Finite difference diagonalization to simulate nuclear magnetic resonance diffusion experiments in porous media
A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the Bloch–Torrey equations. Neumann, Dirichlet, and Robin boundary conditions are considered and applications to simulate nuclear magnetic resonance d...
Saved in:
Published in | Concepts in magnetic resonance. Part A, Bridging education and research Vol. 44; no. 3; pp. 160 - 180 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the Bloch–Torrey equations. Neumann, Dirichlet, and Robin boundary conditions are considered and applications to simulate nuclear magnetic resonance diffusion experiments are shown. The method is illustrated with MATLAB examples and computational tests in one and two dimensions and the extension to three dimensions is outlined. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part A 44A: 160–180, 2015. |
---|---|
AbstractList | A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the Bloch–Torrey equations. Neumann, Dirichlet, and Robin boundary conditions are considered and applications to simulate nuclear magnetic resonance diffusion experiments are shown. The method is illustrated with MATLAB examples and computational tests in one and two dimensions and the extension to three dimensions is outlined. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part A 44A: 160–180, 2015. |
Author | Grombacher, Denys Nordin, Matias |
Author_xml | – sequence: 1 givenname: Denys surname: Grombacher fullname: Grombacher, Denys email: denysg@stanford.edu organization: Department of Geophysics, Stanford University, 397 Panama Mall, Mitchell Building 101, CA, 94305, Stanford – sequence: 2 givenname: Matias surname: Nordin fullname: Nordin, Matias organization: Department of Geophysics, Stanford University, 397 Panama Mall, Mitchell Building 101, CA, 94305, Stanford |
BookMark | eNo9kF1LwzAUhoNMcJte-QdyL535atpe6nCbOhTED_AmpMnpiK7pSFqY_npbJ16d9-J5Xw7PBI184wGhc0pmlBB2aeow0zNGuSiO0JimKUtSwvhoyEImkuTyBE1i_OhhSUQxRn7hvGsBW1dVEMCbIepN4_XWfevWNR63DY6u7ra6x3xntqADrvXGQ-sMDhB79lCrqi4OBdjvILgafBux83jXhKaLuIZ--BQdV3ob4ezvTtHL4uZ5vkrWj8vb-dU6MSyjbcJyQVMrC0ptmZZaC8tKbogwsjDCWs04z2VmC5FJXlRWQgmEpiXkRVVkBDI-RReHXROaGANUatd_pMOXokQNqlSvSmn1q6qnkwPtYgv7f1SHTyUznqXq7WGpXlfv90_X_E4t-A_szXEA |
CitedBy_id | crossref_primary_10_1190_geo2016_0420_1 |
Cites_doi | 10.1038/351467a0 10.1016/j.jmr.2011.04.004 10.1016/j.mri.2008.08.011 10.2136/vzj2009.0161 10.1006/jmre.1997.1233 10.1016/j.micromeso.2013.02.055 10.1103/PhysRevLett.68.3555 10.1006/jmre.1999.1778 10.1016/j.jmr.2003.10.019 10.1002/cmr.a.20145 10.1186/s40064-015-1142-0 10.1006/jmre.1997.1216 10.1016/j.jmr.2009.09.010 10.1109/TMI.2009.2015756 10.1002/cmr.a.20117 10.1103/PhysRevE.79.016102 10.1103/PhysRevE.91.032707 10.1103/PhysRevE.86.021906 10.1063/1.1670306 10.1006/jmre.2002.2540 10.1006/jmra.1995.1192 10.1017/CBO9780511770487 10.1109/42.476105 10.1063/1.4736849 10.1006/jmra.1996.0013 10.1137/1.9780898717839 10.1103/PhysRevA.19.2446 10.1016/S1381-1169(00)00107-2 10.1103/RevModPhys.79.1077 10.1016/j.jmr.2013.06.019 10.1016/S0730-725X(01)00247-8 10.2214/AJR.06.1403 10.1016/S1090-7807(02)00039-3 10.1016/j.jmr.2011.07.002 10.1103/PhysRev.104.563 10.1002/nbm.787 10.1051/m2an:2005047 10.1016/j.micromeso.2014.08.037 10.1006/jmra.1995.1012 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/cmr.a.21349 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1552-5023 |
EndPage | 180 |
ExternalDocumentID | 10_1002_cmr_a_21349 ark_67375_WNG_VHZKRB3J_F |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAJEY AAONW AAZKR ABCQN ABEML ABIJN ABPVW ACBWZ ACCFJ ACGFS ACMXC ACSCC ACXQS ADEOM ADIZJ ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFFNX AFPWT AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS AMBMR ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DU5 EBS EJD F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA GROUPED_DOAJ HBH HF~ HHZ HVGLF HZ~ IAO ICD ITC IX1 JPC KQQ LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM N04 N05 N9A NNB O66 O9- OK1 P2W P2X P2Z P4B P4D Q.N QB0 QRW R.K RHX RJQFR ROL RWI RX1 RYL SUPJJ UB1 VQA W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WVDHM WXI XG1 XHW XV2 ZCG ~IA ~WT AAYXX CITATION |
ID | FETCH-LOGICAL-c271t-28415d6911db5baa4d2b3c04c69c4dda233867d947639fd6ebe015be89f970e73 |
ISSN | 1546-6086 |
IngestDate | Thu Sep 26 19:12:03 EDT 2024 Wed Oct 30 09:47:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c271t-28415d6911db5baa4d2b3c04c69c4dda233867d947639fd6ebe015be89f970e73 |
Notes | Stanford School of Earth, Energy, and Environmental Sciences ark:/67375/WNG-VHZKRB3J-F istex:13A44B894350F66F500887E3D3E3FA47E796CAD8 ArticleID:CMRA21349 Wallenberg Foundation |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1002_cmr_a_21349 istex_primary_ark_67375_WNG_VHZKRB3J_F |
PublicationCentury | 2000 |
PublicationDate | 2015-05 2015-05-00 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05 |
PublicationDecade | 2010 |
PublicationTitle | Concepts in magnetic resonance. Part A, Bridging education and research |
PublicationTitleAlternate | Concepts Magn. Reson |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Domelevo K, Pascal O. 2005. "A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids." ESAIM Mathematical Modeling and Numerical Analysis 39:1203-1249. Grebenkov DS. 2009. "Laplacian eigenfunctions in NMR. II. Theoretical advances." Concepts Magn Reson Part A 34A:264-296. Fichele S, Paley MNJ, Woodhouse N, Griffiths PD, van Beek EJR, Wild JM. 2004. "Investigating 3He diffusion NMR in the lungs using finite difference simulations and in vivo PGSE experiments." J Magn Reson 167:1-11. Hagslätt H, Jonsson B, Nydén M, Söderman O. 2003. "Predictions of pulsed field gradient NMR echo-decays for molecules diffusing in various restrictive geometries. Simulations of diffusion propagators based on a finite element method." J Magn Reson 161:138-147. Horsfield MA, Jones DK. 2002. "Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases-a review." NMR Biomed 15:570-577. Vasenkov S, Kärger J, Freude D, Rakoczy R, Weitkamp J. 2000. "Percolation diffusion of guest molecules in nacaa zeolites: field gradient NMR studies and Monte Carlo simulations." J Mol Catal A Chem 158:373-376. Callaghan PT, Coy A, MacGowan D, Packer KJ, Zelaya FO. 1991. "Diffraction-like effects in NMR diffusion studies of fluids in porous solids." Nature 351:467-469. Waudby CA, Christodoulou J. 2011. "GPU accelerated Monte Carlo simulation of pulsed-field gradient NMR experiments." J Magn Reson 211:67-73. Mitra P, Sen P, Schwartz L, Doussal LP. 1992. "Diffusion propagator as a probe of the structure of porous media." Phys Rev Lett 68:3555-3558. Nordin M, Nilsson-Jacobi M, Nydén M. 2009. "Deriving time-dependent diffusion and relaxation rate in porous systems using eigenfunctions of the Laplace operator." J Magn Reson 201:205-211. Gudbjartsson H, Patz S. 1995. "NMR diffusion simulation based on conditional random walk." Med Imaging IEEE Trans 14:636-642. Grebenkov D. 2008. "Laplacian eigenfunctions in NMR. I. A numerical tool." Concepts Magn Reson Part A 32:277-301. Nordin M, Nilsson-Jacobi M, Nydén M. 2011. "A mixed basis approach in the SGP-limit." J Magn Reson 212:274-279. Nordin M, Grebenkov D, Jacobi MN, Nydén M. 2013. "An efficient eigenfunction approach to calculate spin-echo signals in heterogeneous porous media." Microporous Mesoporous Mater 178:7-10. Torrey HC. 1956. "Bloch equations with diffusion terms." Phys Rev 104:563-565. Latour LL. 1995. "Pore-size distributions and tortuosity in heterogeneous porous media." J Magn Reson A 112:83-91. Hall MG, Alexander DC. 2009. "Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI." IEEE Trans Med Imaging 28:1354-1364. Moroney BF, Stait-Gardner T, Ghadirian B, Yadav NN, Price WS. 2013. "Numerical analysis of NMR diffusion measurements in the short gradient pulse limit." J Magn Reson 234:165-175. Momot KI, Powell SK, Tourell MC. 2015. "Further development of discrete computational techniques for calculation of restricted diffusion propagators in porous media." Microporous Mesoporous Mater 205:24-30. Caprihan A. 1996. "A multiple-narrow-pulse approximation for restricted diffusion in a time-varying field gradient." J Magn Reson A 118:94-102. Arfken GB, Weber HJ. 1995. Mathematical Methods for Physicists, 4th ed. San Diego: Academic Press. 1029 p. Price WS. 2009. NMR Studies of Translational Motion. New York: Cambridge University Press. 393 p. Laun F. 2012. "Restricted diffusion in NMR in arbitrary inhomogeneous magnetic fields and an application to circular layers." J Chem Phys 137:044704. Mair RW, Sen PN, Hürlimann MD, Patz S, Cory DG, Walsworth RL. 2002. "The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media." J Magn Reson 156:202-212. Linse P, Söderman O. 1995. "The validity of the short-gradient-pulse approximation in NMR studies of restricted diffusion simulations of molecules diffusing between planes, in cylinders and spheres." J Magn Reson A 116:77-86. Kenkre VM, Fukushima E, Sheltraw D. 1997. "Simple solutions of the Torrey-Bloch equations in the NMR study of molecular diffusion." J Magn Reson 128:62-69. Tanner JE, Stejskal EO. 1968. "Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method." J Chem Phys 49:1768-1778. Callaghan