Joint Estimation of DOA and Range for Near-Field Sources in the Presence of Far-Field Sources and Alpha-Stable Noise

This work presents an effective and robust methodology to achieve the joint estimation of direction-of-arrival (DOA) and range. One or more near-field sources are the signals of interest. Far-field sources and alpha-stable noise are additive interferences and will be removed in two steps. First, alp...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 31; pp. 406 - 410
Main Authors Liu, Tao, Wang, Mengjia, Feng, Hao, Luan, Shengyang, Zhang, Jiacheng
Format Journal Article
LanguageEnglish
Published New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work presents an effective and robust methodology to achieve the joint estimation of direction-of-arrival (DOA) and range. One or more near-field sources are the signals of interest. Far-field sources and alpha-stable noise are additive interferences and will be removed in two steps. First, alpha-stable noise is suppressed into Gaussian or sub-Gaussian noise through a proposed mathematical limiter. Then, the near-field sources are separated from the mixed sources according to the specific technique. The two steps involve three key technologies, including noise reduction, sparse reconstruction, and subspace decomposition. In the experiments, we design an assessment standard for missing detection in data calculation, which is of utmost importance to demonstrate the novel methodology's superiority compared to the other existing competitive ones.
AbstractList This work presents an effective and robust methodology to achieve the joint estimation of direction-of-arrival (DOA) and range. One or more near-field sources are the signals of interest. Far-field sources and alpha-stable noise are additive interferences and will be removed in two steps. First, alpha-stable noise is suppressed into Gaussian or sub-Gaussian noise through a proposed mathematical limiter. Then, the near-field sources are separated from the mixed sources according to the specific technique. The two steps involve three key technologies, including noise reduction, sparse reconstruction, and subspace decomposition. In the experiments, we design an assessment standard for missing detection in data calculation, which is of utmost importance to demonstrate the novel methodology's superiority compared to the other existing competitive ones.
Author Luan, Shengyang
Wang, Mengjia
Feng, Hao
Liu, Tao
Zhang, Jiacheng
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-2480-2513
  surname: Liu
  fullname: Liu, Tao
  organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Mengjia
  orcidid: 0009-0002-3500-9403
  surname: Wang
  fullname: Wang, Mengjia
  organization: School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 3
  givenname: Hao
  orcidid: 0000-0003-4418-5847
  surname: Feng
  fullname: Feng, Hao
  organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 4
  givenname: Shengyang
  orcidid: 0000-0002-3252-6854
  surname: Luan
  fullname: Luan, Shengyang
  organization: School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou, China
– sequence: 5
  givenname: Jiacheng
  orcidid: 0000-0001-6422-7114
  surname: Zhang
  fullname: Zhang, Jiacheng
  organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
BookMark eNplkD1vwjAQhq2KSgXavaOlzqH-SuKMiEI_hACVdrbs5FyCqE1tM_TfNxFsne6G533v9IzQwHkHCN1TMqGUVI_L7WbCCBMTzvNCUHaFhjTPZcZ4QQfdTkqSVRWRN2gU454QIqnMhyi9-dYlPI-p_dap9Q57i5_WU6xdg9-1-wJsfcAr0CFbtHBo8NafQg0Rtw6nHeBNgAiuhj63-Af1LdPDcaezbdLmAHjl2wi36NrqQ4S7yxyjz8X8Y_aSLdfPr7PpMqtZSVNWVkCbMjfaiJwDCGFtRaUEXQgrDAfTNBwqQi1tuJHGsFrXhTQgmoIVkgEfo4dz7zH4nxPEpPbdX647qVjXVIhSUN5R5EzVwccYwKpj6GSEX0WJ6t2qzq3q3aqLW_4HKM5t7g
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3398351
Cites_doi 10.1109/TIT.2007.909108
10.1016/j.sigpro.2019.06.001
10.1016/j.acha.2009.04.002
10.1016/j.dsp.2020.102899
10.1109/TCSII.2022.3168565
10.1016/j.sigpro.2023.108988
10.1109/TSP.2019.2961226
10.1016/j.sigpro.2018.11.018
10.1016/j.dsp.2017.06.004
10.1007/s00041-008-9045-x
10.1016/j.sigpro.2020.107665
10.1109/TIT.2005.862083
10.1109/TSP.2020.3037841
10.1109/TWC.2022.3223428
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TSP.2021.3068353
10.1109/TIT.2014.2310482
10.1109/LSP.2020.2984914
10.1109/TAP.2019.2925199
10.3390/fractalfract7020184
10.1109/TAES.2022.3201069
10.21236/ADA415451
10.1109/TSP.2005.855100
10.1109/TIT.2006.871582
10.1016/j.sigpro.2018.03.020
10.1109/TSP.2022.3217353
10.1109/TIT.2009.2016006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2024.3356412
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 410
ExternalDocumentID 10_1109_LSP_2024_3356412
GroupedDBID -~X
.DC
0R~
0ZS
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAYJJ
AAYXX
ABFSI
ABQJQ
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c271t-79e1d75bab453ee44ff9188ea64f4b3ebdd3e901f1d3b8bb2cac68be4d62682e3
ISSN 1070-9908
IngestDate Thu Oct 10 20:20:00 EDT 2024
Fri Aug 23 02:31:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c271t-79e1d75bab453ee44ff9188ea64f4b3ebdd3e901f1d3b8bb2cac68be4d62682e3
ORCID 0000-0002-2480-2513
0009-0002-3500-9403
0000-0001-6422-7114
0000-0003-4418-5847
0000-0002-3252-6854
PQID 2918647413
PQPubID 75747
PageCount 5
ParticipantIDs proquest_journals_2918647413
crossref_primary_10_1109_LSP_2024_3356412
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
ref1
ref16
ref19
Nolan (ref15) 2003
ref18
Jian (ref28) 2008; 18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Samorodnitsky (ref17) 1994; 1.
References_xml – ident: ref21
  doi: 10.1109/TIT.2007.909108
– ident: ref18
  doi: 10.1016/j.sigpro.2019.06.001
– ident: ref24
  doi: 10.1016/j.acha.2009.04.002
– ident: ref10
  doi: 10.1016/j.dsp.2020.102899
– ident: ref4
  doi: 10.1109/TCSII.2022.3168565
– ident: ref9
  doi: 10.1016/j.sigpro.2023.108988
– ident: ref6
  doi: 10.1109/TSP.2019.2961226
– ident: ref8
  doi: 10.1016/j.sigpro.2018.11.018
– ident: ref22
  doi: 10.1016/j.dsp.2017.06.004
– ident: ref20
  doi: 10.1007/s00041-008-9045-x
– ident: ref12
  doi: 10.1016/j.sigpro.2020.107665
– ident: ref19
  doi: 10.1109/TIT.2005.862083
– ident: ref13
  doi: 10.1109/TSP.2020.3037841
– ident: ref2
  doi: 10.1109/TWC.2022.3223428
– ident: ref27
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref29
  doi: 10.1109/TSP.2021.3068353
– ident: ref25
  doi: 10.1109/TIT.2014.2310482
– volume: 18
  start-page: 1603
  issue: 4
  year: 2008
  ident: ref28
  article-title: Adaptive Lasso for sparse high-dimensional regression
  publication-title: Statistica Sinica
  contributor:
    fullname: Jian
– ident: ref1
  doi: 10.1109/LSP.2020.2984914
– ident: ref5
  doi: 10.1109/TAP.2019.2925199
– ident: ref14
  doi: 10.3390/fractalfract7020184
– ident: ref11
  doi: 10.1109/TAES.2022.3201069
– volume-title: Stable Distributions: Models for Heavy-Tailed Data
  year: 2003
  ident: ref15
  doi: 10.21236/ADA415451
  contributor:
    fullname: Nolan
– ident: ref16
  doi: 10.1109/TSP.2005.855100
– ident: ref26
  doi: 10.1109/TIT.2006.871582
– ident: ref7
  doi: 10.1016/j.sigpro.2018.03.020
– ident: ref3
  doi: 10.1109/TSP.2022.3217353
– ident: ref23
  doi: 10.1109/TIT.2009.2016006
– volume: 1.
  volume-title: Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance
  year: 1994
  ident: ref17
  contributor:
    fullname: Samorodnitsky
SSID ssj0008185
Score 2.4563015
Snippet This work presents an effective and robust methodology to achieve the joint estimation of direction-of-arrival (DOA) and range. One or more near-field sources...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 406
SubjectTerms Design standards
Direction of arrival
Far fields
Near fields
Noise reduction
Random noise
Robustness (mathematics)
Title Joint Estimation of DOA and Range for Near-Field Sources in the Presence of Far-Field Sources and Alpha-Stable Noise
URI https://www.proquest.com/docview/2918647413
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIEHxFUMBvIDL6hyaeJL7McJraqmUk3aJu0tih1HBLEE0fRh-xH8Zo4vSdsVJMZL1DruaeLz5dx6PhehD5D0GK7SgvBMccKkFkRbqYg0KuE6KzNZuTrkl6WYX7LTK341Gv3a6lpad3pibv_IK_kfrcIY6NWxZO-h2UEoDMBr0C8cQcNw_Ccdn7Z1041P4Cm9HiI_SPYC6dCxBnwT4RLATGauU2187kv1q7658cxzj4wvG8z2Jjkpx46KSyAidQSrZVuvdjqHXKY4dh0gjs4VGAeu8vDdU4SGYH1Rrz0qinZTvQ8WxrXUfqsHxwBr64fnm5mLdSzQfoVzN0V0s7FKEWjR0aSCUSHg84KVtdHMctAkDduw93Y4eoNgSNlUbPlkFlpf98293y11cX42cd85oZQLFruyd3bWvuPxhj5EnwFNVQ4ScichjxIeoIcpGC4e-ICDZ3fBTehhDXfU_-w9VZ_uXsNumLPr5X3ocvEUPYk5Bz4OAHqGRrZ5jh5v7UT5AnUeSngDJdxWGKCEAQTYQwkDlPAGSjiiBNcNBijhHkruc7O9SU7KNpSwh9JLdDk7ufg8J_EPOYhJs6QjmbJJmXFdaMaptYxVlUqktIVgFdPU6rKkFgLMKimpllqnpjBCastKSJtlaukrdNC0jX2NMDNMcG0zcCkJM5mWvADvYJkwSlVCsUP0sV-__EfYdyX_m7YO0VG_wHl8Old5ClcmGMTL9M09RL1Fj9zbUGM7Qgfdz7V9B1Fnp997KPwGKvx9kg
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Estimation+of+DOA+and+Range+for+Near-Field+Sources+in+the+Presence+of+Far-Field+Sources+and+Alpha-Stable+Noise&rft.jtitle=IEEE+signal+processing+letters&rft.au=Liu%2C+Tao&rft.au=Wang%2C+Mengjia&rft.au=Feng%2C+Hao&rft.au=Luan%2C+Shengyang&rft.date=2024&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=31&rft.spage=406&rft.epage=410&rft_id=info:doi/10.1109%2FLSP.2024.3356412&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2024_3356412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon