A Method of Conjugate Directions for Linearly Constrained Nonlinear Programming Problems
An iterative method is described for the minimization of a continuously differentiable function F(x) of n variables subject to linear inequality constraints. Without any assumptions on second order derivatives it is shown that every cluster point of the sequence {xj} generated by this method is a st...
Saved in:
Published in | SIAM journal on numerical analysis Vol. 12; no. 3; pp. 273 - 303 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.06.1975
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-1429 1095-7170 |
DOI | 10.1137/0712024 |
Cover
Loading…
Abstract | An iterative method is described for the minimization of a continuously differentiable function F(x) of n variables subject to linear inequality constraints. Without any assumptions on second order derivatives it is shown that every cluster point of the sequence {xj} generated by this method is a stationary point. If {xj} has a cluster point z such that F(x) is twice continuously differentiable in some neighborhood of z and the Hessian matrix of F(x) has certain properties, then {xj} converges to z and the convergence is (n - p)-step superlinear, where p is the number of constraints which are active for z. Furthermore, a simple procedure is given for deriving a new sequence {yj} from the sequence {xj} which converges faster to z in the sense that |yj- z| |xj- z|-1→ 0 as j → ∞. |
---|---|
AbstractList | An iterative method is described for the minimization of a continuously differentiable function F(x) of n variables subject to linear inequality constraints. Without any assumptions on second order derivatives it is shown that every cluster point of the sequence {xj} generated by this method is a stationary point. If {xj} has a cluster point z such that F(x) is twice continuously differentiable in some neighborhood of z and the Hessian matrix of F(x) has certain properties, then {xj} converges to z and the convergence is (n - p)-step superlinear, where p is the number of constraints which are active for z. Furthermore, a simple procedure is given for deriving a new sequence {yj} from the sequence {xj} which converges faster to z in the sense that |yj- z| |xj- z|-1→ 0 as j → ∞. An iterative method is described for the minimization of a continuously differentiable function $F(x)$ of $n$ variables subject to linear inequality constraints. Without any assumptions on second order derivatives it is shown that every cluster point of the sequence $\{ {x_j } \}$ generated by this method is a stationary point. If $\{ {x_j } \}$ has a cluster point $z$ such that $F(x)$ is twice continuously differentiable in some neighborhood of $z$ and the Hessian matrix of $F(x)$ has certain properties, then $\{ {x_j } \}$ converges to $z$ and the convergence is $(n - p)$-step superlinear, where $p$ is the number of constraints which are active for $z$. Furthermore, a simple procedure is given for deriving a new sequence $\{ {y_j } \}$ from the sequence $\{ {x_j } \}$ which converges faster to $z$ in the sense that $\| {y_j - z} \|\| {x_j - z} \|^{ - 1} \to 0$ as $j \to \infty $. |
Author | Ritter, Klaus |
Author_xml | – sequence: 1 givenname: Klaus surname: Ritter fullname: Ritter, Klaus |
BookMark | eNptkEtPwzAQhC1UJNqC-AMcLC6cAms7cZJjVZ5SeRxA4hY5tlMSJXax3UP_PQ5FHBCn3R19mtXMDE2MNRqhUwKXhLD8CnJCgaYHaEqgzJKc5DBBUwDGE5LS8gjNvO8g3gVhU_S-wI86fFiFbYOX1nTbtQgaX7dOy9Ba43FjHV61RgvX70bCByfiqfCTNf23jl-cXTsxDK1Zj3vd68Efo8NG9F6f_Mw5eru9eV3eJ6vnu4flYpVImpOQlFmdsZTJsmE1cMgEE5pqkupU1JBJnauYRxCpRKNUmvEocFXklBVFIbkCNkfne9-Ns59b7UPV2a0z8WVVUsZjSigjdLGHpLPeO91UG9cOwu0qAtXYWvXTWiSTP6RsgxibGGP3__Bne77zwbpfW0oyDilnX10beIc |
CitedBy_id | crossref_primary_10_1007_BF01681341 crossref_primary_10_1007_BF02242308 crossref_primary_10_1080_02331938608843136 crossref_primary_10_1137_S1052623494279122 crossref_primary_10_1090_S0025_5718_1976_0431675_3 crossref_primary_10_1016_S1474_6670_17_65835_X crossref_primary_10_1080_00207160_2018_1517208 crossref_primary_10_1007_BF02591738 crossref_primary_10_1109_83_350812 |
Cites_doi | 10.1007/BF00934971 10.1007/BF01584646 10.1016/B978-0-12-597050-1.50008-7 10.2140/pjm.1966.16.1 |
ContentType | Journal Article |
Copyright | Copyright 1975 Society for Industrial and Applied Mathematics [Copyright] © 1975 Society for Industrial and Applied Mathematics |
Copyright_xml | – notice: Copyright 1975 Society for Industrial and Applied Mathematics – notice: [Copyright] © 1975 Society for Industrial and Applied Mathematics |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7X2 7XB 87Z 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V LK8 M0C M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
DOI | 10.1137/0712024 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Agricultural Science Database Computing Database Military Database Research Library ProQuest Science Database (NC LIVE) Telecommunications Database Biological Science Database ProQuest Engineering Database (NC LIVE) Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Telecommunications ProQuest One Applied & Life Sciences Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1095-7170 |
EndPage | 303 |
ExternalDocumentID | 2595941471 10_1137_0712024 2156046 |
GroupedDBID | -DZ -~X 123 2AX 3R3 4.4 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 AALVN AAWIL ABAWQ ABBHK ABFAN ABJCF ABPFR ABPQH ABUWG ABXSQ ABYWD ACBEA ACGFO ACGOD ACHJO ACIWK ACMTB ACNCT ACPRK ACTMH ACUBG ADBBV ADODI ADULT AENEX AEUPB AFKRA AFRAH AFVYC AFXHP AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CS3 CZ9 D1I D1J D1K DQDLB DSRWC DU5 DWQXO EBS ECEWR EJD ESX FEDTE FRNLG FVMVE GNUQQ GUQSH HCIFZ HGD HQ6 HVGLF IPSME JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S MVM N9A NHB P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY RJG RNS RSI SA0 T9H TN5 WH7 YNT YXE .4S .DC 3EH 8WZ A6W AASXH AAYJJ AAYXX ABDBF ABKAD ABMZU ACUHS ANXRF ARCSS CITATION DQ2 EAP EDO EMK EST H13 H~9 I-F P0- TAE TUS WHG ZCG 3V. 7XB 88A 88K 8AL 8FK JQ2 L.- M0N M2T MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c271t-95b5343c9f3b0605a3ae2e14e4ab05ce7d071a1cdafdd456e7d6d8723888c6d03 |
IEDL.DBID | 8FG |
ISSN | 0036-1429 |
IngestDate | Fri Jul 25 12:16:52 EDT 2025 Thu Apr 24 23:13:12 EDT 2025 Tue Jul 01 03:04:14 EDT 2025 Thu Jun 19 15:12:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c271t-95b5343c9f3b0605a3ae2e14e4ab05ce7d071a1cdafdd456e7d6d8723888c6d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
PQID | 923638109 |
PQPubID | 666303 |
PageCount | 31 |
ParticipantIDs | proquest_journals_923638109 crossref_primary_10_1137_0712024 crossref_citationtrail_10_1137_0712024 jstor_primary_2156046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 19750601 |
PublicationDateYYYYMMDD | 1975-06-01 |
PublicationDate_xml | – month: 06 year: 1975 text: 19750601 day: 01 |
PublicationDecade | 1970 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | SIAM journal on numerical analysis |
PublicationYear | 1975 |
Publisher | Society for Industrial and Applied Mathematics |
Publisher_xml | – name: Society for Industrial and Applied Mathematics |
References | R10 R4 Zoutendijk G. (R9) 1960 Murtagh B. A. (R5) 1969 Goldstein Allen A. (R2) 1967 R7 Ritter K. (R6) 1971; 13 Vainberg M. M. (R8) 1964 Mangasarian Olvi L. (R3) 1969 R1 |
References_xml | – volume-title: Nonlinear programming year: 1969 ident: R3 – ident: R4 doi: 10.1007/BF00934971 – start-page: 215 volume-title: Optimization (Sympos., Univ. Keele, Keele, 1968) year: 1969 ident: R5 – volume-title: Methods of feasible directions: A study in linear and non-linear programming year: 1960 ident: R9 – ident: R7 doi: 10.1007/BF01584646 – volume: 13 start-page: 293 year: 1971 ident: R6 publication-title: Methods of Operations Research – volume-title: Variational methods for the study of nonlinear operators year: 1964 ident: R8 – volume-title: Constructive real analysis year: 1967 ident: R2 – ident: R10 doi: 10.1016/B978-0-12-597050-1.50008-7 – ident: R1 doi: 10.2140/pjm.1966.16.1 |
SSID | ssj0003813 |
Score | 1.2285249 |
Snippet | An iterative method is described for the minimization of a continuously differentiable function F(x) of n variables subject to linear inequality constraints.... An iterative method is described for the minimization of a continuously differentiable function $F(x)$ of $n$ variables subject to linear inequality... |
SourceID | proquest crossref jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 273 |
SubjectTerms | Algorithms Hessian matrices Lipschitz condition Mathematical functions Mathematical vectors Matrices Nonlinear programming Optimal solutions Real numbers Steepest descent method Taylors theorem |
Title | A Method of Conjugate Directions for Linearly Constrained Nonlinear Programming Problems |
URI | https://www.jstor.org/stable/2156046 https://www.proquest.com/docview/923638109 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90e9EHP-bEOR15EN-KS5P040nm2BzCxhAHeyv56oPopnb7_720WUEGPrU0R2kul7tf0svvAO6EyRMRch3ghQc80iJQoWGBRuicGyYiWfLMTmfRZMFflmLpc3MKn1a584mlozZr7fbIHxCIRI6NKn38-g5c0Sj3c9VX0DiEJsVA48w8GT_XjhjFa85din63OjNLqaP0iSmu-vmfYFTlI-755DLQjM_gxCNEMqiG9BwO7KoFpx4tEj8XixYcT2vG1eIClgMyLYtBk3VOhuvV-9btjxHv0dC0CKJTgitP6xiNnURRVofAV84qtgz5Q-ZVstYnhjN37yrNFG1YjEdvw0ngqyYEOozpJkiFEowzneZM9VHjkkkbWsotl6ovtI0Ndl5SbWRuDMInfBCZxNUeSxIdmT67hMZqvbJXQIxgNmchzVOtuEriVDFDuZIqDbXmfdmB-536Mu0pxd23f2Tl0oLFmddzB0gt-FWxaOyLtEv91-2hO-PNow50d-OR-elVZLUxXP_b2oUjmsaiyuy6gcbmZ2tvEUNsVK-0lB40n0az-esvA17Gxw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcoAeoLzUBdr6ANwi4lceh6qiFLQ8doUQSHsLfuWA6O6WLEL8qP7HjhMnUoXUG6dEsWVZ4_HMZ2fmG4B9actMMmEifIhIJEZGmlkeGYTOpeUyUTXP7HCUDO7ExViOF-BPmwvjwypbm1gbajs1_o78CIFI4tmo8u-z35EvGuV_rrYVNBqtuHSvL3hiq76d_8TlPWDs7PT2ZBCFogKRYSmdR7nUkgtu8pLrGCekuHLMUeGE0rE0LrXodBU1VpXWIrrAD4nNfGmuLDOJjTmOuwhLwie09mDpx-no-qYz_TjBjuWXoqVvsnQp9SRCKWUxE_-4vyYC8o0XqF3b2UdYDZiUHDdKtA4LbrIBawGfkrD7qw34MOw4XqtNGB-TYV1-mkxLcjKdPDz7GzkSbCgqM0E8TPCs6zyHsu9R1fUocMhRw8-hnsh1Ex72Cx2of_e1baotuHsXkW5DbzKduE9ArOSu5IyWudFCZ2muuaVCK50zY0Ss-nDYiq8wgcTcz_2xqA8zPC2CnPtAuo6zhrfjbZetWv5dO_NZ5SLpw267HkXY0FXRqd_Of1u_wvLgdnhVXJ2PLndhheapbOLK9qA3f3p2nxHBzPWXoDcE7t9bVf8CgBQEAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+of+Conjugate+Directions+for+Linearly+Constrained+Nonlinear+Programming+Problems&rft.jtitle=SIAM+journal+on+numerical+analysis&rft.au=Ritter%2C+Klaus&rft.date=1975-06-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0036-1429&rft.eissn=1095-7170&rft.volume=12&rft.issue=3&rft.spage=273&rft_id=info:doi/10.1137%2F0712024&rft.externalDocID=2595941471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-1429&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-1429&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-1429&client=summon |