A Method of Conjugate Directions for Linearly Constrained Nonlinear Programming Problems

An iterative method is described for the minimization of a continuously differentiable function F(x) of n variables subject to linear inequality constraints. Without any assumptions on second order derivatives it is shown that every cluster point of the sequence {xj} generated by this method is a st...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on numerical analysis Vol. 12; no. 3; pp. 273 - 303
Main Author Ritter, Klaus
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.06.1975
Subjects
Online AccessGet full text
ISSN0036-1429
1095-7170
DOI10.1137/0712024

Cover

Loading…
Abstract An iterative method is described for the minimization of a continuously differentiable function F(x) of n variables subject to linear inequality constraints. Without any assumptions on second order derivatives it is shown that every cluster point of the sequence {xj} generated by this method is a stationary point. If {xj} has a cluster point z such that F(x) is twice continuously differentiable in some neighborhood of z and the Hessian matrix of F(x) has certain properties, then {xj} converges to z and the convergence is (n - p)-step superlinear, where p is the number of constraints which are active for z. Furthermore, a simple procedure is given for deriving a new sequence {yj} from the sequence {xj} which converges faster to z in the sense that |yj- z| |xj- z|-1→ 0 as j → ∞.
AbstractList An iterative method is described for the minimization of a continuously differentiable function F(x) of n variables subject to linear inequality constraints. Without any assumptions on second order derivatives it is shown that every cluster point of the sequence {xj} generated by this method is a stationary point. If {xj} has a cluster point z such that F(x) is twice continuously differentiable in some neighborhood of z and the Hessian matrix of F(x) has certain properties, then {xj} converges to z and the convergence is (n - p)-step superlinear, where p is the number of constraints which are active for z. Furthermore, a simple procedure is given for deriving a new sequence {yj} from the sequence {xj} which converges faster to z in the sense that |yj- z| |xj- z|-1→ 0 as j → ∞.
An iterative method is described for the minimization of a continuously differentiable function $F(x)$ of $n$ variables subject to linear inequality constraints. Without any assumptions on second order derivatives it is shown that every cluster point of the sequence $\{ {x_j } \}$ generated by this method is a stationary point. If $\{ {x_j } \}$ has a cluster point $z$ such that $F(x)$ is twice continuously differentiable in some neighborhood of $z$ and the Hessian matrix of $F(x)$ has certain properties, then $\{ {x_j } \}$ converges to $z$ and the convergence is $(n - p)$-step superlinear, where $p$ is the number of constraints which are active for $z$. Furthermore, a simple procedure is given for deriving a new sequence $\{ {y_j } \}$ from the sequence $\{ {x_j } \}$ which converges faster to $z$ in the sense that $\| {y_j - z} \|\| {x_j - z} \|^{ - 1} \to 0$ as $j \to \infty $.
Author Ritter, Klaus
Author_xml – sequence: 1
  givenname: Klaus
  surname: Ritter
  fullname: Ritter, Klaus
BookMark eNptkEtPwzAQhC1UJNqC-AMcLC6cAms7cZJjVZ5SeRxA4hY5tlMSJXax3UP_PQ5FHBCn3R19mtXMDE2MNRqhUwKXhLD8CnJCgaYHaEqgzJKc5DBBUwDGE5LS8gjNvO8g3gVhU_S-wI86fFiFbYOX1nTbtQgaX7dOy9Ba43FjHV61RgvX70bCByfiqfCTNf23jl-cXTsxDK1Zj3vd68Efo8NG9F6f_Mw5eru9eV3eJ6vnu4flYpVImpOQlFmdsZTJsmE1cMgEE5pqkupU1JBJnauYRxCpRKNUmvEocFXklBVFIbkCNkfne9-Ns59b7UPV2a0z8WVVUsZjSigjdLGHpLPeO91UG9cOwu0qAtXYWvXTWiSTP6RsgxibGGP3__Bne77zwbpfW0oyDilnX10beIc
CitedBy_id crossref_primary_10_1007_BF01681341
crossref_primary_10_1007_BF02242308
crossref_primary_10_1080_02331938608843136
crossref_primary_10_1137_S1052623494279122
crossref_primary_10_1090_S0025_5718_1976_0431675_3
crossref_primary_10_1016_S1474_6670_17_65835_X
crossref_primary_10_1080_00207160_2018_1517208
crossref_primary_10_1007_BF02591738
crossref_primary_10_1109_83_350812
Cites_doi 10.1007/BF00934971
10.1007/BF01584646
10.1016/B978-0-12-597050-1.50008-7
10.2140/pjm.1966.16.1
ContentType Journal Article
Copyright Copyright 1975 Society for Industrial and Applied Mathematics
[Copyright] © 1975 Society for Industrial and Applied Mathematics
Copyright_xml – notice: Copyright 1975 Society for Industrial and Applied Mathematics
– notice: [Copyright] © 1975 Society for Industrial and Applied Mathematics
DBID AAYXX
CITATION
3V.
7WY
7WZ
7X2
7XB
87Z
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
LK8
M0C
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1137/0712024
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Agricultural Science Database
Computing Database
Military Database
Research Library
ProQuest Science Database (NC LIVE)
Telecommunications Database
Biological Science Database
ProQuest Engineering Database (NC LIVE)
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Agricultural Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1095-7170
EndPage 303
ExternalDocumentID 2595941471
10_1137_0712024
2156046
GroupedDBID -DZ
-~X
123
2AX
3R3
4.4
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
AALVN
AAWIL
ABAWQ
ABBHK
ABFAN
ABJCF
ABPFR
ABPQH
ABUWG
ABXSQ
ABYWD
ACBEA
ACGFO
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACPRK
ACTMH
ACUBG
ADBBV
ADODI
ADULT
AENEX
AEUPB
AFKRA
AFRAH
AFVYC
AFXHP
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CS3
CZ9
D1I
D1J
D1K
DQDLB
DSRWC
DU5
DWQXO
EBS
ECEWR
EJD
ESX
FEDTE
FRNLG
FVMVE
GNUQQ
GUQSH
HCIFZ
HGD
HQ6
HVGLF
IPSME
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
MVM
N9A
NHB
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RNS
RSI
SA0
T9H
TN5
WH7
YNT
YXE
.4S
.DC
3EH
8WZ
A6W
AASXH
AAYJJ
AAYXX
ABDBF
ABKAD
ABMZU
ACUHS
ANXRF
ARCSS
CITATION
DQ2
EAP
EDO
EMK
EST
H13
H~9
I-F
P0-
TAE
TUS
WHG
ZCG
3V.
7XB
88A
88K
8AL
8FK
JQ2
L.-
M0N
M2T
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c271t-95b5343c9f3b0605a3ae2e14e4ab05ce7d071a1cdafdd456e7d6d8723888c6d03
IEDL.DBID 8FG
ISSN 0036-1429
IngestDate Fri Jul 25 12:16:52 EDT 2025
Thu Apr 24 23:13:12 EDT 2025
Tue Jul 01 03:04:14 EDT 2025
Thu Jun 19 15:12:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c271t-95b5343c9f3b0605a3ae2e14e4ab05ce7d071a1cdafdd456e7d6d8723888c6d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
PQID 923638109
PQPubID 666303
PageCount 31
ParticipantIDs proquest_journals_923638109
crossref_primary_10_1137_0712024
crossref_citationtrail_10_1137_0712024
jstor_primary_2156046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 19750601
PublicationDateYYYYMMDD 1975-06-01
PublicationDate_xml – month: 06
  year: 1975
  text: 19750601
  day: 01
PublicationDecade 1970
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle SIAM journal on numerical analysis
PublicationYear 1975
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References R10
R4
Zoutendijk G. (R9) 1960
Murtagh B. A. (R5) 1969
Goldstein Allen A. (R2) 1967
R7
Ritter K. (R6) 1971; 13
Vainberg M. M. (R8) 1964
Mangasarian Olvi L. (R3) 1969
R1
References_xml – volume-title: Nonlinear programming
  year: 1969
  ident: R3
– ident: R4
  doi: 10.1007/BF00934971
– start-page: 215
  volume-title: Optimization (Sympos., Univ. Keele, Keele, 1968)
  year: 1969
  ident: R5
– volume-title: Methods of feasible directions: A study in linear and non-linear programming
  year: 1960
  ident: R9
– ident: R7
  doi: 10.1007/BF01584646
– volume: 13
  start-page: 293
  year: 1971
  ident: R6
  publication-title: Methods of Operations Research
– volume-title: Variational methods for the study of nonlinear operators
  year: 1964
  ident: R8
– volume-title: Constructive real analysis
  year: 1967
  ident: R2
– ident: R10
  doi: 10.1016/B978-0-12-597050-1.50008-7
– ident: R1
  doi: 10.2140/pjm.1966.16.1
SSID ssj0003813
Score 1.2285249
Snippet An iterative method is described for the minimization of a continuously differentiable function F(x) of n variables subject to linear inequality constraints....
An iterative method is described for the minimization of a continuously differentiable function $F(x)$ of $n$ variables subject to linear inequality...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 273
SubjectTerms Algorithms
Hessian matrices
Lipschitz condition
Mathematical functions
Mathematical vectors
Matrices
Nonlinear programming
Optimal solutions
Real numbers
Steepest descent method
Taylors theorem
Title A Method of Conjugate Directions for Linearly Constrained Nonlinear Programming Problems
URI https://www.jstor.org/stable/2156046
https://www.proquest.com/docview/923638109
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90e9EHP-bEOR15EN-KS5P040nm2BzCxhAHeyv56oPopnb7_720WUEGPrU0R2kul7tf0svvAO6EyRMRch3ghQc80iJQoWGBRuicGyYiWfLMTmfRZMFflmLpc3MKn1a584mlozZr7fbIHxCIRI6NKn38-g5c0Sj3c9VX0DiEJsVA48w8GT_XjhjFa85din63OjNLqaP0iSmu-vmfYFTlI-755DLQjM_gxCNEMqiG9BwO7KoFpx4tEj8XixYcT2vG1eIClgMyLYtBk3VOhuvV-9btjxHv0dC0CKJTgitP6xiNnURRVofAV84qtgz5Q-ZVstYnhjN37yrNFG1YjEdvw0ngqyYEOozpJkiFEowzneZM9VHjkkkbWsotl6ovtI0Ndl5SbWRuDMInfBCZxNUeSxIdmT67hMZqvbJXQIxgNmchzVOtuEriVDFDuZIqDbXmfdmB-536Mu0pxd23f2Tl0oLFmddzB0gt-FWxaOyLtEv91-2hO-PNow50d-OR-elVZLUxXP_b2oUjmsaiyuy6gcbmZ2tvEUNsVK-0lB40n0az-esvA17Gxw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcoAeoLzUBdr6ANwi4lceh6qiFLQ8doUQSHsLfuWA6O6WLEL8qP7HjhMnUoXUG6dEsWVZ4_HMZ2fmG4B9actMMmEifIhIJEZGmlkeGYTOpeUyUTXP7HCUDO7ExViOF-BPmwvjwypbm1gbajs1_o78CIFI4tmo8u-z35EvGuV_rrYVNBqtuHSvL3hiq76d_8TlPWDs7PT2ZBCFogKRYSmdR7nUkgtu8pLrGCekuHLMUeGE0rE0LrXodBU1VpXWIrrAD4nNfGmuLDOJjTmOuwhLwie09mDpx-no-qYz_TjBjuWXoqVvsnQp9SRCKWUxE_-4vyYC8o0XqF3b2UdYDZiUHDdKtA4LbrIBawGfkrD7qw34MOw4XqtNGB-TYV1-mkxLcjKdPDz7GzkSbCgqM0E8TPCs6zyHsu9R1fUocMhRw8-hnsh1Ex72Cx2of_e1baotuHsXkW5DbzKduE9ArOSu5IyWudFCZ2muuaVCK50zY0Ss-nDYiq8wgcTcz_2xqA8zPC2CnPtAuo6zhrfjbZetWv5dO_NZ5SLpw267HkXY0FXRqd_Of1u_wvLgdnhVXJ2PLndhheapbOLK9qA3f3p2nxHBzPWXoDcE7t9bVf8CgBQEAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+of+Conjugate+Directions+for+Linearly+Constrained+Nonlinear+Programming+Problems&rft.jtitle=SIAM+journal+on+numerical+analysis&rft.au=Ritter%2C+Klaus&rft.date=1975-06-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0036-1429&rft.eissn=1095-7170&rft.volume=12&rft.issue=3&rft.spage=273&rft_id=info:doi/10.1137%2F0712024&rft.externalDocID=2595941471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-1429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-1429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-1429&client=summon