PT. 1997. "A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms." J Magn Reson 129:74-84. Laun FB, Huff S, Stieltjes B. 2009. "On the effects of dephasing due to local gradients in diffusion tensor imaging experiments: relevance for diffusion tensor imaging fiber phantoms." Magn Reson Imaging 27:541-548. Kvarnström M, Westergard A, Lorén N, Nydén M. 2009. "Brownian dynamics simulations in hydrogels using an adaptive time-stepping algorithm." Phys Rev E 79, p. 016102. Barzykin AV. 1999. "Theory of spin echo in restricted geometries under a step-wise gradient pulse sequence." J Magn Reson 139:342-353. Mohnke O, Klitzsch N. 2010. "Microscale simulations of NMR relaxation in porous media considering internal field gradients." Vadose Zone J 9:846-857. Ziener CH, Kurz FT, Buschle LR, Kampf T. 2015. "Orthogonality, Lommel integrals and cross product zeros of linear combinations of Bessel functions." SpingerPlus 4:390. Brownstein KR, Tarr CE. 1979. "Importance of classical diffusion in NMR studies of water in biological cells." Phys Rev A 19:2446-2453. Koh DM, Collins DJ. 2007. "Diffusion-weighted MRI in the body: applications and challenges in oncology." Am J Roentgenol 188:1622-1635. Laun FB, Kuder TA, Wetscherek A, Stieltjes B, Semmler W. 2012. "NMR-based diffusion pore imaging." Phys Rev E Stat Nonlin Soft Matter Phys 86:021906. Grebenkov D. 2007. "NMR survey of reflected Brownian motion." Rev Mod Phys 79:1077-1137. Mair RW, Hürlimann MD, Sen PN, Schwartz LM, Patz S, Walsworth RL. 2000. "Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media." Magn Reson Imaging 19:345-351. Ziener CH, Kurz FT, Kampf T. 2015. "Free induction decay caused by a dipole field." Phys Rev E 91:032707. LeVeque R. 2007. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Philadelphia: Society for Industrial and Applied Mathematics. 341 p. e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Arfken GB (e_1_2_10_35_1) 1995 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – ident: e_1_2_10_6_1 doi: 10.1038/351467a0 – ident: e_1_2_10_19_1 doi: 10.1016/j.jmr.2011.04.004 – ident: e_1_2_10_18_1 doi: 10.1016/j.mri.2008.08.011 – ident: e_1_2_10_21_1 doi: 10.2136/vzj2009.0161 – ident: e_1_2_10_25_1 doi: 10.1006/jmre.1997.1233 – ident: e_1_2_10_31_1 doi: 10.1016/j.micromeso.2013.02.055 – ident: e_1_2_10_5_1 doi: 10.1103/PhysRevLett.68.3555 – ident: e_1_2_10_24_1 doi: 10.1006/jmre.1999.1778 – ident: e_1_2_10_22_1 doi: 10.1016/j.jmr.2003.10.019 – ident: e_1_2_10_36_1 doi: 10.1002/cmr.a.20145 – ident: e_1_2_10_38_1 doi: 10.1186/s40064-015-1142-0 – ident: e_1_2_10_27_1 doi: 10.1006/jmre.1997.1216 – start-page: 1029 volume-title: Mathematical Methods for Physicists year: 1995 ident: e_1_2_10_35_1 contributor: fullname: Arfken GB – ident: e_1_2_10_26_1 doi: 10.1016/j.jmr.2009.09.010 – ident: e_1_2_10_17_1 doi: 10.1109/TMI.2009.2015756 – ident: e_1_2_10_12_1 doi: 10.1002/cmr.a.20117 – ident: e_1_2_10_16_1 doi: 10.1103/PhysRevE.79.016102 – ident: e_1_2_10_37_1 doi: 10.1103/PhysRevE.91.032707 – ident: e_1_2_10_29_1 doi: 10.1103/PhysRevE.86.021906 – ident: e_1_2_10_7_1 doi: 10.1063/1.1670306 – ident: e_1_2_10_4_1 doi: 10.1006/jmre.2002.2540 – ident: e_1_2_10_11_1 doi: 10.1006/jmra.1995.1192 – ident: e_1_2_10_33_1 doi: 10.1017/CBO9780511770487 – ident: e_1_2_10_14_1 doi: 10.1109/42.476105 – ident: e_1_2_10_40_1 doi: 10.1063/1.4736849 – ident: e_1_2_10_28_1 doi: 10.1006/jmra.1996.0013 – ident: e_1_2_10_39_1 doi: 10.1137/1.9780898717839 – ident: e_1_2_10_34_1 doi: 10.1103/PhysRevA.19.2446 – ident: e_1_2_10_15_1 doi: 10.1016/S1381-1169(00)00107-2 – ident: e_1_2_10_13_1 doi: 10.1103/RevModPhys.79.1077 – ident: e_1_2_10_32_1 doi: 10.1016/j.jmr.2013.06.019 – ident: e_1_2_10_3_1 doi: 10.1016/S0730-725X(01)00247-8 – ident: e_1_2_10_9_1 doi: 10.2214/AJR.06.1403 – ident: e_1_2_10_20_1 doi: 10.1016/S1090-7807(02)00039-3 – ident: e_1_2_10_30_1 doi: 10.1016/j.jmr.2011.07.002 – ident: e_1_2_10_10_1 doi: 10.1103/PhysRev.104.563 – ident: e_1_2_10_8_1 doi: 10.1002/nbm.787 – ident: e_1_2_10_41_1 doi: 10.1051/m2an:2005047 – ident: e_1_2_10_23_1 doi: 10.1016/j.micromeso.2014.08.037 – ident: e_1_2_10_2_1 doi: 10.1006/jmra.1995.1012 |
SSID | ssj0026049 |
Score | 2.0834906 |
Snippet | A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the... |
SourceID | crossref istex |
SourceType | Aggregation Database Publisher |
StartPage | 160 |
SubjectTerms | diffusion finite difference Laplace operator porous media |
Title | Finite difference diagonalization to simulate nuclear magnetic resonance diffusion experiments in porous media |
URI | https://api.istex.fr/ark:/67375/WNG-VHZKRB3J-F/fulltext.pdf |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FVki8VJyiFNA-IF4iB8deH_tYCiEqah6qFiperD2rqIqDXEcC_hx_jdkdXz2QCopkWZu1rex8nmPzzQwhb1QeZZGGMDWzXAfMWhtIzeJA5fAuSc4Sm7sE56NFOj9lh2fJ2Wj0e8Ba2tRyon7dmlfyP1KFMZCry5L9B8l2N4UBOAf5whEkDMc7yXi2dB5j1-REuVNx7n1rzK50nuXlcuVadJlx6UoXi2q8EuelwdLNzg_Hy6zduH2zQcV_JJivK8eR9fklQz_2ALMd_Zyb95uAY1rV430Ez1L7RkimpZIgpd0MttE8_2e9kqJF0AdT_uyc_QXEx1jp4AiuF1c2KqZJTwu8bUMSN9h66pJXviwN0rAtjd2MJRAsh5iT3GpsrBjZIDMeqN8p9iZoLPkUe0TdMBJYdFatqomYuIJ2vLeF7f__10xkR1wU1YVjwmVJ8XXxqfgy__b5-H18WMzuke0INJ3nCRx39csgVvTxV_fDmgRR-Obd4PFXXKJt93b_GPg4Jw_JThOc0H1E2iMyMuVjct-ThNXlE1Ii3miPN3oNb7Re0xZvtMEbbfFBO3zQDm90gDe6LCnijXq8PSWns48nB_Og6dcRqCib1gF4OtNEp2A-tUykEExHMlYhUylXTGsRxXGeZpozsGnc6hT0B8BEmpxbnoUmi5-RrXJdmueExpoxpRgPVSSYgDXilqkQPqlJM5nYXdAyzZIV37EsS4EFuKMCVrYQhV_ZXfLWL2c352_ye3HXiXvkQY_tl2SrrjbmFbiltXztRf8HYJqY5Q |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+difference+diagonalization+to+simulate+nuclear+magnetic+resonance+diffusion+experiments+in+porous+media&rft.jtitle=Concepts+in+magnetic+resonance.+Part+A%2C+Bridging+education+and+research&rft.au=Grombacher%2C+Denys&rft.au=Nordin%2C+Matias&rft.date=2015-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1546-6086&rft.eissn=1552-5023&rft.volume=44&rft.issue=3&rft.spage=160&rft.epage=180&rft_id=info:doi/10.1002%2Fcmr.a.21349&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VHZKRB3J_F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-6086&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-6086&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-6086&client=summon |