|---|
AbstractList | [Display omitted]
•A liquid CO2 discharge system under backflow-style self-pressurization is proposed.•A thermal multi-zone model is developed to describe the discharge process.•Thermodynamic analysis on the pressurization rate is carried out.•The effects of many initial conditions on the pressure evolution are discussed.
For most CO2 applications, the feed of liquid CO2 with stable pressure is an issue that is gradually attracting attention. In this paper, a backflow-style self-pressurization scheme with simple configuration and high performance is proposed, aiming to prevent the pressure drops during the feed process. A thermal multi-zone model (TMZM) considering heat and mass transfer is developed to describe this process and validated against experimental results, showing an error of less than 4.56 %. In addition, a thermodynamic analysis method is proposed to quantitatively analyze the dominant mechanisms of the effects of key parameters on pressurization rate. Firstly, the evolutions of thermal properties, the proportion of heating rate, and the thermodynamic analysis under different discharge flow rate are discussed, respectively. Then the effects of heating rate and backflow rate, vapor superheating and liquid subcooling, initial pressure and initial density on pressure evolution are investigated comprehensively. The model results show that the backflow-style self-pressurization scheme can keep the pressure stable throughout the liquid CO2 discharge process (fluctuation range of 0.16 MPa) under appropriate initial conditions. In order to avoid the pressure dropping, the conditions of small subcooled degree of liquid, high filling mass and low initial pressure should be adopted. This research provides a reference for the design and optimization of liquid CO2 or other liquid media feed systems. |
ArticleNumber | 125473 |
Author | Qin, Bin Zhang, Quan Xiong, Yu Zhou, Naijun Lu, Zhaijun |
Author_xml | – sequence: 1 givenname: Quan surname: Zhang fullname: Zhang, Quan organization: Frontiers Science Center for Extreme Flows and Energies, Central South University, Changsha 410075, China – sequence: 2 givenname: Bin surname: Qin fullname: Qin, Bin organization: Frontiers Science Center for Extreme Flows and Energies, Central South University, Changsha 410075, China – sequence: 3 givenname: Yu surname: Xiong fullname: Xiong, Yu organization: Frontiers Science Center for Extreme Flows and Energies, Central South University, Changsha 410075, China – sequence: 4 givenname: Naijun surname: Zhou fullname: Zhou, Naijun organization: School of Energy Science and Engineering, Central South University, Changsha 410075, China – sequence: 5 givenname: Zhaijun surname: Lu fullname: Lu, Zhaijun email: qlzjzd@csu.edu.cn organization: Frontiers Science Center for Extreme Flows and Energies, Central South University, Changsha 410075, China |
BookMark | eNqNkLFOwzAURT0UibbwDx5YE2wnrhuJBVUUkIpYYLYc-6V1ce1gp5Tw9aSUhY3pSvfpXD2dCRr54AGhK0pySujsepurtnXdBuJOOfDrnBHGc8p4KYoRGtOCV1lZUHqOJiltCaFsLsoxOjwFA876NVbe4B88mN6rndVDo1yfbMKhwc6-763BWsU6eGxs-LQGhkx6o-IacBuDhpTw3huIuFb6rXHhkKWud4ATuCZr43DfR_ulOhv8BTprlEtw-ZtT9Lq8e1k8ZKvn-8fF7SrTTNAuMwUlplLFHDQjtOalrmtSl0RQLUqoqQJRNo0QleKEKWYqDkabinDBzWxeVcUU3Zx2dQwpRWhkG-1OxV5SIo_i5Fb-FSeP4uRJ3IAvTzgMP35YiDJpC16DsRF0J02w_xv6BumPh9Q |
Cites_doi | 10.1007/978-1-4613-2213-9_108 10.1016/j.fuel.2024.131247 10.1016/j.enconman.2018.12.053 10.1016/j.apenergy.2013.01.047 10.1016/j.renene.2018.02.023 10.1016/j.applthermaleng.2021.117007 10.1016/j.ijhydene.2020.07.099 10.1016/j.enconman.2020.112666 10.2514/1.T3933 10.1115/1.2905997 10.1016/j.jclepro.2016.06.199 10.1115/1.2905998 10.1016/j.cryogenics.2014.05.005 10.1016/j.ijhydene.2018.10.113 10.2514/6.2005-3549 10.1016/j.ijheatmasstransfer.2019.119233 10.1016/j.ijheatmasstransfer.2009.02.027 10.1016/j.energy.2012.06.002 10.1016/j.energy.2021.121162 10.1016/j.jcou.2022.102260 10.1016/j.applthermaleng.2015.05.020 10.1016/j.ijheatmasstransfer.2021.121419 10.1016/j.cryogenics.2015.10.001 10.1016/j.ijthermalsci.2020.106690 10.1038/s41467-021-26509-z 10.1016/j.cryogenics.2015.10.018 10.1016/j.energy.2021.120580 10.2514/1.4571 10.1016/j.ijhydene.2022.07.027 10.1016/j.applthermaleng.2021.117005 10.1016/j.applthermaleng.2023.121628 10.1016/j.cryogenics.2004.02.004 10.2514/6.1993-1966 10.1016/j.actaastro.2017.01.017 10.2514/6.1992-818 10.1016/j.applthermaleng.2024.123605 10.1016/j.cryogenics.2010.02.021 10.1016/j.cryogenics.2017.10.019 10.1016/j.ijheatmasstransfer.2022.123225 10.1007/978-1-4613-9865-3_90 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2025.125473 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_applthermaleng_2025_125473 S135943112500064X |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFXIZ AGQPQ AGRNS ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG |
ID | FETCH-LOGICAL-c271t-d310d9a38ec201b54cbb0b4071c74eb1ae74ff779a502a2d95edcd90575d68993 |
IEDL.DBID | AIKHN |
ISSN | 1359-4311 |
IngestDate | Wed Jul 30 23:57:20 EDT 2025 Sat Aug 30 17:14:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Liquid medium feed Self-pressurization Tube heat exchanger Thermal multi-zone model (TMZM) High-pressure CO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c271t-d310d9a38ec201b54cbb0b4071c74eb1ae74ff779a502a2d95edcd90575d68993 |
ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2025_125473 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2025_125473 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 2025-04-00 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Li (b0170) 2019; 130 Fu, Ren, Si (b0025) 2022; 66 Matsumoto, Okaya, Igoh (b0070) 2017; 133 Lund, Mathiesen (b0015) 2012; 44 J.C. Aydelott, C.M. Spuckler. Effect of size on normal-gravity self-pressurization of spherical liquid hydrogen tankage. NASA−TN−D−5196, 1969. Li, Xu, Sun (b0100) 2004; 44 Ou, Roney, Alsalam (b0005) 2021; 12 Kassemi, Kartuzova, Hylton (b0210) 2018; 89 Zheng, Chen, Wang (b0080) 2019; 184 N.T. Van Dresar, C.S. Lin, M.M. Hasan. Self-pressurization of a flightweight liquid hydrogen tank: Effects of fill level at low wall heat flux. NASA−TM−105411, 1992. https://ntrs.nasa.gov/citations/19920009200. . Huerta, Vesovic (b0120) 2021; 176 Schmidt, Purcell, Wilson (b0145) 1960; 5 Zuo, Jang, Qin (b0215) 2021; 193 Nellis, Klein (b0245) 2009 Gursu, Sherif, Veziroglu (b0065) 1993; 115 Lan, Shi, Ji (b0105) 2024; 236 Beduz, Rebiai, Scurlock (b0230) 1984 Miao, Zhang, Huang (b0085) 2022; 50 Panzarella, Kassemi (b0195) 2005; 42 Ludwig, Dreyer (b0050) 2014; 63 Wang, Wang, Xu (b0220) 2024; 365 Wang, Li, Zhang (b0165) 2015; 72 Lv, Huang, Wu (b0200) 2021; 193 Wang, Wang, Pan (b0095) 2022; 47 J.A. Clark. A review of pressurization, stratification, and interfacial phenomena. Heat Transfer Laboratory, Department of Mechanical Engineering, University of Michigan, 1964. Rotenberg (b0130) 1986; 31 Xie, Liu, Yan (b0235) 2020; 149 Kassemi, Kartuzova (b0110) 2016; 74 Muhammad, Lee, Cho (b0055) 2021; 228 Holman (b0240) 2002 Liu, Feng, Lei (b0115) 2018; 43 Zhang, Huisingh (b0020) 2017; 142 Zhang, Qin, Zhou (b0090) 2024; 251 Fu, Sunden, Chen (b0205) 2015; 87 M.M. Hasan, C.S. Lin, N.T. Van Dresar. Self-Pressurization of a Flightweight Liquid Hydrogen Storage Tank Subjected to Low Heat Flux. NASA−TM−103804, 1991. https://ntrs.nasa.gov/citations/19910011011. Kwon, Son, Heo (b0035) 2020; 209 Duan, Sun, Cheng (b0185) 2021; 160 Agafonov, M. Domashchenko. Liquid Cryogenic System. Translated by ZHAO Yunsheng & CUI Yune. Beijing: Cryogenics Editorial Office; 1993. p. 37−38. Gursu, Sherif, Veziroglu (b0060) 1993; 115 Li, Yuan, Du (b0030) 2022; 196 Zuo, Jiang, Qin (b0075) 2020; 45 G. Zilliac, M.A. Karabeyoglu. Modeling of propellant tank pressurization. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July, 2005; 10−13. doi: 10.2514/6.2005-3549. Daigle, Smelyanskiy, Boschee (b0180) 2013; 27 NIST Chemistry WebBook, NIST standard reference database number 69, October 2011 release. N.T.V. Dresar, R.J. Stochl. Pressurization and expulsion of cryogenic liquids: Generic requirements for a low-gravity experiment. NASA−TM−104417, 1991. https://ntrs.nasa.gov/citations/19910015986. N.T.V. Dresar, R.J. Stochl. Pressurization and expulsion of a flightweight liquid hydrogen tank. NASA−TM−106427, 1993. https://ntrs.nasa.gov/citations/19940015704. Panzarella, Kassemi (b0160) 2009; 52 Seo, Jeong (b0175) 2010; 50 Duan, Fan, Zhu (b0010) 2013; 112 Duan, Xue, Gong (b0190) 2021; 233 Matsumoto (10.1016/j.applthermaleng.2025.125473_b0070) 2017; 133 Schmidt (10.1016/j.applthermaleng.2025.125473_b0145) 1960; 5 Li (10.1016/j.applthermaleng.2025.125473_b0030) 2022; 196 10.1016/j.applthermaleng.2025.125473_b0250 10.1016/j.applthermaleng.2025.125473_b0135 Nellis (10.1016/j.applthermaleng.2025.125473_b0245) 2009 Zuo (10.1016/j.applthermaleng.2025.125473_b0215) 2021; 193 Zuo (10.1016/j.applthermaleng.2025.125473_b0075) 2020; 45 Fu (10.1016/j.applthermaleng.2025.125473_b0025) 2022; 66 Gursu (10.1016/j.applthermaleng.2025.125473_b0065) 1993; 115 Kwon (10.1016/j.applthermaleng.2025.125473_b0035) 2020; 209 Wang (10.1016/j.applthermaleng.2025.125473_b0095) 2022; 47 Ou (10.1016/j.applthermaleng.2025.125473_b0005) 2021; 12 10.1016/j.applthermaleng.2025.125473_b0040 Duan (10.1016/j.applthermaleng.2025.125473_b0010) 2013; 112 10.1016/j.applthermaleng.2025.125473_b0045 Li (10.1016/j.applthermaleng.2025.125473_b0100) 2004; 44 10.1016/j.applthermaleng.2025.125473_b0125 Zheng (10.1016/j.applthermaleng.2025.125473_b0080) 2019; 184 Liu (10.1016/j.applthermaleng.2025.125473_b0170) 2019; 130 Panzarella (10.1016/j.applthermaleng.2025.125473_b0195) 2005; 42 Liu (10.1016/j.applthermaleng.2025.125473_b0115) 2018; 43 Zhang (10.1016/j.applthermaleng.2025.125473_b0020) 2017; 142 Daigle (10.1016/j.applthermaleng.2025.125473_b0180) 2013; 27 Duan (10.1016/j.applthermaleng.2025.125473_b0185) 2021; 160 Panzarella (10.1016/j.applthermaleng.2025.125473_b0160) 2009; 52 Duan (10.1016/j.applthermaleng.2025.125473_b0190) 2021; 233 10.1016/j.applthermaleng.2025.125473_b0150 Xie (10.1016/j.applthermaleng.2025.125473_b0235) 2020; 149 10.1016/j.applthermaleng.2025.125473_b0155 Muhammad (10.1016/j.applthermaleng.2025.125473_b0055) 2021; 228 Wang (10.1016/j.applthermaleng.2025.125473_b0220) 2024; 365 Rotenberg (10.1016/j.applthermaleng.2025.125473_b0130) 1986; 31 Lund (10.1016/j.applthermaleng.2025.125473_b0015) 2012; 44 Wang (10.1016/j.applthermaleng.2025.125473_b0165) 2015; 72 Fu (10.1016/j.applthermaleng.2025.125473_b0205) 2015; 87 Kassemi (10.1016/j.applthermaleng.2025.125473_b0110) 2016; 74 Miao (10.1016/j.applthermaleng.2025.125473_b0085) 2022; 50 Kassemi (10.1016/j.applthermaleng.2025.125473_b0210) 2018; 89 Lv (10.1016/j.applthermaleng.2025.125473_b0200) 2021; 193 Huerta (10.1016/j.applthermaleng.2025.125473_b0120) 2021; 176 Beduz (10.1016/j.applthermaleng.2025.125473_b0230) 1984 10.1016/j.applthermaleng.2025.125473_b0140 Holman (10.1016/j.applthermaleng.2025.125473_b0240) 2002 Gursu (10.1016/j.applthermaleng.2025.125473_b0060) 1993; 115 Ludwig (10.1016/j.applthermaleng.2025.125473_b0050) 2014; 63 Seo (10.1016/j.applthermaleng.2025.125473_b0175) 2010; 50 10.1016/j.applthermaleng.2025.125473_b0225 Lan (10.1016/j.applthermaleng.2025.125473_b0105) 2024; 236 Zhang (10.1016/j.applthermaleng.2025.125473_b0090) 2024; 251 |
References_xml | – volume: 112 start-page: 866 year: 2013 end-page: 875 ident: b0010 article-title: What’s the most cost–effective policy of CO publication-title: Appl. Energy – volume: 233 year: 2021 ident: b0190 article-title: A thermal non-equilibrium model for predicting LNG boil-off in storage tanks incorporating the natural convection effect publication-title: Energy – reference: N.T. Van Dresar, C.S. Lin, M.M. Hasan. Self-pressurization of a flightweight liquid hydrogen tank: Effects of fill level at low wall heat flux. NASA−TM−105411, 1992. https://ntrs.nasa.gov/citations/19920009200. – volume: 142 start-page: 1055 year: 2017 end-page: 1064 ident: b0020 article-title: Carbon dioxide storage schemes: technology, assessment and deployment publication-title: J. Clean. Prod. – volume: 66 year: 2022 ident: b0025 article-title: Research progress on CO publication-title: J. CO – volume: 42 start-page: 299 year: 2005 end-page: 309 ident: b0195 article-title: Self-pressurization of large spherical cryogenic tanks in space publication-title: J. Spacecr. Rocket. – volume: 115 start-page: 221 year: 1993 end-page: 227 ident: b0060 article-title: Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems-part 1: model development publication-title: J. Energy Res. Technol. – volume: 27 start-page: 116 year: 2013 end-page: 126 ident: b0180 article-title: Temperature stratification in a cryogenic fuel tank publication-title: J. Thermophys. Heat Transf. – reference: N.T.V. Dresar, R.J. Stochl. Pressurization and expulsion of cryogenic liquids: Generic requirements for a low-gravity experiment. NASA−TM−104417, 1991. https://ntrs.nasa.gov/citations/19910015986. – volume: 193 year: 2021 ident: b0215 article-title: A numerical model for liquid-vapor transition in self-pressurized cryogenic containers publication-title: Appl. Therm. Eng. – start-page: 285 year: 2002 end-page: 287 ident: b0240 article-title: Heat Transfer – volume: 87 start-page: 225 year: 2015 end-page: 233 ident: b0205 article-title: Influence of phase change on self-pressurization in cryogenic tanks under microgravity publication-title: Appl. Therm. Eng. – volume: 160 year: 2021 ident: b0185 article-title: A moving-boundary based dynamic model for predicting the transient free convection and thermal stratification in liquefied gas storage tank publication-title: Int. J. Therm. Sci. – volume: 89 start-page: 1 year: 2018 end-page: 15 ident: b0210 article-title: Validation of two-phase CFD models for propellant tank self-pressurization: crossing fluid types, scales, and gravity levels publication-title: Cryogenics – volume: 72 start-page: 161 year: 2015 end-page: 171 ident: b0165 article-title: Performance analysis of no-vent fill process for liquid hydrogen tank in terrestrial and on-orbit environments publication-title: Cryogenics – volume: 236 year: 2024 ident: b0105 article-title: Modeling and simulation of cryogenic propellant tank pressurization in normal gravity publication-title: Appl. Therm. Eng. – volume: 45 start-page: 27792 year: 2020 end-page: 27805 ident: b0075 article-title: Numerical investigation on full thermodynamic venting process of liquid hydrogen in an on-orbit storage tank publication-title: Int. J. Hydrogen Energy – volume: 50 start-page: 71 year: 2022 end-page: 74 ident: b0085 article-title: Key technologies of liquid hydrogen container on vehicle publication-title: Cryogen. Superconductivity – reference: M.M. Hasan, C.S. Lin, N.T. Van Dresar. Self-Pressurization of a Flightweight Liquid Hydrogen Storage Tank Subjected to Low Heat Flux. NASA−TM−103804, 1991. https://ntrs.nasa.gov/citations/19910011011. – reference: Agafonov, M. Domashchenko. Liquid Cryogenic System. Translated by ZHAO Yunsheng & CUI Yune. Beijing: Cryogenics Editorial Office; 1993. p. 37−38. – volume: 133 start-page: 166 year: 2017 end-page: 176 ident: b0070 article-title: Concept of a self-pressurized feed system for liquid rocket engines and its fundamental experiment results publication-title: Acta Astronaut. – volume: 44 start-page: 469 year: 2012 end-page: 476 ident: b0015 article-title: The role of carbon capture and storage in a future sustainable energy system publication-title: Energy – volume: 5 start-page: 487 year: 1960 end-page: 497 ident: b0145 article-title: An experimental study concerning the pressurization and stratification of liquid hydrogen publication-title: Adv. Cryog. Eng. – volume: 44 start-page: 357 year: 2004 end-page: 362 ident: b0100 article-title: Investigation on performances of non-loss storage for cryogenic liquefied gas publication-title: Cryogenics – volume: 184 start-page: 74 year: 2019 end-page: 82 ident: b0080 article-title: Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank publication-title: Energy Convers. Manage. – volume: 149 year: 2020 ident: b0235 article-title: A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations publication-title: Int. J. Heat Mass Transf. – volume: 115 start-page: 228 year: 1993 end-page: 231 ident: b0065 article-title: Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems-part 2: model results and conclusions publication-title: J. Energy Res. Technol. – reference: J.A. Clark. A review of pressurization, stratification, and interfacial phenomena. Heat Transfer Laboratory, Department of Mechanical Engineering, University of Michigan, 1964. – reference: NIST Chemistry WebBook, NIST standard reference database number 69, October 2011 release. – volume: 31 start-page: 963 year: 1986 end-page: 971 ident: b0130 article-title: Numerical simulation of self pressurization in a small cryogenic tank publication-title: Adv. Cryog. Eng. – volume: 176 year: 2021 ident: b0120 article-title: CFD modelling of the isobaric evaporation of cryogenic liquids in storage tanks publication-title: Int. J. Heat Mass Transf. – volume: 193 year: 2021 ident: b0200 article-title: Thermodynamic analysis of partially filled hydrogen tanks in a wide scale range publication-title: Appl. Therm. Eng. – volume: 228 year: 2021 ident: b0055 article-title: Application of advanced exergy analysis for optimizing the design of carbon dioxide pressurization system publication-title: Energy – volume: 47 start-page: 30530 year: 2022 end-page: 30545 ident: b0095 article-title: Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks publication-title: Int. J. Hydrogen Energy – volume: 251 year: 2024 ident: b0090 article-title: Effect of initial temperature and pressure on the performance of CO publication-title: Appl. Therm. Eng. – volume: 196 year: 2022 ident: b0030 article-title: Experimental investigation of near-critical CO publication-title: Int. J. Heat Mass Transf. – volume: 365 year: 2024 ident: b0220 article-title: Thermal models for self-pressurization prediction of liquid hydrogen tanks: formulation, validation, assessment, and prospects publication-title: Fuel – start-page: 745 year: 2009 end-page: 747 ident: b0245 article-title: Heat Transfer – volume: 63 start-page: 1 year: 2014 end-page: 16 ident: b0050 article-title: Investigation on thermodynamic phenomena of the active–pressurization process of cryogenic propellant tank publication-title: Cryogenics – volume: 130 start-page: 601 year: 2019 end-page: 612 ident: b0170 article-title: Thermal physical performance in liquid hydrogen tank under constant wall temperature publication-title: Renew. Energy – reference: N.T.V. Dresar, R.J. Stochl. Pressurization and expulsion of a flightweight liquid hydrogen tank. NASA−TM−106427, 1993. https://ntrs.nasa.gov/citations/19940015704. – reference: . – reference: J.C. Aydelott, C.M. Spuckler. Effect of size on normal-gravity self-pressurization of spherical liquid hydrogen tankage. NASA−TN−D−5196, 1969. – volume: 12 start-page: 6245 year: 2021 ident: b0005 article-title: Deep mitigation of CO publication-title: Nat. Commun. – volume: 50 start-page: 549 year: 2010 end-page: 555 ident: b0175 article-title: Analysis of self-pressurization phenomenon of cryogenic fluid storage tank with thermal diffusion model publication-title: Cryogenics – volume: 43 start-page: 22622 year: 2018 end-page: 22635 ident: b0115 article-title: Fluid thermal stratification in a non-isothermal liquid hydrogen tank under sloshing excitation publication-title: Int. J. Hydrogen Energy – reference: G. Zilliac, M.A. Karabeyoglu. Modeling of propellant tank pressurization. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July, 2005; 10−13. doi: 10.2514/6.2005-3549. – volume: 52 start-page: 3767 year: 2009 end-page: 3777 ident: b0160 article-title: One-dimensional model of evaporation and condensation in the presence of a noncondensable gas with applications to cryogenic fluid storage publication-title: Int. J. Heat Mass Transf. – volume: 209 year: 2020 ident: b0035 article-title: Compact heat exchangers for supercritical CO publication-title: Energy Convers. Manage. – volume: 74 start-page: 138 year: 2016 end-page: 153 ident: b0110 article-title: Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank publication-title: Cryogenics – start-page: 795 year: 1984 end-page: 803 ident: b0230 article-title: Thermal overfill, and the surface vaporisation of cryogenic liquids under storage conditions publication-title: Adv. Cryog. Eng. – start-page: 285 year: 2002 ident: 10.1016/j.applthermaleng.2025.125473_b0240 – ident: 10.1016/j.applthermaleng.2025.125473_b0125 – ident: 10.1016/j.applthermaleng.2025.125473_b0150 – volume: 31 start-page: 963 year: 1986 ident: 10.1016/j.applthermaleng.2025.125473_b0130 article-title: Numerical simulation of self pressurization in a small cryogenic tank publication-title: Adv. Cryog. Eng. doi: 10.1007/978-1-4613-2213-9_108 – volume: 365 year: 2024 ident: 10.1016/j.applthermaleng.2025.125473_b0220 article-title: Thermal models for self-pressurization prediction of liquid hydrogen tanks: formulation, validation, assessment, and prospects publication-title: Fuel doi: 10.1016/j.fuel.2024.131247 – volume: 184 start-page: 74 year: 2019 ident: 10.1016/j.applthermaleng.2025.125473_b0080 article-title: Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.12.053 – volume: 112 start-page: 866 year: 2013 ident: 10.1016/j.applthermaleng.2025.125473_b0010 article-title: What’s the most cost–effective policy of CO2 targeted reduction: an application of aggregated economic technological model with CCS? publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.01.047 – volume: 130 start-page: 601 year: 2019 ident: 10.1016/j.applthermaleng.2025.125473_b0170 article-title: Thermal physical performance in liquid hydrogen tank under constant wall temperature publication-title: Renew. Energy doi: 10.1016/j.renene.2018.02.023 – start-page: 745 year: 2009 ident: 10.1016/j.applthermaleng.2025.125473_b0245 – volume: 193 year: 2021 ident: 10.1016/j.applthermaleng.2025.125473_b0200 article-title: Thermodynamic analysis of partially filled hydrogen tanks in a wide scale range publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117007 – volume: 45 start-page: 27792 year: 2020 ident: 10.1016/j.applthermaleng.2025.125473_b0075 article-title: Numerical investigation on full thermodynamic venting process of liquid hydrogen in an on-orbit storage tank publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.07.099 – volume: 209 year: 2020 ident: 10.1016/j.applthermaleng.2025.125473_b0035 article-title: Compact heat exchangers for supercritical CO2 power cycle application publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112666 – volume: 27 start-page: 116 issue: 1 year: 2013 ident: 10.1016/j.applthermaleng.2025.125473_b0180 article-title: Temperature stratification in a cryogenic fuel tank publication-title: J. Thermophys. Heat Transf. doi: 10.2514/1.T3933 – ident: 10.1016/j.applthermaleng.2025.125473_b0250 – volume: 115 start-page: 221 issue: 3 year: 1993 ident: 10.1016/j.applthermaleng.2025.125473_b0060 article-title: Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems-part 1: model development publication-title: J. Energy Res. Technol. doi: 10.1115/1.2905997 – ident: 10.1016/j.applthermaleng.2025.125473_b0040 – volume: 142 start-page: 1055 issue: 2 year: 2017 ident: 10.1016/j.applthermaleng.2025.125473_b0020 article-title: Carbon dioxide storage schemes: technology, assessment and deployment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.06.199 – volume: 115 start-page: 228 issue: 3 year: 1993 ident: 10.1016/j.applthermaleng.2025.125473_b0065 article-title: Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems-part 2: model results and conclusions publication-title: J. Energy Res. Technol. doi: 10.1115/1.2905998 – volume: 63 start-page: 1 year: 2014 ident: 10.1016/j.applthermaleng.2025.125473_b0050 article-title: Investigation on thermodynamic phenomena of the active–pressurization process of cryogenic propellant tank publication-title: Cryogenics doi: 10.1016/j.cryogenics.2014.05.005 – volume: 43 start-page: 22622 year: 2018 ident: 10.1016/j.applthermaleng.2025.125473_b0115 article-title: Fluid thermal stratification in a non-isothermal liquid hydrogen tank under sloshing excitation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.113 – ident: 10.1016/j.applthermaleng.2025.125473_b0155 doi: 10.2514/6.2005-3549 – ident: 10.1016/j.applthermaleng.2025.125473_b0135 – volume: 149 year: 2020 ident: 10.1016/j.applthermaleng.2025.125473_b0235 article-title: A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.119233 – volume: 52 start-page: 3767 year: 2009 ident: 10.1016/j.applthermaleng.2025.125473_b0160 article-title: One-dimensional model of evaporation and condensation in the presence of a noncondensable gas with applications to cryogenic fluid storage publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.02.027 – volume: 44 start-page: 469 issue: 1 year: 2012 ident: 10.1016/j.applthermaleng.2025.125473_b0015 article-title: The role of carbon capture and storage in a future sustainable energy system publication-title: Energy doi: 10.1016/j.energy.2012.06.002 – volume: 233 year: 2021 ident: 10.1016/j.applthermaleng.2025.125473_b0190 article-title: A thermal non-equilibrium model for predicting LNG boil-off in storage tanks incorporating the natural convection effect publication-title: Energy doi: 10.1016/j.energy.2021.121162 – volume: 5 start-page: 487 year: 1960 ident: 10.1016/j.applthermaleng.2025.125473_b0145 article-title: An experimental study concerning the pressurization and stratification of liquid hydrogen publication-title: Adv. Cryog. Eng. – volume: 66 year: 2022 ident: 10.1016/j.applthermaleng.2025.125473_b0025 article-title: Research progress on CO2 capture and utilization technology publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2022.102260 – volume: 87 start-page: 225 year: 2015 ident: 10.1016/j.applthermaleng.2025.125473_b0205 article-title: Influence of phase change on self-pressurization in cryogenic tanks under microgravity publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.05.020 – volume: 176 year: 2021 ident: 10.1016/j.applthermaleng.2025.125473_b0120 article-title: CFD modelling of the isobaric evaporation of cryogenic liquids in storage tanks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121419 – volume: 72 start-page: 161 year: 2015 ident: 10.1016/j.applthermaleng.2025.125473_b0165 article-title: Performance analysis of no-vent fill process for liquid hydrogen tank in terrestrial and on-orbit environments publication-title: Cryogenics doi: 10.1016/j.cryogenics.2015.10.001 – volume: 50 start-page: 71 issue: 4 year: 2022 ident: 10.1016/j.applthermaleng.2025.125473_b0085 article-title: Key technologies of liquid hydrogen container on vehicle publication-title: Cryogen. Superconductivity – volume: 160 year: 2021 ident: 10.1016/j.applthermaleng.2025.125473_b0185 article-title: A moving-boundary based dynamic model for predicting the transient free convection and thermal stratification in liquefied gas storage tank publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2020.106690 – volume: 12 start-page: 6245 year: 2021 ident: 10.1016/j.applthermaleng.2025.125473_b0005 article-title: Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures publication-title: Nat. Commun. doi: 10.1038/s41467-021-26509-z – volume: 74 start-page: 138 year: 2016 ident: 10.1016/j.applthermaleng.2025.125473_b0110 article-title: Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank publication-title: Cryogenics doi: 10.1016/j.cryogenics.2015.10.018 – volume: 228 year: 2021 ident: 10.1016/j.applthermaleng.2025.125473_b0055 article-title: Application of advanced exergy analysis for optimizing the design of carbon dioxide pressurization system publication-title: Energy doi: 10.1016/j.energy.2021.120580 – volume: 42 start-page: 299 issue: 2 year: 2005 ident: 10.1016/j.applthermaleng.2025.125473_b0195 article-title: Self-pressurization of large spherical cryogenic tanks in space publication-title: J. Spacecr. Rocket. doi: 10.2514/1.4571 – volume: 47 start-page: 30530 year: 2022 ident: 10.1016/j.applthermaleng.2025.125473_b0095 article-title: Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.07.027 – volume: 193 year: 2021 ident: 10.1016/j.applthermaleng.2025.125473_b0215 article-title: A numerical model for liquid-vapor transition in self-pressurized cryogenic containers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117005 – volume: 236 year: 2024 ident: 10.1016/j.applthermaleng.2025.125473_b0105 article-title: Modeling and simulation of cryogenic propellant tank pressurization in normal gravity publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121628 – volume: 44 start-page: 357 issue: 5 year: 2004 ident: 10.1016/j.applthermaleng.2025.125473_b0100 article-title: Investigation on performances of non-loss storage for cryogenic liquefied gas publication-title: Cryogenics doi: 10.1016/j.cryogenics.2004.02.004 – ident: 10.1016/j.applthermaleng.2025.125473_b0045 doi: 10.2514/6.1993-1966 – volume: 133 start-page: 166 year: 2017 ident: 10.1016/j.applthermaleng.2025.125473_b0070 article-title: Concept of a self-pressurized feed system for liquid rocket engines and its fundamental experiment results publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.01.017 – ident: 10.1016/j.applthermaleng.2025.125473_b0140 doi: 10.2514/6.1992-818 – volume: 251 year: 2024 ident: 10.1016/j.applthermaleng.2025.125473_b0090 article-title: Effect of initial temperature and pressure on the performance of CO2 discharge under gas pressurization publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.123605 – volume: 50 start-page: 549 year: 2010 ident: 10.1016/j.applthermaleng.2025.125473_b0175 article-title: Analysis of self-pressurization phenomenon of cryogenic fluid storage tank with thermal diffusion model publication-title: Cryogenics doi: 10.1016/j.cryogenics.2010.02.021 – ident: 10.1016/j.applthermaleng.2025.125473_b0225 – volume: 89 start-page: 1 year: 2018 ident: 10.1016/j.applthermaleng.2025.125473_b0210 article-title: Validation of two-phase CFD models for propellant tank self-pressurization: crossing fluid types, scales, and gravity levels publication-title: Cryogenics doi: 10.1016/j.cryogenics.2017.10.019 – volume: 196 year: 2022 ident: 10.1016/j.applthermaleng.2025.125473_b0030 article-title: Experimental investigation of near-critical CO2 heat transfer performance in a closed natural circulation loop publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.123225 – start-page: 795 year: 1984 ident: 10.1016/j.applthermaleng.2025.125473_b0230 article-title: Thermal overfill, and the surface vaporisation of cryogenic liquids under storage conditions publication-title: Adv. Cryog. Eng. doi: 10.1007/978-1-4613-9865-3_90 |
SSID | ssj0012874 |
Score | 2.4481437 |
Snippet | [Display omitted]
•A liquid CO2 discharge system under backflow-style self-pressurization is proposed.•A thermal multi-zone model is developed to describe the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 125473 |
SubjectTerms | High-pressure CO2 Liquid medium feed Self-pressurization Thermal multi-zone model (TMZM) Tube heat exchanger |
Title | Modeling and thermodynamic analysis of liquid carbon dioxide discharge process under backflow-style self-pressurization |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2025.125473 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60guhBfGJ9lD14Xdsku9nuSaRYqqIXLfQW9gnRmtQ-UC_-dneTVFvwIHjMQmbDxzLfTHa-GYCzSDvSMy2JDTfKJShMYO7iCGxZIBkNYtGW_j_k3X3c65ObAR2sQGeuhfFllZXvL3164a2rlWaFZnOUps2HIKLc0Z9j6IJYB6uwFkY8pjVYu7y-7d1_Xyb4lu5F3kU59i-sw9lPmZe_J_ah1ovwk0tcwhjSc2eSsOh3plpgn-42bFVhI7osv2wHVky2C5sLzQT34M2PNfPiciQyjYrNcl3Om3crZesRlFs0TF9nqUZKjGWeIZ3m76k2yKtzfdMkg0aldAB5ddkYSaGe7TB_w5Ppx9CgiRlaXNTOzsaVgnMf-t2rx04PV2MVsApZMMXaRXSai6htlGN_SYmSsiV9YqcYca5bGEasZYwL2gpFqDk1WmnuAzsdu_QsOoBalmfmEBDRut2ygVGUK0KZ5KFmVNiQSEtJ0OZ1oHMIk1HZPSOZl5U9JcvQJx76pIS-DhdzvJOl05A4R_8nC0f_tnAMG_6prNI5gdp0PDOnLgCZygasnn8GjeqYfQG5z-B- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSCwHxCp2fOBq2iR2XZ8QQqCyXgCpt8irFChJKa2AC9-OJ0lZJA5IXJ3IiZ6seTPJezMA-4kNpOeamjrpTChQhKIy5BHUi0gLHrVUW-N3yKvrVueOnXd5dwKOx14YlFXWsb-K6WW0rlcaNZqNfpY1bqKEy0B_gaFLYu1OwjTjiUBd38H7p84jwobuZdXFJcXbZ2D_S-SFf4kx0XpUOLcklIsxPwgbMpH8zlPfuOd0ERbqpJEcVe-1BBMuX4b5b60EV-AFh5qhtZyo3JLyYYWtps2HlarxCCk86WVPo8wSowa6yInNitfMOoLeXGyZ5Ei_Mg4Q9JYNiFbmwfeKF_o8fOs58ux6npbK2dGg9m-uwt3pye1xh9ZDFaiJRTSkNuRzVqqk7Uzgfs2Z0bqpsawzgoXArZxg3gshFW_GKraSO2usxLTOtkJxlqzBVF7kbh0Is7bd9JEzXBrGhZaxFVz5mGnPWdSWG8DHEKb9qndGOhaV3ac_oU8R-rSCfgMOx3inP85CGsL8n3bY_PcOezDbub26TC_Pri-2YA6vVHqdbZgaDkZuJ6QiQ71bHrUPp9PhSQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+thermodynamic+analysis+of+liquid+carbon+dioxide+discharge+process+under+backflow-style+self-pressurization&rft.jtitle=Applied+thermal+engineering&rft.au=Zhang%2C+Quan&rft.au=Qin%2C+Bin&rft.au=Xiong%2C+Yu&rft.au=Zhou%2C+Naijun&rft.date=2025-04-01&rft.issn=1359-4311&rft.volume=264&rft.spage=125473&rft_id=info:doi/10.1016%2Fj.applthermaleng.2025.125473&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2025_125473 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |