Finite difference diagonalization to simulate nuclear magnetic resonance diffusion experiments in porous media

A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the Bloch–Torrey equations. Neumann, Dirichlet, and Robin boundary conditions are considered and applications to simulate nuclear magnetic resonance d...

Full description

Saved in:
Bibliographic Details
Published inConcepts in magnetic resonance. Part A, Bridging education and research Vol. 44; no. 3; pp. 160 - 180
Main Authors Grombacher, Denys, Nordin, Matias
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the Bloch–Torrey equations. Neumann, Dirichlet, and Robin boundary conditions are considered and applications to simulate nuclear magnetic resonance diffusion experiments are shown. The method is illustrated with MATLAB examples and computational tests in one and two dimensions and the extension to three dimensions is outlined. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part A 44A: 160–180, 2015.
AbstractList A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the Bloch–Torrey equations. Neumann, Dirichlet, and Robin boundary conditions are considered and applications to simulate nuclear magnetic resonance diffusion experiments are shown. The method is illustrated with MATLAB examples and computational tests in one and two dimensions and the extension to three dimensions is outlined. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part A 44A: 160–180, 2015.
Author Grombacher, Denys
Nordin, Matias
Author_xml – sequence: 1
  givenname: Denys
  surname: Grombacher
  fullname: Grombacher, Denys
  email: denysg@stanford.edu
  organization: Department of Geophysics, Stanford University, 397 Panama Mall, Mitchell Building 101, CA, 94305, Stanford
– sequence: 2
  givenname: Matias
  surname: Nordin
  fullname: Nordin, Matias
  organization: Department of Geophysics, Stanford University, 397 Panama Mall, Mitchell Building 101, CA, 94305, Stanford
BookMark eNo9kF1LwzAUhoNMcJte-QdyL535atpe6nCbOhTED_AmpMnpiK7pSFqY_npbJ16d9-J5Xw7PBI184wGhc0pmlBB2aeow0zNGuSiO0JimKUtSwvhoyEImkuTyBE1i_OhhSUQxRn7hvGsBW1dVEMCbIepN4_XWfevWNR63DY6u7ra6x3xntqADrvXGQ-sMDhB79lCrqi4OBdjvILgafBux83jXhKaLuIZ--BQdV3ob4ezvTtHL4uZ5vkrWj8vb-dU6MSyjbcJyQVMrC0ptmZZaC8tKbogwsjDCWs04z2VmC5FJXlRWQgmEpiXkRVVkBDI-RReHXROaGANUatd_pMOXokQNqlSvSmn1q6qnkwPtYgv7f1SHTyUznqXq7WGpXlfv90_X_E4t-A_szXEA
CitedBy_id crossref_primary_10_1190_geo2016_0420_1
Cites_doi 10.1038/351467a0
10.1016/j.jmr.2011.04.004
10.1016/j.mri.2008.08.011
10.2136/vzj2009.0161
10.1006/jmre.1997.1233
10.1016/j.micromeso.2013.02.055
10.1103/PhysRevLett.68.3555
10.1006/jmre.1999.1778
10.1016/j.jmr.2003.10.019
10.1002/cmr.a.20145
10.1186/s40064-015-1142-0
10.1006/jmre.1997.1216
10.1016/j.jmr.2009.09.010
10.1109/TMI.2009.2015756
10.1002/cmr.a.20117
10.1103/PhysRevE.79.016102
10.1103/PhysRevE.91.032707
10.1103/PhysRevE.86.021906
10.1063/1.1670306
10.1006/jmre.2002.2540
10.1006/jmra.1995.1192
10.1017/CBO9780511770487
10.1109/42.476105
10.1063/1.4736849
10.1006/jmra.1996.0013
10.1137/1.9780898717839
10.1103/PhysRevA.19.2446
10.1016/S1381-1169(00)00107-2
10.1103/RevModPhys.79.1077
10.1016/j.jmr.2013.06.019
10.1016/S0730-725X(01)00247-8
10.2214/AJR.06.1403
10.1016/S1090-7807(02)00039-3
10.1016/j.jmr.2011.07.002
10.1103/PhysRev.104.563
10.1002/nbm.787
10.1051/m2an:2005047
10.1016/j.micromeso.2014.08.037
10.1006/jmra.1995.1012
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/cmr.a.21349
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1552-5023
EndPage 180
ExternalDocumentID 10_1002_cmr_a_21349
ark_67375_WNG_VHZKRB3J_F
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AAZKR
ABCQN
ABEML
ABIJN
ABPVW
ACBWZ
ACCFJ
ACGFS
ACMXC
ACSCC
ACXQS
ADEOM
ADIZJ
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFPWT
AFZJQ
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
HBH
HF~
HHZ
HVGLF
HZ~
IAO
ICD
ITC
IX1
JPC
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
N04
N05
N9A
NNB
O66
O9-
OK1
P2W
P2X
P2Z
P4B
P4D
Q.N
QB0
QRW
R.K
RHX
RJQFR
ROL
RWI
RX1
RYL
SUPJJ
UB1
VQA
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WVDHM
WXI
XG1
XHW
XV2
ZCG
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c271t-28415d6911db5baa4d2b3c04c69c4dda233867d947639fd6ebe015be89f970e73
ISSN 1546-6086
IngestDate Thu Sep 26 19:12:03 EDT 2024
Wed Oct 30 09:47:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c271t-28415d6911db5baa4d2b3c04c69c4dda233867d947639fd6ebe015be89f970e73
Notes Stanford School of Earth, Energy, and Environmental Sciences
ark:/67375/WNG-VHZKRB3J-F
istex:13A44B894350F66F500887E3D3E3FA47E796CAD8
ArticleID:CMRA21349
Wallenberg Foundation
PageCount 21
ParticipantIDs crossref_primary_10_1002_cmr_a_21349
istex_primary_ark_67375_WNG_VHZKRB3J_F
PublicationCentury 2000
PublicationDate 2015-05
2015-05-00
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05
PublicationDecade 2010
PublicationTitle Concepts in magnetic resonance. Part A, Bridging education and research
PublicationTitleAlternate Concepts Magn. Reson
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Domelevo K, Pascal O. 2005. "A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids." ESAIM Mathematical Modeling and Numerical Analysis 39:1203-1249.
Grebenkov DS. 2009. "Laplacian eigenfunctions in NMR. II. Theoretical advances." Concepts Magn Reson Part A 34A:264-296.
Fichele S, Paley MNJ, Woodhouse N, Griffiths PD, van Beek EJR, Wild JM. 2004. "Investigating 3He diffusion NMR in the lungs using finite difference simulations and in vivo PGSE experiments." J Magn Reson 167:1-11.
Hagslätt H, Jonsson B, Nydén M, Söderman O. 2003. "Predictions of pulsed field gradient NMR echo-decays for molecules diffusing in various restrictive geometries. Simulations of diffusion propagators based on a finite element method." J Magn Reson 161:138-147.
Horsfield MA, Jones DK. 2002. "Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases-a review." NMR Biomed 15:570-577.
Vasenkov S, Kärger J, Freude D, Rakoczy R, Weitkamp J. 2000. "Percolation diffusion of guest molecules in nacaa zeolites: field gradient NMR studies and Monte Carlo simulations." J Mol Catal A Chem 158:373-376.
Callaghan PT, Coy A, MacGowan D, Packer KJ, Zelaya FO. 1991. "Diffraction-like effects in NMR diffusion studies of fluids in porous solids." Nature 351:467-469.
Waudby CA, Christodoulou J. 2011. "GPU accelerated Monte Carlo simulation of pulsed-field gradient NMR experiments." J Magn Reson 211:67-73.
Mitra P, Sen P, Schwartz L, Doussal LP. 1992. "Diffusion propagator as a probe of the structure of porous media." Phys Rev Lett 68:3555-3558.
Nordin M, Nilsson-Jacobi M, Nydén M. 2009. "Deriving time-dependent diffusion and relaxation rate in porous systems using eigenfunctions of the Laplace operator." J Magn Reson 201:205-211.
Gudbjartsson H, Patz S. 1995. "NMR diffusion simulation based on conditional random walk." Med Imaging IEEE Trans 14:636-642.
Grebenkov D. 2008. "Laplacian eigenfunctions in NMR. I. A numerical tool." Concepts Magn Reson Part A 32:277-301.
Nordin M, Nilsson-Jacobi M, Nydén M. 2011. "A mixed basis approach in the SGP-limit." J Magn Reson 212:274-279.
Nordin M, Grebenkov D, Jacobi MN, Nydén M. 2013. "An efficient eigenfunction approach to calculate spin-echo signals in heterogeneous porous media." Microporous Mesoporous Mater 178:7-10.
Torrey HC. 1956. "Bloch equations with diffusion terms." Phys Rev 104:563-565.
Latour LL. 1995. "Pore-size distributions and tortuosity in heterogeneous porous media." J Magn Reson A 112:83-91.
Hall MG, Alexander DC. 2009. "Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI." IEEE Trans Med Imaging 28:1354-1364.
Moroney BF, Stait-Gardner T, Ghadirian B, Yadav NN, Price WS. 2013. "Numerical analysis of NMR diffusion measurements in the short gradient pulse limit." J Magn Reson 234:165-175.
Momot KI, Powell SK, Tourell MC. 2015. "Further development of discrete computational techniques for calculation of restricted diffusion propagators in porous media." Microporous Mesoporous Mater 205:24-30.
Caprihan A. 1996. "A multiple-narrow-pulse approximation for restricted diffusion in a time-varying field gradient." J Magn Reson A 118:94-102.
Arfken GB, Weber HJ. 1995. Mathematical Methods for Physicists, 4th ed. San Diego: Academic Press. 1029 p.
Price WS. 2009. NMR Studies of Translational Motion. New York: Cambridge University Press. 393 p.
Laun F. 2012. "Restricted diffusion in NMR in arbitrary inhomogeneous magnetic fields and an application to circular layers." J Chem Phys 137:044704.
Mair RW, Sen PN, Hürlimann MD, Patz S, Cory DG, Walsworth RL. 2002. "The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media." J Magn Reson 156:202-212.
Linse P, Söderman O. 1995. "The validity of the short-gradient-pulse approximation in NMR studies of restricted diffusion simulations of molecules diffusing between planes, in cylinders and spheres." J Magn Reson A 116:77-86.
Kenkre VM, Fukushima E, Sheltraw D. 1997. "Simple solutions of the Torrey-Bloch equations in the NMR study of molecular diffusion." J Magn Reson 128:62-69.
Tanner JE, Stejskal EO. 1968. "Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method." J Chem Phys 49:1768-1778.
Callaghan PT. 1997. "A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms." J Magn Reson 129:74-84.
Laun FB, Huff S, Stieltjes B. 2009. "On the effects of dephasing due to local gradients in diffusion tensor imaging experiments: relevance for diffusion tensor imaging fiber phantoms." Magn Reson Imaging 27:541-548.
Kvarnström M, Westergard A, Lorén N, Nydén M. 2009. "Brownian dynamics simulations in hydrogels using an adaptive time-stepping algorithm." Phys Rev E 79, p. 016102.
Barzykin AV. 1999. "Theory of spin echo in restricted geometries under a step-wise gradient pulse sequence." J Magn Reson 139:342-353.
Mohnke O, Klitzsch N. 2010. "Microscale simulations of NMR relaxation in porous media considering internal field gradients." Vadose Zone J 9:846-857.
Ziener CH, Kurz FT, Buschle LR, Kampf T. 2015. "Orthogonality, Lommel integrals and cross product zeros of linear combinations of Bessel functions." SpingerPlus 4:390.
Brownstein KR, Tarr CE. 1979. "Importance of classical diffusion in NMR studies of water in biological cells." Phys Rev A 19:2446-2453.
Koh DM, Collins DJ. 2007. "Diffusion-weighted MRI in the body: applications and challenges in oncology." Am J Roentgenol 188:1622-1635.
Laun FB, Kuder TA, Wetscherek A, Stieltjes B, Semmler W. 2012. "NMR-based diffusion pore imaging." Phys Rev E Stat Nonlin Soft Matter Phys 86:021906.
Grebenkov D. 2007. "NMR survey of reflected Brownian motion." Rev Mod Phys 79:1077-1137.
Mair RW, Hürlimann MD, Sen PN, Schwartz LM, Patz S, Walsworth RL. 2000. "Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media." Magn Reson Imaging 19:345-351.
Ziener CH, Kurz FT, Kampf T. 2015. "Free induction decay caused by a dipole field." Phys Rev E 91:032707.
LeVeque R. 2007. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Philadelphia: Society for Industrial and Applied Mathematics. 341 p.
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Arfken GB (e_1_2_10_35_1) 1995
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – ident: e_1_2_10_6_1
  doi: 10.1038/351467a0
– ident: e_1_2_10_19_1
  doi: 10.1016/j.jmr.2011.04.004
– ident: e_1_2_10_18_1
  doi: 10.1016/j.mri.2008.08.011
– ident: e_1_2_10_21_1
  doi: 10.2136/vzj2009.0161
– ident: e_1_2_10_25_1
  doi: 10.1006/jmre.1997.1233
– ident: e_1_2_10_31_1
  doi: 10.1016/j.micromeso.2013.02.055
– ident: e_1_2_10_5_1
  doi: 10.1103/PhysRevLett.68.3555
– ident: e_1_2_10_24_1
  doi: 10.1006/jmre.1999.1778
– ident: e_1_2_10_22_1
  doi: 10.1016/j.jmr.2003.10.019
– ident: e_1_2_10_36_1
  doi: 10.1002/cmr.a.20145
– ident: e_1_2_10_38_1
  doi: 10.1186/s40064-015-1142-0
– ident: e_1_2_10_27_1
  doi: 10.1006/jmre.1997.1216
– start-page: 1029
  volume-title: Mathematical Methods for Physicists
  year: 1995
  ident: e_1_2_10_35_1
  contributor:
    fullname: Arfken GB
– ident: e_1_2_10_26_1
  doi: 10.1016/j.jmr.2009.09.010
– ident: e_1_2_10_17_1
  doi: 10.1109/TMI.2009.2015756
– ident: e_1_2_10_12_1
  doi: 10.1002/cmr.a.20117
– ident: e_1_2_10_16_1
  doi: 10.1103/PhysRevE.79.016102
– ident: e_1_2_10_37_1
  doi: 10.1103/PhysRevE.91.032707
– ident: e_1_2_10_29_1
  doi: 10.1103/PhysRevE.86.021906
– ident: e_1_2_10_7_1
  doi: 10.1063/1.1670306
– ident: e_1_2_10_4_1
  doi: 10.1006/jmre.2002.2540
– ident: e_1_2_10_11_1
  doi: 10.1006/jmra.1995.1192
– ident: e_1_2_10_33_1
  doi: 10.1017/CBO9780511770487
– ident: e_1_2_10_14_1
  doi: 10.1109/42.476105
– ident: e_1_2_10_40_1
  doi: 10.1063/1.4736849
– ident: e_1_2_10_28_1
  doi: 10.1006/jmra.1996.0013
– ident: e_1_2_10_39_1
  doi: 10.1137/1.9780898717839
– ident: e_1_2_10_34_1
  doi: 10.1103/PhysRevA.19.2446
– ident: e_1_2_10_15_1
  doi: 10.1016/S1381-1169(00)00107-2
– ident: e_1_2_10_13_1
  doi: 10.1103/RevModPhys.79.1077
– ident: e_1_2_10_32_1
  doi: 10.1016/j.jmr.2013.06.019
– ident: e_1_2_10_3_1
  doi: 10.1016/S0730-725X(01)00247-8
– ident: e_1_2_10_9_1
  doi: 10.2214/AJR.06.1403
– ident: e_1_2_10_20_1
  doi: 10.1016/S1090-7807(02)00039-3
– ident: e_1_2_10_30_1
  doi: 10.1016/j.jmr.2011.07.002
– ident: e_1_2_10_10_1
  doi: 10.1103/PhysRev.104.563
– ident: e_1_2_10_8_1
  doi: 10.1002/nbm.787
– ident: e_1_2_10_41_1
  doi: 10.1051/m2an:2005047
– ident: e_1_2_10_23_1
  doi: 10.1016/j.micromeso.2014.08.037
– ident: e_1_2_10_2_1
  doi: 10.1006/jmra.1995.1012
SSID ssj0026049
Score 2.0834906
Snippet A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the...
SourceID crossref
istex
SourceType Aggregation Database
Publisher
StartPage 160
SubjectTerms diffusion
finite difference
Laplace operator
porous media
Title Finite difference diagonalization to simulate nuclear magnetic resonance diffusion experiments in porous media
URI https://api.istex.fr/ark:/67375/WNG-VHZKRB3J-F/fulltext.pdf
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FVki8VJyiFNA-IF4iB8deH_tYCiEqah6qFiperD2rqIqDXEcC_hx_jdkdXz2QCopkWZu1rex8nmPzzQwhb1QeZZGGMDWzXAfMWhtIzeJA5fAuSc4Sm7sE56NFOj9lh2fJ2Wj0e8Ba2tRyon7dmlfyP1KFMZCry5L9B8l2N4UBOAf5whEkDMc7yXi2dB5j1-REuVNx7n1rzK50nuXlcuVadJlx6UoXi2q8EuelwdLNzg_Hy6zduH2zQcV_JJivK8eR9fklQz_2ALMd_Zyb95uAY1rV430Ez1L7RkimpZIgpd0MttE8_2e9kqJF0AdT_uyc_QXEx1jp4AiuF1c2KqZJTwu8bUMSN9h66pJXviwN0rAtjd2MJRAsh5iT3GpsrBjZIDMeqN8p9iZoLPkUe0TdMBJYdFatqomYuIJ2vLeF7f__10xkR1wU1YVjwmVJ8XXxqfgy__b5-H18WMzuke0INJ3nCRx39csgVvTxV_fDmgRR-Obd4PFXXKJt93b_GPg4Jw_JThOc0H1E2iMyMuVjct-ThNXlE1Ii3miPN3oNb7Re0xZvtMEbbfFBO3zQDm90gDe6LCnijXq8PSWns48nB_Og6dcRqCib1gF4OtNEp2A-tUykEExHMlYhUylXTGsRxXGeZpozsGnc6hT0B8BEmpxbnoUmi5-RrXJdmueExpoxpRgPVSSYgDXilqkQPqlJM5nYXdAyzZIV37EsS4EFuKMCVrYQhV_ZXfLWL2c352_ye3HXiXvkQY_tl2SrrjbmFbiltXztRf8HYJqY5Q
link.rule.ids 315,783,787,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+difference+diagonalization+to+simulate+nuclear+magnetic+resonance+diffusion+experiments+in+porous+media&rft.jtitle=Concepts+in+magnetic+resonance.+Part+A%2C+Bridging+education+and+research&rft.au=Grombacher%2C+Denys&rft.au=Nordin%2C+Matias&rft.date=2015-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1546-6086&rft.eissn=1552-5023&rft.volume=44&rft.issue=3&rft.spage=160&rft.epage=180&rft_id=info:doi/10.1002%2Fcmr.a.21349&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VHZKRB3J_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-6086&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-6086&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-6086&client=summon