Modeling and thermodynamic analysis of liquid carbon dioxide discharge process under backflow-style self-pressurization

[Display omitted] •A liquid CO2 discharge system under backflow-style self-pressurization is proposed.•A thermal multi-zone model is developed to describe the discharge process.•Thermodynamic analysis on the pressurization rate is carried out.•The effects of many initial conditions on the pressure e...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 264; p. 125473
Main Authors Zhang, Quan, Qin, Bin, Xiong, Yu, Zhou, Naijun, Lu, Zhaijun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2025
Subjects
Online AccessGet full text
ISSN1359-4311
DOI10.1016/j.applthermaleng.2025.125473

Cover

Abstract [Display omitted] •A liquid CO2 discharge system under backflow-style self-pressurization is proposed.•A thermal multi-zone model is developed to describe the discharge process.•Thermodynamic analysis on the pressurization rate is carried out.•The effects of many initial conditions on the pressure evolution are discussed. For most CO2 applications, the feed of liquid CO2 with stable pressure is an issue that is gradually attracting attention. In this paper, a backflow-style self-pressurization scheme with simple configuration and high performance is proposed, aiming to prevent the pressure drops during the feed process. A thermal multi-zone model (TMZM) considering heat and mass transfer is developed to describe this process and validated against experimental results, showing an error of less than 4.56 %. In addition, a thermodynamic analysis method is proposed to quantitatively analyze the dominant mechanisms of the effects of key parameters on pressurization rate. Firstly, the evolutions of thermal properties, the proportion of heating rate, and the thermodynamic analysis under different discharge flow rate are discussed, respectively. Then the effects of heating rate and backflow rate, vapor superheating and liquid subcooling, initial pressure and initial density on pressure evolution are investigated comprehensively. The model results show that the backflow-style self-pressurization scheme can keep the pressure stable throughout the liquid CO2 discharge process (fluctuation range of 0.16 MPa) under appropriate initial conditions. In order to avoid the pressure dropping, the conditions of small subcooled degree of liquid, high filling mass and low initial pressure should be adopted. This research provides a reference for the design and optimization of liquid CO2 or other liquid media feed systems.
AbstractList [Display omitted] •A liquid CO2 discharge system under backflow-style self-pressurization is proposed.•A thermal multi-zone model is developed to describe the discharge process.•Thermodynamic analysis on the pressurization rate is carried out.•The effects of many initial conditions on the pressure evolution are discussed. For most CO2 applications, the feed of liquid CO2 with stable pressure is an issue that is gradually attracting attention. In this paper, a backflow-style self-pressurization scheme with simple configuration and high performance is proposed, aiming to prevent the pressure drops during the feed process. A thermal multi-zone model (TMZM) considering heat and mass transfer is developed to describe this process and validated against experimental results, showing an error of less than 4.56 %. In addition, a thermodynamic analysis method is proposed to quantitatively analyze the dominant mechanisms of the effects of key parameters on pressurization rate. Firstly, the evolutions of thermal properties, the proportion of heating rate, and the thermodynamic analysis under different discharge flow rate are discussed, respectively. Then the effects of heating rate and backflow rate, vapor superheating and liquid subcooling, initial pressure and initial density on pressure evolution are investigated comprehensively. The model results show that the backflow-style self-pressurization scheme can keep the pressure stable throughout the liquid CO2 discharge process (fluctuation range of 0.16 MPa) under appropriate initial conditions. In order to avoid the pressure dropping, the conditions of small subcooled degree of liquid, high filling mass and low initial pressure should be adopted. This research provides a reference for the design and optimization of liquid CO2 or other liquid media feed systems.
ArticleNumber 125473
Author Qin, Bin
Zhang, Quan
Xiong, Yu
Zhou, Naijun
Lu, Zhaijun
Author_xml – sequence: 1
  givenname: Quan
  surname: Zhang
  fullname: Zhang, Quan
  organization: Frontiers Science Center for Extreme Flows and Energies, Central South University, Changsha 410075, China
– sequence: 2
  givenname: Bin
  surname: Qin
  fullname: Qin, Bin
  organization: Frontiers Science Center for Extreme Flows and Energies, Central South University, Changsha 410075, China
– sequence: 3
  givenname: Yu
  surname: Xiong
  fullname: Xiong, Yu
  organization: Frontiers Science Center for Extreme Flows and Energies, Central South University, Changsha 410075, China
– sequence: 4
  givenname: Naijun
  surname: Zhou
  fullname: Zhou, Naijun
  organization: School of Energy Science and Engineering, Central South University, Changsha 410075, China
– sequence: 5
  givenname: Zhaijun
  surname: Lu
  fullname: Lu, Zhaijun
  email: qlzjzd@csu.edu.cn
  organization: Frontiers Science Center for Extreme Flows and Energies, Central South University, Changsha 410075, China
BookMark eNqNkLFOwzAURT0UibbwDx5YE2wnrhuJBVUUkIpYYLYc-6V1ce1gp5Tw9aSUhY3pSvfpXD2dCRr54AGhK0pySujsepurtnXdBuJOOfDrnBHGc8p4KYoRGtOCV1lZUHqOJiltCaFsLsoxOjwFA876NVbe4B88mN6rndVDo1yfbMKhwc6-763BWsU6eGxs-LQGhkx6o-IacBuDhpTw3huIuFb6rXHhkKWud4ATuCZr43DfR_ulOhv8BTprlEtw-ZtT9Lq8e1k8ZKvn-8fF7SrTTNAuMwUlplLFHDQjtOalrmtSl0RQLUqoqQJRNo0QleKEKWYqDkabinDBzWxeVcUU3Zx2dQwpRWhkG-1OxV5SIo_i5Fb-FSeP4uRJ3IAvTzgMP35YiDJpC16DsRF0J02w_xv6BumPh9Q
Cites_doi 10.1007/978-1-4613-2213-9_108
10.1016/j.fuel.2024.131247
10.1016/j.enconman.2018.12.053
10.1016/j.apenergy.2013.01.047
10.1016/j.renene.2018.02.023
10.1016/j.applthermaleng.2021.117007
10.1016/j.ijhydene.2020.07.099
10.1016/j.enconman.2020.112666
10.2514/1.T3933
10.1115/1.2905997
10.1016/j.jclepro.2016.06.199
10.1115/1.2905998
10.1016/j.cryogenics.2014.05.005
10.1016/j.ijhydene.2018.10.113
10.2514/6.2005-3549
10.1016/j.ijheatmasstransfer.2019.119233
10.1016/j.ijheatmasstransfer.2009.02.027
10.1016/j.energy.2012.06.002
10.1016/j.energy.2021.121162
10.1016/j.jcou.2022.102260
10.1016/j.applthermaleng.2015.05.020
10.1016/j.ijheatmasstransfer.2021.121419
10.1016/j.cryogenics.2015.10.001
10.1016/j.ijthermalsci.2020.106690
10.1038/s41467-021-26509-z
10.1016/j.cryogenics.2015.10.018
10.1016/j.energy.2021.120580
10.2514/1.4571
10.1016/j.ijhydene.2022.07.027
10.1016/j.applthermaleng.2021.117005
10.1016/j.applthermaleng.2023.121628
10.1016/j.cryogenics.2004.02.004
10.2514/6.1993-1966
10.1016/j.actaastro.2017.01.017
10.2514/6.1992-818
10.1016/j.applthermaleng.2024.123605
10.1016/j.cryogenics.2010.02.021
10.1016/j.cryogenics.2017.10.019
10.1016/j.ijheatmasstransfer.2022.123225
10.1007/978-1-4613-9865-3_90
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2025.125473
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2025_125473
S135943112500064X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFXIZ
AGQPQ
AGRNS
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
ID FETCH-LOGICAL-c271t-d310d9a38ec201b54cbb0b4071c74eb1ae74ff779a502a2d95edcd90575d68993
IEDL.DBID AIKHN
ISSN 1359-4311
IngestDate Wed Jul 30 23:57:20 EDT 2025
Sat Aug 30 17:14:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Liquid medium feed
Self-pressurization
Tube heat exchanger
Thermal multi-zone model (TMZM)
High-pressure CO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c271t-d310d9a38ec201b54cbb0b4071c74eb1ae74ff779a502a2d95edcd90575d68993
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2025_125473
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2025_125473
PublicationCentury 2000
PublicationDate 2025-04-01
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Li (b0170) 2019; 130
Fu, Ren, Si (b0025) 2022; 66
Matsumoto, Okaya, Igoh (b0070) 2017; 133
Lund, Mathiesen (b0015) 2012; 44
J.C. Aydelott, C.M. Spuckler. Effect of size on normal-gravity self-pressurization of spherical liquid hydrogen tankage. NASA−TN−D−5196, 1969.
Li, Xu, Sun (b0100) 2004; 44
Ou, Roney, Alsalam (b0005) 2021; 12
Kassemi, Kartuzova, Hylton (b0210) 2018; 89
Zheng, Chen, Wang (b0080) 2019; 184
N.T. Van Dresar, C.S. Lin, M.M. Hasan. Self-pressurization of a flightweight liquid hydrogen tank: Effects of fill level at low wall heat flux. NASA−TM−105411, 1992. https://ntrs.nasa.gov/citations/19920009200.
.
Huerta, Vesovic (b0120) 2021; 176
Schmidt, Purcell, Wilson (b0145) 1960; 5
Zuo, Jang, Qin (b0215) 2021; 193
Nellis, Klein (b0245) 2009
Gursu, Sherif, Veziroglu (b0065) 1993; 115
Lan, Shi, Ji (b0105) 2024; 236
Beduz, Rebiai, Scurlock (b0230) 1984
Miao, Zhang, Huang (b0085) 2022; 50
Panzarella, Kassemi (b0195) 2005; 42
Ludwig, Dreyer (b0050) 2014; 63
Wang, Wang, Xu (b0220) 2024; 365
Wang, Li, Zhang (b0165) 2015; 72
Lv, Huang, Wu (b0200) 2021; 193
Wang, Wang, Pan (b0095) 2022; 47
J.A. Clark. A review of pressurization, stratification, and interfacial phenomena. Heat Transfer Laboratory, Department of Mechanical Engineering, University of Michigan, 1964.
Rotenberg (b0130) 1986; 31
Xie, Liu, Yan (b0235) 2020; 149
Kassemi, Kartuzova (b0110) 2016; 74
Muhammad, Lee, Cho (b0055) 2021; 228
Holman (b0240) 2002
Liu, Feng, Lei (b0115) 2018; 43
Zhang, Huisingh (b0020) 2017; 142
Zhang, Qin, Zhou (b0090) 2024; 251
Fu, Sunden, Chen (b0205) 2015; 87
M.M. Hasan, C.S. Lin, N.T. Van Dresar. Self-Pressurization of a Flightweight Liquid Hydrogen Storage Tank Subjected to Low Heat Flux. NASA−TM−103804, 1991. https://ntrs.nasa.gov/citations/19910011011.
Kwon, Son, Heo (b0035) 2020; 209
Duan, Sun, Cheng (b0185) 2021; 160
Agafonov, M. Domashchenko. Liquid Cryogenic System. Translated by ZHAO Yunsheng & CUI Yune. Beijing: Cryogenics Editorial Office; 1993. p. 37−38.
Gursu, Sherif, Veziroglu (b0060) 1993; 115
Li, Yuan, Du (b0030) 2022; 196
Zuo, Jiang, Qin (b0075) 2020; 45
G. Zilliac, M.A. Karabeyoglu. Modeling of propellant tank pressurization. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July, 2005; 10−13. doi: 10.2514/6.2005-3549.
Daigle, Smelyanskiy, Boschee (b0180) 2013; 27
NIST Chemistry WebBook, NIST standard reference database number 69, October 2011 release.
N.T.V. Dresar, R.J. Stochl. Pressurization and expulsion of cryogenic liquids: Generic requirements for a low-gravity experiment. NASA−TM−104417, 1991. https://ntrs.nasa.gov/citations/19910015986.
N.T.V. Dresar, R.J. Stochl. Pressurization and expulsion of a flightweight liquid hydrogen tank. NASA−TM−106427, 1993. https://ntrs.nasa.gov/citations/19940015704.
Panzarella, Kassemi (b0160) 2009; 52
Seo, Jeong (b0175) 2010; 50
Duan, Fan, Zhu (b0010) 2013; 112
Duan, Xue, Gong (b0190) 2021; 233
Matsumoto (10.1016/j.applthermaleng.2025.125473_b0070) 2017; 133
Schmidt (10.1016/j.applthermaleng.2025.125473_b0145) 1960; 5
Li (10.1016/j.applthermaleng.2025.125473_b0030) 2022; 196
10.1016/j.applthermaleng.2025.125473_b0250
10.1016/j.applthermaleng.2025.125473_b0135
Nellis (10.1016/j.applthermaleng.2025.125473_b0245) 2009
Zuo (10.1016/j.applthermaleng.2025.125473_b0215) 2021; 193
Zuo (10.1016/j.applthermaleng.2025.125473_b0075) 2020; 45
Fu (10.1016/j.applthermaleng.2025.125473_b0025) 2022; 66
Gursu (10.1016/j.applthermaleng.2025.125473_b0065) 1993; 115
Kwon (10.1016/j.applthermaleng.2025.125473_b0035) 2020; 209
Wang (10.1016/j.applthermaleng.2025.125473_b0095) 2022; 47
Ou (10.1016/j.applthermaleng.2025.125473_b0005) 2021; 12
10.1016/j.applthermaleng.2025.125473_b0040
Duan (10.1016/j.applthermaleng.2025.125473_b0010) 2013; 112
10.1016/j.applthermaleng.2025.125473_b0045
Li (10.1016/j.applthermaleng.2025.125473_b0100) 2004; 44
10.1016/j.applthermaleng.2025.125473_b0125
Zheng (10.1016/j.applthermaleng.2025.125473_b0080) 2019; 184
Liu (10.1016/j.applthermaleng.2025.125473_b0170) 2019; 130
Panzarella (10.1016/j.applthermaleng.2025.125473_b0195) 2005; 42
Liu (10.1016/j.applthermaleng.2025.125473_b0115) 2018; 43
Zhang (10.1016/j.applthermaleng.2025.125473_b0020) 2017; 142
Daigle (10.1016/j.applthermaleng.2025.125473_b0180) 2013; 27
Duan (10.1016/j.applthermaleng.2025.125473_b0185) 2021; 160
Panzarella (10.1016/j.applthermaleng.2025.125473_b0160) 2009; 52
Duan (10.1016/j.applthermaleng.2025.125473_b0190) 2021; 233
10.1016/j.applthermaleng.2025.125473_b0150
Xie (10.1016/j.applthermaleng.2025.125473_b0235) 2020; 149
10.1016/j.applthermaleng.2025.125473_b0155
Muhammad (10.1016/j.applthermaleng.2025.125473_b0055) 2021; 228
Wang (10.1016/j.applthermaleng.2025.125473_b0220) 2024; 365
Rotenberg (10.1016/j.applthermaleng.2025.125473_b0130) 1986; 31
Lund (10.1016/j.applthermaleng.2025.125473_b0015) 2012; 44
Wang (10.1016/j.applthermaleng.2025.125473_b0165) 2015; 72
Fu (10.1016/j.applthermaleng.2025.125473_b0205) 2015; 87
Kassemi (10.1016/j.applthermaleng.2025.125473_b0110) 2016; 74
Miao (10.1016/j.applthermaleng.2025.125473_b0085) 2022; 50
Kassemi (10.1016/j.applthermaleng.2025.125473_b0210) 2018; 89
Lv (10.1016/j.applthermaleng.2025.125473_b0200) 2021; 193
Huerta (10.1016/j.applthermaleng.2025.125473_b0120) 2021; 176
Beduz (10.1016/j.applthermaleng.2025.125473_b0230) 1984
10.1016/j.applthermaleng.2025.125473_b0140
Holman (10.1016/j.applthermaleng.2025.125473_b0240) 2002
Gursu (10.1016/j.applthermaleng.2025.125473_b0060) 1993; 115
Ludwig (10.1016/j.applthermaleng.2025.125473_b0050) 2014; 63
Seo (10.1016/j.applthermaleng.2025.125473_b0175) 2010; 50
10.1016/j.applthermaleng.2025.125473_b0225
Lan (10.1016/j.applthermaleng.2025.125473_b0105) 2024; 236
Zhang (10.1016/j.applthermaleng.2025.125473_b0090) 2024; 251
References_xml – volume: 112
  start-page: 866
  year: 2013
  end-page: 875
  ident: b0010
  article-title: What’s the most cost–effective policy of CO
  publication-title: Appl. Energy
– volume: 233
  year: 2021
  ident: b0190
  article-title: A thermal non-equilibrium model for predicting LNG boil-off in storage tanks incorporating the natural convection effect
  publication-title: Energy
– reference: N.T. Van Dresar, C.S. Lin, M.M. Hasan. Self-pressurization of a flightweight liquid hydrogen tank: Effects of fill level at low wall heat flux. NASA−TM−105411, 1992. https://ntrs.nasa.gov/citations/19920009200.
– volume: 142
  start-page: 1055
  year: 2017
  end-page: 1064
  ident: b0020
  article-title: Carbon dioxide storage schemes: technology, assessment and deployment
  publication-title: J. Clean. Prod.
– volume: 66
  year: 2022
  ident: b0025
  article-title: Research progress on CO
  publication-title: J. CO
– volume: 42
  start-page: 299
  year: 2005
  end-page: 309
  ident: b0195
  article-title: Self-pressurization of large spherical cryogenic tanks in space
  publication-title: J. Spacecr. Rocket.
– volume: 115
  start-page: 221
  year: 1993
  end-page: 227
  ident: b0060
  article-title: Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems-part 1: model development
  publication-title: J. Energy Res. Technol.
– volume: 27
  start-page: 116
  year: 2013
  end-page: 126
  ident: b0180
  article-title: Temperature stratification in a cryogenic fuel tank
  publication-title: J. Thermophys. Heat Transf.
– reference: N.T.V. Dresar, R.J. Stochl. Pressurization and expulsion of cryogenic liquids: Generic requirements for a low-gravity experiment. NASA−TM−104417, 1991. https://ntrs.nasa.gov/citations/19910015986.
– volume: 193
  year: 2021
  ident: b0215
  article-title: A numerical model for liquid-vapor transition in self-pressurized cryogenic containers
  publication-title: Appl. Therm. Eng.
– start-page: 285
  year: 2002
  end-page: 287
  ident: b0240
  article-title: Heat Transfer
– volume: 87
  start-page: 225
  year: 2015
  end-page: 233
  ident: b0205
  article-title: Influence of phase change on self-pressurization in cryogenic tanks under microgravity
  publication-title: Appl. Therm. Eng.
– volume: 160
  year: 2021
  ident: b0185
  article-title: A moving-boundary based dynamic model for predicting the transient free convection and thermal stratification in liquefied gas storage tank
  publication-title: Int. J. Therm. Sci.
– volume: 89
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0210
  article-title: Validation of two-phase CFD models for propellant tank self-pressurization: crossing fluid types, scales, and gravity levels
  publication-title: Cryogenics
– volume: 72
  start-page: 161
  year: 2015
  end-page: 171
  ident: b0165
  article-title: Performance analysis of no-vent fill process for liquid hydrogen tank in terrestrial and on-orbit environments
  publication-title: Cryogenics
– volume: 236
  year: 2024
  ident: b0105
  article-title: Modeling and simulation of cryogenic propellant tank pressurization in normal gravity
  publication-title: Appl. Therm. Eng.
– volume: 45
  start-page: 27792
  year: 2020
  end-page: 27805
  ident: b0075
  article-title: Numerical investigation on full thermodynamic venting process of liquid hydrogen in an on-orbit storage tank
  publication-title: Int. J. Hydrogen Energy
– volume: 50
  start-page: 71
  year: 2022
  end-page: 74
  ident: b0085
  article-title: Key technologies of liquid hydrogen container on vehicle
  publication-title: Cryogen. Superconductivity
– reference: M.M. Hasan, C.S. Lin, N.T. Van Dresar. Self-Pressurization of a Flightweight Liquid Hydrogen Storage Tank Subjected to Low Heat Flux. NASA−TM−103804, 1991. https://ntrs.nasa.gov/citations/19910011011.
– reference: Agafonov, M. Domashchenko. Liquid Cryogenic System. Translated by ZHAO Yunsheng & CUI Yune. Beijing: Cryogenics Editorial Office; 1993. p. 37−38.
– volume: 133
  start-page: 166
  year: 2017
  end-page: 176
  ident: b0070
  article-title: Concept of a self-pressurized feed system for liquid rocket engines and its fundamental experiment results
  publication-title: Acta Astronaut.
– volume: 44
  start-page: 469
  year: 2012
  end-page: 476
  ident: b0015
  article-title: The role of carbon capture and storage in a future sustainable energy system
  publication-title: Energy
– volume: 5
  start-page: 487
  year: 1960
  end-page: 497
  ident: b0145
  article-title: An experimental study concerning the pressurization and stratification of liquid hydrogen
  publication-title: Adv. Cryog. Eng.
– volume: 44
  start-page: 357
  year: 2004
  end-page: 362
  ident: b0100
  article-title: Investigation on performances of non-loss storage for cryogenic liquefied gas
  publication-title: Cryogenics
– volume: 184
  start-page: 74
  year: 2019
  end-page: 82
  ident: b0080
  article-title: Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank
  publication-title: Energy Convers. Manage.
– volume: 149
  year: 2020
  ident: b0235
  article-title: A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations
  publication-title: Int. J. Heat Mass Transf.
– volume: 115
  start-page: 228
  year: 1993
  end-page: 231
  ident: b0065
  article-title: Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems-part 2: model results and conclusions
  publication-title: J. Energy Res. Technol.
– reference: J.A. Clark. A review of pressurization, stratification, and interfacial phenomena. Heat Transfer Laboratory, Department of Mechanical Engineering, University of Michigan, 1964.
– reference: NIST Chemistry WebBook, NIST standard reference database number 69, October 2011 release.
– volume: 31
  start-page: 963
  year: 1986
  end-page: 971
  ident: b0130
  article-title: Numerical simulation of self pressurization in a small cryogenic tank
  publication-title: Adv. Cryog. Eng.
– volume: 176
  year: 2021
  ident: b0120
  article-title: CFD modelling of the isobaric evaporation of cryogenic liquids in storage tanks
  publication-title: Int. J. Heat Mass Transf.
– volume: 193
  year: 2021
  ident: b0200
  article-title: Thermodynamic analysis of partially filled hydrogen tanks in a wide scale range
  publication-title: Appl. Therm. Eng.
– volume: 228
  year: 2021
  ident: b0055
  article-title: Application of advanced exergy analysis for optimizing the design of carbon dioxide pressurization system
  publication-title: Energy
– volume: 47
  start-page: 30530
  year: 2022
  end-page: 30545
  ident: b0095
  article-title: Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks
  publication-title: Int. J. Hydrogen Energy
– volume: 251
  year: 2024
  ident: b0090
  article-title: Effect of initial temperature and pressure on the performance of CO
  publication-title: Appl. Therm. Eng.
– volume: 196
  year: 2022
  ident: b0030
  article-title: Experimental investigation of near-critical CO
  publication-title: Int. J. Heat Mass Transf.
– volume: 365
  year: 2024
  ident: b0220
  article-title: Thermal models for self-pressurization prediction of liquid hydrogen tanks: formulation, validation, assessment, and prospects
  publication-title: Fuel
– start-page: 745
  year: 2009
  end-page: 747
  ident: b0245
  article-title: Heat Transfer
– volume: 63
  start-page: 1
  year: 2014
  end-page: 16
  ident: b0050
  article-title: Investigation on thermodynamic phenomena of the active–pressurization process of cryogenic propellant tank
  publication-title: Cryogenics
– volume: 130
  start-page: 601
  year: 2019
  end-page: 612
  ident: b0170
  article-title: Thermal physical performance in liquid hydrogen tank under constant wall temperature
  publication-title: Renew. Energy
– reference: N.T.V. Dresar, R.J. Stochl. Pressurization and expulsion of a flightweight liquid hydrogen tank. NASA−TM−106427, 1993. https://ntrs.nasa.gov/citations/19940015704.
– reference: .
– reference: J.C. Aydelott, C.M. Spuckler. Effect of size on normal-gravity self-pressurization of spherical liquid hydrogen tankage. NASA−TN−D−5196, 1969.
– volume: 12
  start-page: 6245
  year: 2021
  ident: b0005
  article-title: Deep mitigation of CO
  publication-title: Nat. Commun.
– volume: 50
  start-page: 549
  year: 2010
  end-page: 555
  ident: b0175
  article-title: Analysis of self-pressurization phenomenon of cryogenic fluid storage tank with thermal diffusion model
  publication-title: Cryogenics
– volume: 43
  start-page: 22622
  year: 2018
  end-page: 22635
  ident: b0115
  article-title: Fluid thermal stratification in a non-isothermal liquid hydrogen tank under sloshing excitation
  publication-title: Int. J. Hydrogen Energy
– reference: G. Zilliac, M.A. Karabeyoglu. Modeling of propellant tank pressurization. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July, 2005; 10−13. doi: 10.2514/6.2005-3549.
– volume: 52
  start-page: 3767
  year: 2009
  end-page: 3777
  ident: b0160
  article-title: One-dimensional model of evaporation and condensation in the presence of a noncondensable gas with applications to cryogenic fluid storage
  publication-title: Int. J. Heat Mass Transf.
– volume: 209
  year: 2020
  ident: b0035
  article-title: Compact heat exchangers for supercritical CO
  publication-title: Energy Convers. Manage.
– volume: 74
  start-page: 138
  year: 2016
  end-page: 153
  ident: b0110
  article-title: Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank
  publication-title: Cryogenics
– start-page: 795
  year: 1984
  end-page: 803
  ident: b0230
  article-title: Thermal overfill, and the surface vaporisation of cryogenic liquids under storage conditions
  publication-title: Adv. Cryog. Eng.
– start-page: 285
  year: 2002
  ident: 10.1016/j.applthermaleng.2025.125473_b0240
– ident: 10.1016/j.applthermaleng.2025.125473_b0125
– ident: 10.1016/j.applthermaleng.2025.125473_b0150
– volume: 31
  start-page: 963
  year: 1986
  ident: 10.1016/j.applthermaleng.2025.125473_b0130
  article-title: Numerical simulation of self pressurization in a small cryogenic tank
  publication-title: Adv. Cryog. Eng.
  doi: 10.1007/978-1-4613-2213-9_108
– volume: 365
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.125473_b0220
  article-title: Thermal models for self-pressurization prediction of liquid hydrogen tanks: formulation, validation, assessment, and prospects
  publication-title: Fuel
  doi: 10.1016/j.fuel.2024.131247
– volume: 184
  start-page: 74
  year: 2019
  ident: 10.1016/j.applthermaleng.2025.125473_b0080
  article-title: Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.12.053
– volume: 112
  start-page: 866
  year: 2013
  ident: 10.1016/j.applthermaleng.2025.125473_b0010
  article-title: What’s the most cost–effective policy of CO2 targeted reduction: an application of aggregated economic technological model with CCS?
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.01.047
– volume: 130
  start-page: 601
  year: 2019
  ident: 10.1016/j.applthermaleng.2025.125473_b0170
  article-title: Thermal physical performance in liquid hydrogen tank under constant wall temperature
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.02.023
– start-page: 745
  year: 2009
  ident: 10.1016/j.applthermaleng.2025.125473_b0245
– volume: 193
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.125473_b0200
  article-title: Thermodynamic analysis of partially filled hydrogen tanks in a wide scale range
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117007
– volume: 45
  start-page: 27792
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.125473_b0075
  article-title: Numerical investigation on full thermodynamic venting process of liquid hydrogen in an on-orbit storage tank
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.07.099
– volume: 209
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.125473_b0035
  article-title: Compact heat exchangers for supercritical CO2 power cycle application
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112666
– volume: 27
  start-page: 116
  issue: 1
  year: 2013
  ident: 10.1016/j.applthermaleng.2025.125473_b0180
  article-title: Temperature stratification in a cryogenic fuel tank
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.T3933
– ident: 10.1016/j.applthermaleng.2025.125473_b0250
– volume: 115
  start-page: 221
  issue: 3
  year: 1993
  ident: 10.1016/j.applthermaleng.2025.125473_b0060
  article-title: Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems-part 1: model development
  publication-title: J. Energy Res. Technol.
  doi: 10.1115/1.2905997
– ident: 10.1016/j.applthermaleng.2025.125473_b0040
– volume: 142
  start-page: 1055
  issue: 2
  year: 2017
  ident: 10.1016/j.applthermaleng.2025.125473_b0020
  article-title: Carbon dioxide storage schemes: technology, assessment and deployment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.06.199
– volume: 115
  start-page: 228
  issue: 3
  year: 1993
  ident: 10.1016/j.applthermaleng.2025.125473_b0065
  article-title: Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems-part 2: model results and conclusions
  publication-title: J. Energy Res. Technol.
  doi: 10.1115/1.2905998
– volume: 63
  start-page: 1
  year: 2014
  ident: 10.1016/j.applthermaleng.2025.125473_b0050
  article-title: Investigation on thermodynamic phenomena of the active–pressurization process of cryogenic propellant tank
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2014.05.005
– volume: 43
  start-page: 22622
  year: 2018
  ident: 10.1016/j.applthermaleng.2025.125473_b0115
  article-title: Fluid thermal stratification in a non-isothermal liquid hydrogen tank under sloshing excitation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.113
– ident: 10.1016/j.applthermaleng.2025.125473_b0155
  doi: 10.2514/6.2005-3549
– ident: 10.1016/j.applthermaleng.2025.125473_b0135
– volume: 149
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.125473_b0235
  article-title: A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.119233
– volume: 52
  start-page: 3767
  year: 2009
  ident: 10.1016/j.applthermaleng.2025.125473_b0160
  article-title: One-dimensional model of evaporation and condensation in the presence of a noncondensable gas with applications to cryogenic fluid storage
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.02.027
– volume: 44
  start-page: 469
  issue: 1
  year: 2012
  ident: 10.1016/j.applthermaleng.2025.125473_b0015
  article-title: The role of carbon capture and storage in a future sustainable energy system
  publication-title: Energy
  doi: 10.1016/j.energy.2012.06.002
– volume: 233
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.125473_b0190
  article-title: A thermal non-equilibrium model for predicting LNG boil-off in storage tanks incorporating the natural convection effect
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121162
– volume: 5
  start-page: 487
  year: 1960
  ident: 10.1016/j.applthermaleng.2025.125473_b0145
  article-title: An experimental study concerning the pressurization and stratification of liquid hydrogen
  publication-title: Adv. Cryog. Eng.
– volume: 66
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.125473_b0025
  article-title: Research progress on CO2 capture and utilization technology
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2022.102260
– volume: 87
  start-page: 225
  year: 2015
  ident: 10.1016/j.applthermaleng.2025.125473_b0205
  article-title: Influence of phase change on self-pressurization in cryogenic tanks under microgravity
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.05.020
– volume: 176
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.125473_b0120
  article-title: CFD modelling of the isobaric evaporation of cryogenic liquids in storage tanks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121419
– volume: 72
  start-page: 161
  year: 2015
  ident: 10.1016/j.applthermaleng.2025.125473_b0165
  article-title: Performance analysis of no-vent fill process for liquid hydrogen tank in terrestrial and on-orbit environments
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2015.10.001
– volume: 50
  start-page: 71
  issue: 4
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.125473_b0085
  article-title: Key technologies of liquid hydrogen container on vehicle
  publication-title: Cryogen. Superconductivity
– volume: 160
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.125473_b0185
  article-title: A moving-boundary based dynamic model for predicting the transient free convection and thermal stratification in liquefied gas storage tank
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2020.106690
– volume: 12
  start-page: 6245
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.125473_b0005
  article-title: Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26509-z
– volume: 74
  start-page: 138
  year: 2016
  ident: 10.1016/j.applthermaleng.2025.125473_b0110
  article-title: Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2015.10.018
– volume: 228
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.125473_b0055
  article-title: Application of advanced exergy analysis for optimizing the design of carbon dioxide pressurization system
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120580
– volume: 42
  start-page: 299
  issue: 2
  year: 2005
  ident: 10.1016/j.applthermaleng.2025.125473_b0195
  article-title: Self-pressurization of large spherical cryogenic tanks in space
  publication-title: J. Spacecr. Rocket.
  doi: 10.2514/1.4571
– volume: 47
  start-page: 30530
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.125473_b0095
  article-title: Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.07.027
– volume: 193
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.125473_b0215
  article-title: A numerical model for liquid-vapor transition in self-pressurized cryogenic containers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117005
– volume: 236
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.125473_b0105
  article-title: Modeling and simulation of cryogenic propellant tank pressurization in normal gravity
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121628
– volume: 44
  start-page: 357
  issue: 5
  year: 2004
  ident: 10.1016/j.applthermaleng.2025.125473_b0100
  article-title: Investigation on performances of non-loss storage for cryogenic liquefied gas
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2004.02.004
– ident: 10.1016/j.applthermaleng.2025.125473_b0045
  doi: 10.2514/6.1993-1966
– volume: 133
  start-page: 166
  year: 2017
  ident: 10.1016/j.applthermaleng.2025.125473_b0070
  article-title: Concept of a self-pressurized feed system for liquid rocket engines and its fundamental experiment results
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.01.017
– ident: 10.1016/j.applthermaleng.2025.125473_b0140
  doi: 10.2514/6.1992-818
– volume: 251
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.125473_b0090
  article-title: Effect of initial temperature and pressure on the performance of CO2 discharge under gas pressurization
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.123605
– volume: 50
  start-page: 549
  year: 2010
  ident: 10.1016/j.applthermaleng.2025.125473_b0175
  article-title: Analysis of self-pressurization phenomenon of cryogenic fluid storage tank with thermal diffusion model
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2010.02.021
– ident: 10.1016/j.applthermaleng.2025.125473_b0225
– volume: 89
  start-page: 1
  year: 2018
  ident: 10.1016/j.applthermaleng.2025.125473_b0210
  article-title: Validation of two-phase CFD models for propellant tank self-pressurization: crossing fluid types, scales, and gravity levels
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2017.10.019
– volume: 196
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.125473_b0030
  article-title: Experimental investigation of near-critical CO2 heat transfer performance in a closed natural circulation loop
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.123225
– start-page: 795
  year: 1984
  ident: 10.1016/j.applthermaleng.2025.125473_b0230
  article-title: Thermal overfill, and the surface vaporisation of cryogenic liquids under storage conditions
  publication-title: Adv. Cryog. Eng.
  doi: 10.1007/978-1-4613-9865-3_90
SSID ssj0012874
Score 2.4481437
Snippet [Display omitted] •A liquid CO2 discharge system under backflow-style self-pressurization is proposed.•A thermal multi-zone model is developed to describe the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 125473
SubjectTerms High-pressure CO2
Liquid medium feed
Self-pressurization
Thermal multi-zone model (TMZM)
Tube heat exchanger
Title Modeling and thermodynamic analysis of liquid carbon dioxide discharge process under backflow-style self-pressurization
URI https://dx.doi.org/10.1016/j.applthermaleng.2025.125473
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60guhBfGJ9lD14Xdsku9nuSaRYqqIXLfQW9gnRmtQ-UC_-dneTVFvwIHjMQmbDxzLfTHa-GYCzSDvSMy2JDTfKJShMYO7iCGxZIBkNYtGW_j_k3X3c65ObAR2sQGeuhfFllZXvL3164a2rlWaFZnOUps2HIKLc0Z9j6IJYB6uwFkY8pjVYu7y-7d1_Xyb4lu5F3kU59i-sw9lPmZe_J_ah1ovwk0tcwhjSc2eSsOh3plpgn-42bFVhI7osv2wHVky2C5sLzQT34M2PNfPiciQyjYrNcl3Om3crZesRlFs0TF9nqUZKjGWeIZ3m76k2yKtzfdMkg0aldAB5ddkYSaGe7TB_w5Ppx9CgiRlaXNTOzsaVgnMf-t2rx04PV2MVsApZMMXaRXSai6htlGN_SYmSsiV9YqcYca5bGEasZYwL2gpFqDk1WmnuAzsdu_QsOoBalmfmEBDRut2ygVGUK0KZ5KFmVNiQSEtJ0OZ1oHMIk1HZPSOZl5U9JcvQJx76pIS-DhdzvJOl05A4R_8nC0f_tnAMG_6prNI5gdp0PDOnLgCZygasnn8GjeqYfQG5z-B-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSCwHxCp2fOBq2iR2XZ8QQqCyXgCpt8irFChJKa2AC9-OJ0lZJA5IXJ3IiZ6seTPJezMA-4kNpOeamjrpTChQhKIy5BHUi0gLHrVUW-N3yKvrVueOnXd5dwKOx14YlFXWsb-K6WW0rlcaNZqNfpY1bqKEy0B_gaFLYu1OwjTjiUBd38H7p84jwobuZdXFJcXbZ2D_S-SFf4kx0XpUOLcklIsxPwgbMpH8zlPfuOd0ERbqpJEcVe-1BBMuX4b5b60EV-AFh5qhtZyo3JLyYYWtps2HlarxCCk86WVPo8wSowa6yInNitfMOoLeXGyZ5Ei_Mg4Q9JYNiFbmwfeKF_o8fOs58ux6npbK2dGg9m-uwt3pye1xh9ZDFaiJRTSkNuRzVqqk7Uzgfs2Z0bqpsawzgoXArZxg3gshFW_GKraSO2usxLTOtkJxlqzBVF7kbh0Is7bd9JEzXBrGhZaxFVz5mGnPWdSWG8DHEKb9qndGOhaV3ac_oU8R-rSCfgMOx3inP85CGsL8n3bY_PcOezDbub26TC_Pri-2YA6vVHqdbZgaDkZuJ6QiQ71bHrUPp9PhSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+thermodynamic+analysis+of+liquid+carbon+dioxide+discharge+process+under+backflow-style+self-pressurization&rft.jtitle=Applied+thermal+engineering&rft.au=Zhang%2C+Quan&rft.au=Qin%2C+Bin&rft.au=Xiong%2C+Yu&rft.au=Zhou%2C+Naijun&rft.date=2025-04-01&rft.issn=1359-4311&rft.volume=264&rft.spage=125473&rft_id=info:doi/10.1016%2Fj.applthermaleng.2025.125473&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2025_125473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon