Joint Estimation of DOA and Range for Near-Field Sources in the Presence of Far-Field Sources and Alpha-Stable Noise
This work presents an effective and robust methodology to achieve the joint estimation of direction-of-arrival (DOA) and range. One or more near-field sources are the signals of interest. Far-field sources and alpha-stable noise are additive interferences and will be removed in two steps. First, alp...
Saved in:
Published in | IEEE signal processing letters Vol. 31; pp. 406 - 410 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work presents an effective and robust methodology to achieve the joint estimation of direction-of-arrival (DOA) and range. One or more near-field sources are the signals of interest. Far-field sources and alpha-stable noise are additive interferences and will be removed in two steps. First, alpha-stable noise is suppressed into Gaussian or sub-Gaussian noise through a proposed mathematical limiter. Then, the near-field sources are separated from the mixed sources according to the specific technique. The two steps involve three key technologies, including noise reduction, sparse reconstruction, and subspace decomposition. In the experiments, we design an assessment standard for missing detection in data calculation, which is of utmost importance to demonstrate the novel methodology's superiority compared to the other existing competitive ones. |
---|---|
AbstractList | This work presents an effective and robust methodology to achieve the joint estimation of direction-of-arrival (DOA) and range. One or more near-field sources are the signals of interest. Far-field sources and alpha-stable noise are additive interferences and will be removed in two steps. First, alpha-stable noise is suppressed into Gaussian or sub-Gaussian noise through a proposed mathematical limiter. Then, the near-field sources are separated from the mixed sources according to the specific technique. The two steps involve three key technologies, including noise reduction, sparse reconstruction, and subspace decomposition. In the experiments, we design an assessment standard for missing detection in data calculation, which is of utmost importance to demonstrate the novel methodology's superiority compared to the other existing competitive ones. |
Author | Luan, Shengyang Wang, Mengjia Feng, Hao Liu, Tao Zhang, Jiacheng |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-2480-2513 surname: Liu fullname: Liu, Tao organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 2 givenname: Mengjia orcidid: 0009-0002-3500-9403 surname: Wang fullname: Wang, Mengjia organization: School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 3 givenname: Hao orcidid: 0000-0003-4418-5847 surname: Feng fullname: Feng, Hao organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 4 givenname: Shengyang orcidid: 0000-0002-3252-6854 surname: Luan fullname: Luan, Shengyang organization: School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou, China – sequence: 5 givenname: Jiacheng orcidid: 0000-0001-6422-7114 surname: Zhang fullname: Zhang, Jiacheng organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China |
BookMark | eNplkD1vwjAQhq2KSgXavaOlzqH-SuKMiEI_hACVdrbs5FyCqE1tM_TfNxFsne6G533v9IzQwHkHCN1TMqGUVI_L7WbCCBMTzvNCUHaFhjTPZcZ4QQfdTkqSVRWRN2gU454QIqnMhyi9-dYlPI-p_dap9Q57i5_WU6xdg9-1-wJsfcAr0CFbtHBo8NafQg0Rtw6nHeBNgAiuhj63-Af1LdPDcaezbdLmAHjl2wi36NrqQ4S7yxyjz8X8Y_aSLdfPr7PpMqtZSVNWVkCbMjfaiJwDCGFtRaUEXQgrDAfTNBwqQi1tuJHGsFrXhTQgmoIVkgEfo4dz7zH4nxPEpPbdX647qVjXVIhSUN5R5EzVwccYwKpj6GSEX0WJ6t2qzq3q3aqLW_4HKM5t7g |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3398351 |
Cites_doi | 10.1109/TIT.2007.909108 10.1016/j.sigpro.2019.06.001 10.1016/j.acha.2009.04.002 10.1016/j.dsp.2020.102899 10.1109/TCSII.2022.3168565 10.1016/j.sigpro.2023.108988 10.1109/TSP.2019.2961226 10.1016/j.sigpro.2018.11.018 10.1016/j.dsp.2017.06.004 10.1007/s00041-008-9045-x 10.1016/j.sigpro.2020.107665 10.1109/TIT.2005.862083 10.1109/TSP.2020.3037841 10.1109/TWC.2022.3223428 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TSP.2021.3068353 10.1109/TIT.2014.2310482 10.1109/LSP.2020.2984914 10.1109/TAP.2019.2925199 10.3390/fractalfract7020184 10.1109/TAES.2022.3201069 10.21236/ADA415451 10.1109/TSP.2005.855100 10.1109/TIT.2006.871582 10.1016/j.sigpro.2018.03.020 10.1109/TSP.2022.3217353 10.1109/TIT.2009.2016006 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LSP.2024.3356412 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2361 |
EndPage | 410 |
ExternalDocumentID | 10_1109_LSP_2024_3356412 |
GroupedDBID | -~X .DC 0R~ 0ZS 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAYJJ AAYXX ABFSI ABQJQ ACGFO ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TAE TN5 VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c271t-79e1d75bab453ee44ff9188ea64f4b3ebdd3e901f1d3b8bb2cac68be4d62682e3 |
ISSN | 1070-9908 |
IngestDate | Thu Oct 10 20:20:00 EDT 2024 Fri Aug 23 02:31:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c271t-79e1d75bab453ee44ff9188ea64f4b3ebdd3e901f1d3b8bb2cac68be4d62682e3 |
ORCID | 0000-0002-2480-2513 0009-0002-3500-9403 0000-0001-6422-7114 0000-0003-4418-5847 0000-0002-3252-6854 |
PQID | 2918647413 |
PQPubID | 75747 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2918647413 crossref_primary_10_1109_LSP_2024_3356412 |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE signal processing letters |
PublicationYear | 2024 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref11 ref10 ref2 ref1 ref16 ref19 Nolan (ref15) 2003 ref18 Jian (ref28) 2008; 18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Samorodnitsky (ref17) 1994; 1. |
References_xml | – ident: ref21 doi: 10.1109/TIT.2007.909108 – ident: ref18 doi: 10.1016/j.sigpro.2019.06.001 – ident: ref24 doi: 10.1016/j.acha.2009.04.002 – ident: ref10 doi: 10.1016/j.dsp.2020.102899 – ident: ref4 doi: 10.1109/TCSII.2022.3168565 – ident: ref9 doi: 10.1016/j.sigpro.2023.108988 – ident: ref6 doi: 10.1109/TSP.2019.2961226 – ident: ref8 doi: 10.1016/j.sigpro.2018.11.018 – ident: ref22 doi: 10.1016/j.dsp.2017.06.004 – ident: ref20 doi: 10.1007/s00041-008-9045-x – ident: ref12 doi: 10.1016/j.sigpro.2020.107665 – ident: ref19 doi: 10.1109/TIT.2005.862083 – ident: ref13 doi: 10.1109/TSP.2020.3037841 – ident: ref2 doi: 10.1109/TWC.2022.3223428 – ident: ref27 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref29 doi: 10.1109/TSP.2021.3068353 – ident: ref25 doi: 10.1109/TIT.2014.2310482 – volume: 18 start-page: 1603 issue: 4 year: 2008 ident: ref28 article-title: Adaptive Lasso for sparse high-dimensional regression publication-title: Statistica Sinica contributor: fullname: Jian – ident: ref1 doi: 10.1109/LSP.2020.2984914 – ident: ref5 doi: 10.1109/TAP.2019.2925199 – ident: ref14 doi: 10.3390/fractalfract7020184 – ident: ref11 doi: 10.1109/TAES.2022.3201069 – volume-title: Stable Distributions: Models for Heavy-Tailed Data year: 2003 ident: ref15 doi: 10.21236/ADA415451 contributor: fullname: Nolan – ident: ref16 doi: 10.1109/TSP.2005.855100 – ident: ref26 doi: 10.1109/TIT.2006.871582 – ident: ref7 doi: 10.1016/j.sigpro.2018.03.020 – ident: ref3 doi: 10.1109/TSP.2022.3217353 – ident: ref23 doi: 10.1109/TIT.2009.2016006 – volume: 1. volume-title: Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance year: 1994 ident: ref17 contributor: fullname: Samorodnitsky |
SSID | ssj0008185 |
Score | 2.4563015 |
Snippet | This work presents an effective and robust methodology to achieve the joint estimation of direction-of-arrival (DOA) and range. One or more near-field sources... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 406 |
SubjectTerms | Design standards Direction of arrival Far fields Near fields Noise reduction Random noise Robustness (mathematics) |
Title | Joint Estimation of DOA and Range for Near-Field Sources in the Presence of Far-Field Sources and Alpha-Stable Noise |
URI | https://www.proquest.com/docview/2918647413 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIEHxFUMBvIDL6hyaeJL7McJraqmUk3aJu0tih1HBLEE0fRh-xH8Zo4vSdsVJMZL1DruaeLz5dx6PhehD5D0GK7SgvBMccKkFkRbqYg0KuE6KzNZuTrkl6WYX7LTK341Gv3a6lpad3pibv_IK_kfrcIY6NWxZO-h2UEoDMBr0C8cQcNw_Ccdn7Z1041P4Cm9HiI_SPYC6dCxBnwT4RLATGauU2187kv1q7658cxzj4wvG8z2Jjkpx46KSyAidQSrZVuvdjqHXKY4dh0gjs4VGAeu8vDdU4SGYH1Rrz0qinZTvQ8WxrXUfqsHxwBr64fnm5mLdSzQfoVzN0V0s7FKEWjR0aSCUSHg84KVtdHMctAkDduw93Y4eoNgSNlUbPlkFlpf98293y11cX42cd85oZQLFruyd3bWvuPxhj5EnwFNVQ4ScichjxIeoIcpGC4e-ICDZ3fBTehhDXfU_-w9VZ_uXsNumLPr5X3ocvEUPYk5Bz4OAHqGRrZ5jh5v7UT5AnUeSngDJdxWGKCEAQTYQwkDlPAGSjiiBNcNBijhHkruc7O9SU7KNpSwh9JLdDk7ufg8J_EPOYhJs6QjmbJJmXFdaMaptYxVlUqktIVgFdPU6rKkFgLMKimpllqnpjBCastKSJtlaukrdNC0jX2NMDNMcG0zcCkJM5mWvADvYJkwSlVCsUP0sV-__EfYdyX_m7YO0VG_wHl8Old5ClcmGMTL9M09RL1Fj9zbUGM7Qgfdz7V9B1Fnp997KPwGKvx9kg |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | IEEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Estimation+of+DOA+and+Range+for+Near-Field+Sources+in+the+Presence+of+Far-Field+Sources+and+Alpha-Stable+Noise&rft.jtitle=IEEE+signal+processing+letters&rft.au=Liu%2C+Tao&rft.au=Wang%2C+Mengjia&rft.au=Feng%2C+Hao&rft.au=Luan%2C+Shengyang&rft.date=2024&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=31&rft.spage=406&rft.epage=410&rft_id=info:doi/10.1109%2FLSP.2024.3356412&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2024_3356412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |