Methane emissions through water hyacinth are controlled by plant traits and environmental conditions

Wetlands are large sources of methane (CH4), and plant-mediated fluxes can contribute considerably to their total CH4 emissions. However, plant-mediated fluxes vary considerably even within species, and the factors explaining this variation are not fully understood. This study focuses on the role of...

Full description

Saved in:
Bibliographic Details
Published inAquatic botany Vol. 183; p. 103574
Main Authors Struik, Quinten, Oliveira Junior, Ernandes S., Veraart, Annelies J., Kosten, Sarian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wetlands are large sources of methane (CH4), and plant-mediated fluxes can contribute considerably to their total CH4 emissions. However, plant-mediated fluxes vary considerably even within species, and the factors explaining this variation are not fully understood. This study focuses on the role of plant traits and environmental conditions in regulating plant-mediated CH4 emissions in water hyacinths (Eichhornia crassipes). We investigate the role of: (1) plant traits on water hyacinth-mediated CH4 emission using laboratory incubations; and (2) key environmental factors mediating CH4 emission through water hyacinths in the laboratory and in the field (Amazon/Pantanal). CH4 emission intensities increased proportionally with total plant biomass. The laboratory assays furthermore showed a clear positive relation between CH4 emission and leaf and bulb surface area and volume. In addition, both in the Amazon/Pantanal field data and in the laboratory we found a strong positive relationship between the CH4 concentration in the water surrounding the plant roots and the plant-mediated CH4 emission. CH4 emission intensity was not related to light intensity, suggesting that stomatal conductance of water hyacinths is playing a minor role in mediating CH4 emission. Temperature, in contrast, played an important role, where an 8 °C temperature rise from 22 to 30 °C induced, on average, 58 % (SD = 33 %) higher CH4 emission from water hyacinths. Mimicked herbivory in water hyacinths also affected CH4 emission. Intact water hyacinths emitted approximately 25 % (SD = 13 %) more CH4 than water hyacinths that were experimentally perforated. This study clearly shows that intra-species trait variation can strongly govern ecosystem CH4 emissions. To accurately predict CH4 emissions from macrophytes these traits should be taken into account.
AbstractList Wetlands are large sources of methane (CH4), and plant-mediated fluxes can contribute considerably to their total CH4 emissions. However, plant-mediated fluxes vary considerably even within species, and the factors explaining this variation are not fully understood. This study focuses on the role of plant traits and environmental conditions in regulating plant-mediated CH4 emissions in water hyacinths (Eichhornia crassipes). We investigate the role of: (1) plant traits on water hyacinth-mediated CH4 emission using laboratory incubations; and (2) key environmental factors mediating CH4 emission through water hyacinths in the laboratory and in the field (Amazon/Pantanal). CH4 emission intensities increased proportionally with total plant biomass. The laboratory assays furthermore showed a clear positive relation between CH4 emission and leaf and bulb surface area and volume. In addition, both in the Amazon/Pantanal field data and in the laboratory we found a strong positive relationship between the CH4 concentration in the water surrounding the plant roots and the plant-mediated CH4 emission. CH4 emission intensity was not related to light intensity, suggesting that stomatal conductance of water hyacinths is playing a minor role in mediating CH4 emission. Temperature, in contrast, played an important role, where an 8 °C temperature rise from 22 to 30 °C induced, on average, 58 % (SD = 33 %) higher CH4 emission from water hyacinths. Mimicked herbivory in water hyacinths also affected CH4 emission. Intact water hyacinths emitted approximately 25 % (SD = 13 %) more CH4 than water hyacinths that were experimentally perforated. This study clearly shows that intra-species trait variation can strongly govern ecosystem CH4 emissions. To accurately predict CH4 emissions from macrophytes these traits should be taken into account.
ArticleNumber 103574
Author Veraart, Annelies J.
Oliveira Junior, Ernandes S.
Struik, Quinten
Kosten, Sarian
Author_xml – sequence: 1
  givenname: Quinten
  surname: Struik
  fullname: Struik, Quinten
  email: Quinten.struik2@ru.nl
  organization: Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
– sequence: 2
  givenname: Ernandes S.
  surname: Oliveira Junior
  fullname: Oliveira Junior, Ernandes S.
  organization: Graduate Program of Environmental Sciences, Laboratory of Ichthyology of the North Pantanal, University of the State of Mato Grosso, Cáceres, Brazil
– sequence: 3
  givenname: Annelies J.
  surname: Veraart
  fullname: Veraart, Annelies J.
  organization: Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
– sequence: 4
  givenname: Sarian
  surname: Kosten
  fullname: Kosten, Sarian
  organization: Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
BookMark eNqFkM1KAzEUhYMo2FYfQcgLTM1NZiYzK5HiH1Tc6DpkklsnZZrUJK307e3Q7l1dONzzcfim5NIHj4TcAZsDg_p-Pdc_O92FPOeM82MmKllekAk0si2g4vySTJhgZSGkZNdkmtKaMQYNkxNi3zH32iPFjUvJBZ9o7mPYfff0V2eMtD9o43zuqY5ITfA5hmFAS7sD3Q7aZ5qjdjlR7S1Fv3cx-A36rIfx2bo8Im_I1UoPCW_Pd0a-np8-F6_F8uPlbfG4LAyXUBYSG6xLLqDqOiEbq3knWS1EW4MVGioEDtiuRCM70UIJAAy1KA2zleQN52JGqhPXxJBSxJXaRrfR8aCAqVGVWquzKjWqUidVx97DqYfHcXuHUSXj0Bu0LqLJygb3D-EP5Fl3pw
CitedBy_id crossref_primary_10_3389_frwa_2023_1332968
crossref_primary_10_1016_j_aquabot_2024_103775
crossref_primary_10_1016_j_scitotenv_2023_167855
crossref_primary_10_1088_1748_9326_ace272
Cites_doi 10.1111/j.1469-8137.2012.04303.x
10.1016/j.aquabot.2022.103527
10.1089/ees.2005.22.73
10.1016/j.aquabot.2017.11.005
10.1002/cjce.24132
10.1111/j.1365-2486.2004.00888.x
10.5194/acp-15-4399-2015
10.1016/0045-6535(93)90248-4
10.1007/s00442-006-0445-9
10.1016/S1352-2310(02)00647-7
10.1093/jxb/13.3.397
10.1007/BF02372636
10.1029/98JD02441
10.1016/S0169-5347(99)01649-3
10.1016/j.aquabot.2015.07.003
10.1111/1365-2664.12066
10.1038/s41561-021-00715-2
10.1890/10-1297.1
10.2134/jeq1985.00472425001400010008x
10.1016/S0304-3770(01)00186-3
10.1007/s00248-019-01331-9
10.1016/0304-3770(93)90040-4
10.1111/j.1365-2427.2011.02611.x
10.1016/j.aca.2014.10.058
10.1139/v73-140
10.1007/BF00394047
10.5268/IW-1.2.359
10.1023/A:1004203208686
10.1021/es1005048
10.4319/lo.1992.37.7.1420
10.1080/20442041.2022.2029317
10.1023/A:1010640515283
10.3391/ai.2008.3.1.8
10.1126/science.203.4386.1253
10.1029/GB004i001p00047
10.1038/srep20424
10.1002/lno.11158
10.1007/978-1-4615-2812-8_18
10.1007/s10021-020-00564-x
10.1016/j.aquabot.2016.10.008
10.1016/j.aquabot.2004.10.003
10.1016/j.watres.2016.07.054
10.2307/1948585
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.aquabot.2022.103574
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1879-1522
ExternalDocumentID 10_1016_j_aquabot_2022_103574
S0304377022000869
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
41~
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KOM
LW9
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSA
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XJT
Y6R
~02
~G-
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c2714-7e8e642315bb378da2b70633961d3a15e121e9f387b39141110ea34c0d5728223
IEDL.DBID AIKHN
ISSN 0304-3770
IngestDate Thu Sep 26 16:07:29 EDT 2024
Fri Feb 23 02:40:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Plant morphology
Gas transport
Eichhornia crassipes
Floating macrophyte
Tropics
Greenhouse gas flux
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2714-7e8e642315bb378da2b70633961d3a15e121e9f387b39141110ea34c0d5728223
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0304377022000869
ParticipantIDs crossref_primary_10_1016_j_aquabot_2022_103574
elsevier_sciencedirect_doi_10_1016_j_aquabot_2022_103574
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Aquatic botany
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Brix, Sorrel, Orr (bib10) 1992; 37
Henneberg, Sorrell, Brix (bib18) 2012; 196
Jeffrey, Maher, Johnston, Kelaher, Steven, Tait (bib21) 2019; 64
Téllez, López, Granado, Pérez, López, Guzmán (bib44) 2008; 3
Penfound, Earle (bib35) 1948; 18
Ding, Cai, Tsuruta, Li (bib14) 2002; 36
Sebacher, Harriss, Bartlett (bib43) 1985; 14
Käki, Ojala, Kankaala (bib23) 2001; 71
Kankaala, Käki, Mäkelä, Ojala, Pajunen, Arvola (bib24) 2005; 11
Banik, Sen, Sen (bib4) 1993; 27
Chanton, Whiting, Happell, Gerard (bib12) 1993; 46
Netten, van Zuidam, Kosten, Peeters (bib30) 2011; 56
Oliveira-Junior, Tang, van den Berg, Cardoso, Lamers, Kosten (bib33) 2018; 145
Bodelier, Stomp, Santamaria, Klaassen, Laanbroek (bib8) 2006; 149
Oliveira Junior, Van Bergen, Nauta, Budiša, Aben, Weideveld, de Souza, Muniz, Roelofs, Lamers, Kosten (bib32) 2021; 24
Schütz, Schröder, Rennenberg (bib42) 1991
Wang, Zeng, Patrick (bib45) 1996; 42
Ávila, Oliveira-Junior, Reis, Hester, Diamantino, Veraart, Lamers, Kosten, Nascimento (bib3) 2019; 78
Prasad, Sharma, Yadav, Ibrahim (bib37) 2022; 100
Sander (bib41) 2015; 15
Peeters, Van Zuidam, Van Zuidam, Van Nes, Kosten, Heuts, Roijackers, Netten, Scheffer (bib34) 2013; 50
Bastviken, Santoro, Marotta, Pinho, Calheiros, Crill, Enrich-Prast (bib6) 2010; 44
Whalen (bib46) 2005; 22
Dacey, Klug (bib13) 1979; 203
Moss, Kosten, Meerhoff, Batterbee, Jeppesen, Mazzeo, Havens, Lacerot, Liu, de meester, Paerl, Scheffer (bib29) 2011; 1
Garnet, Megonigal, Litchfield, Taylor (bib17) 2005; 81
Kim, Verma, Billesbach, Clement (bib25) 1998; 103
Kosten, Piñeiro, de Goede, de Klein, Lamers, Ettwig (bib26) 2016; 104
Maharajh, Walkley (bib27) 1973; 51
Nouchi, L., Mariko, S., 1993. Mechanism of methane transport by rice plants. In: Biogeochemistry of Global Change. pp. 336–352.
Hosono, Nouchi (bib20) 1997; 191
Aben, Oliveira Junior, Carlos, van Bergen, Lamers, Kosten (bib1) 2022; 180
Fisher, Sass, Harcombe, Turner (bib16) 1990; 4
.
Petruzzella, Guariento, Gripp, da, Marinho, Figueiredo-Barros, Esteves (bib36) 2015; 127
Roberts, Shiller (bib39) 2015; 856
Barber, Ebert, Evans (bib5) 1961; 13
Bodmer, Vroom, Stepina, del Giorgio, Kosten (bib9) 2021
Holzapfel-Pschorn, Conrad, Seiler (bib19) 1986; 92
Rietl, Nyman, Lindau, Jackson (bib38) 2017; 136
Attermeyer, Flury, Jayakumar, Fiener, Steger, Arya, Wilken, van Geldern, Premke (bib2) 2016; 6
Joabsson, Christensen, Wallén (bib22) 1999; 14
Rosentreter, Borges, Deemer, Holgerson, Liu, Song, Melack, Raymond, Duarte, Allen, Olefeldt, Poulter, Battin, Eyre (bib40) 2021; 14
Bodegom, van, Goudriaan, Leffelaar (bib7) 2001; 55
Center, T., Hill, M., Cordo, H., Julien, M., 2002. Waterhyacinth, in: Biological Control of Weeds in the United States. pp. 41–64.
Dingemans, Bakker, Bodelier (bib15) 2011; 92
Meerhoff, Audet, Davidson, de Meester, Hilt, Kosten, Liu, Mazzeo, Paerl, Scheffer, Jeppesen (bib28) 2022; 12
Bodelier (10.1016/j.aquabot.2022.103574_bib8) 2006; 149
Hosono (10.1016/j.aquabot.2022.103574_bib20) 1997; 191
Sander (10.1016/j.aquabot.2022.103574_bib41) 2015; 15
Barber (10.1016/j.aquabot.2022.103574_bib5) 1961; 13
Petruzzella (10.1016/j.aquabot.2022.103574_bib36) 2015; 127
Peeters (10.1016/j.aquabot.2022.103574_bib34) 2013; 50
Roberts (10.1016/j.aquabot.2022.103574_bib39) 2015; 856
Käki (10.1016/j.aquabot.2022.103574_bib23) 2001; 71
Attermeyer (10.1016/j.aquabot.2022.103574_bib2) 2016; 6
Dingemans (10.1016/j.aquabot.2022.103574_bib15) 2011; 92
Rietl (10.1016/j.aquabot.2022.103574_bib38) 2017; 136
Holzapfel-Pschorn (10.1016/j.aquabot.2022.103574_bib19) 1986; 92
Rosentreter (10.1016/j.aquabot.2022.103574_bib40) 2021; 14
Bodegom (10.1016/j.aquabot.2022.103574_bib7) 2001; 55
Sebacher (10.1016/j.aquabot.2022.103574_bib43) 1985; 14
Téllez (10.1016/j.aquabot.2022.103574_bib44) 2008; 3
Bastviken (10.1016/j.aquabot.2022.103574_bib6) 2010; 44
Banik (10.1016/j.aquabot.2022.103574_bib4) 1993; 27
Kim (10.1016/j.aquabot.2022.103574_bib25) 1998; 103
Garnet (10.1016/j.aquabot.2022.103574_bib17) 2005; 81
10.1016/j.aquabot.2022.103574_bib31
10.1016/j.aquabot.2022.103574_bib11
Joabsson (10.1016/j.aquabot.2022.103574_bib22) 1999; 14
Whalen (10.1016/j.aquabot.2022.103574_bib46) 2005; 22
Dacey (10.1016/j.aquabot.2022.103574_bib13) 1979; 203
Wang (10.1016/j.aquabot.2022.103574_bib45) 1996; 42
Schütz (10.1016/j.aquabot.2022.103574_bib42) 1991
Oliveira-Junior (10.1016/j.aquabot.2022.103574_bib33) 2018; 145
Ávila (10.1016/j.aquabot.2022.103574_bib3) 2019; 78
Maharajh (10.1016/j.aquabot.2022.103574_bib27) 1973; 51
Prasad (10.1016/j.aquabot.2022.103574_bib37) 2022; 100
Chanton (10.1016/j.aquabot.2022.103574_bib12) 1993; 46
Moss (10.1016/j.aquabot.2022.103574_bib29) 2011; 1
Oliveira Junior (10.1016/j.aquabot.2022.103574_bib32) 2021; 24
Ding (10.1016/j.aquabot.2022.103574_bib14) 2002; 36
Brix (10.1016/j.aquabot.2022.103574_bib10) 1992; 37
Fisher (10.1016/j.aquabot.2022.103574_bib16) 1990; 4
Kosten (10.1016/j.aquabot.2022.103574_bib26) 2016; 104
Kankaala (10.1016/j.aquabot.2022.103574_bib24) 2005; 11
Meerhoff (10.1016/j.aquabot.2022.103574_bib28) 2022; 12
Netten (10.1016/j.aquabot.2022.103574_bib30) 2011; 56
Penfound (10.1016/j.aquabot.2022.103574_bib35) 1948; 18
Aben (10.1016/j.aquabot.2022.103574_bib1) 2022; 180
Jeffrey (10.1016/j.aquabot.2022.103574_bib21) 2019; 64
Henneberg (10.1016/j.aquabot.2022.103574_bib18) 2012; 196
Bodmer (10.1016/j.aquabot.2022.103574_bib9) 2021
References_xml – volume: 145
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib33
  article-title: The impact of water hyacinth (Eichhornia crassipes) on greenhouse gas emission and nutrient mobilization depends on rooting and plant coverage
  publication-title: Aquat. Bot.
  contributor:
    fullname: Kosten
– volume: 24
  start-page: 988
  year: 2021
  end-page: 1004
  ident: bib32
  article-title: Water hyacinth’s effect on greenhouse gas fluxes: a field study in a wide variety of tropical water bodies
  publication-title: Ecosystems
  contributor:
    fullname: Kosten
– volume: 104
  start-page: 200
  year: 2016
  end-page: 207
  ident: bib26
  article-title: Fate of methane in aquatic systems dominated by free-floating plants
  publication-title: Water Res.
  contributor:
    fullname: Ettwig
– volume: 14
  start-page: 385
  year: 1999
  end-page: 388
  ident: bib22
  article-title: Vascular plant controls on methane emissions from northern peatforming wetlands
  publication-title: Trends Ecol. Evol.
  contributor:
    fullname: Wallén
– volume: 56
  start-page: 1761
  year: 2011
  end-page: 1768
  ident: bib30
  article-title: Differential response to climatic variation of free-floating and submerged macrophytes in ditches
  publication-title: Freshw. Biol.
  contributor:
    fullname: Peeters
– volume: 6
  year: 2016
  ident: bib2
  article-title: Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake
  publication-title: Sci. Rep.
  contributor:
    fullname: Premke
– volume: 149
  start-page: 233
  year: 2006
  end-page: 244
  ident: bib8
  article-title: Animal-plant-microbe interactions: Direct and indirect effects of swan foraging behaviour modulate methane cycling in temperate shallow wetlands
  publication-title: Oecologia
  contributor:
    fullname: Laanbroek
– volume: 127
  start-page: 6
  year: 2015
  end-page: 11
  ident: bib36
  article-title: Herbivore damage increases methane emission from emergent aquatic macrophytes
  publication-title: Aquat. Bot.
  contributor:
    fullname: Esteves
– volume: 71
  start-page: 259
  year: 2001
  end-page: 271
  ident: bib23
  article-title: Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. ex Steud. and Typha latifolia L. in a boreal lake
  publication-title: Aquat. Bot.
  contributor:
    fullname: Kankaala
– volume: 203
  start-page: 1253
  year: 1979
  end-page: 1255
  ident: bib13
  article-title: Methane efflux from lake sediments through water lilies
  publication-title: Science
  contributor:
    fullname: Klug
– volume: 42
  start-page: 143
  year: 1996
  end-page: 161
  ident: bib45
  article-title: Methane emissions from natural wetlands
  publication-title: Environ. Monit. Assess.
  contributor:
    fullname: Patrick
– volume: 191
  start-page: 233
  year: 1997
  end-page: 240
  ident: bib20
  article-title: The dependence of methane transport in rice plants on the root zone temperature
  publication-title: Plant Soil
  contributor:
    fullname: Nouchi
– volume: 36
  start-page: 5149
  year: 2002
  end-page: 5157
  ident: bib14
  article-title: Effect of standing water depth on methane emissions from freshwater marshes in northeast China
  publication-title: Atmos. Environ.
  contributor:
    fullname: Li
– volume: 11
  start-page: 145
  year: 2005
  end-page: 153
  ident: bib24
  article-title: Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes
  publication-title: Glob. Chang Biol.
  contributor:
    fullname: Arvola
– volume: 12
  start-page: 1
  year: 2022
  end-page: 18
  ident: bib28
  article-title: Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back
  publication-title: Inland Waters
  contributor:
    fullname: Jeppesen
– volume: 4
  start-page: 47
  year: 1990
  end-page: 68
  ident: bib16
  article-title: Methane production and emission in a Texas rice field
  publication-title: Glob. Biogeochem. Cycles
  contributor:
    fullname: Turner
– volume: 64
  start-page: 1895
  year: 2019
  end-page: 1912
  ident: bib21
  article-title: Wetland methane emissions dominated by plant‐mediated fluxes: contrasting emissions pathways and seasons within a shallow freshwater subtropical wetland
  publication-title: Limnol. Oceano
  contributor:
    fullname: Tait
– volume: 136
  start-page: 205
  year: 2017
  end-page: 211
  ident: bib38
  article-title: Wetland methane emissions altered by vegetation disturbance: an interaction between stem clipping and nutrient enrichment
  publication-title: Aquat. Bot.
  contributor:
    fullname: Jackson
– volume: 856
  start-page: 68
  year: 2015
  end-page: 73
  ident: bib39
  article-title: Determination of dissolved methane in natural waters using headspace analysis with cavity ring-down spectroscopy
  publication-title: Anal. Chim. Acta
  contributor:
    fullname: Shiller
– year: 2021
  ident: bib9
  article-title: Methane fluxes of vegetated areas in natural freshwater ecosystems: 2 Assessments and global significance 3 4
  publication-title: EarthArXiv
  contributor:
    fullname: Kosten
– volume: 100
  start-page: 439
  year: 2022
  end-page: 450
  ident: bib37
  article-title: Eichhornia crassipes as biosorbent for industrial wastewater treatment: equilibrium and kinetic studies
  publication-title: Can. J. Chem. Eng.
  contributor:
    fullname: Ibrahim
– volume: 46
  start-page: 111
  year: 1993
  end-page: 128
  ident: bib12
  article-title: Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes
  publication-title: Aquat. Bot.
  contributor:
    fullname: Gerard
– volume: 92
  start-page: 223
  year: 1986
  end-page: 233
  ident: bib19
  article-title: Effects of vegetation on the emission of methane from submerged paddy soil
  publication-title: Plant Soil
  contributor:
    fullname: Seiler
– volume: 1
  start-page: 101
  year: 2011
  end-page: 105
  ident: bib29
  article-title: Allied attack: climate change and eutrophication
  publication-title: Inland Waters
  contributor:
    fullname: Scheffer
– volume: 180
  year: 2022
  ident: bib1
  article-title: Impact of plant species and intense nutrient loading on CH4 and N2O fluxes from small inland waters: an experimental approach
  publication-title: Aquat. Bot.
  contributor:
    fullname: Kosten
– volume: 196
  start-page: 799
  year: 2012
  end-page: 806
  ident: bib18
  article-title: Internal methane transport through Juncus effusus: experimental manipulation of morphological barriers to test above- and below-ground diffusion limitation
  publication-title: New Phytol.
  contributor:
    fullname: Brix
– volume: 55
  start-page: 145
  year: 2001
  end-page: 177
  ident: bib7
  article-title: A mechanistic model on methane oxidation in a rice rhizosphere
  publication-title: Biogeochemistry
  contributor:
    fullname: Leffelaar
– volume: 78
  start-page: 575
  year: 2019
  end-page: 588
  ident: bib3
  article-title: The water hyacinth microbiome: link between carbon turnover and nutrient cycling
  publication-title: Microb. Ecol.
  contributor:
    fullname: Nascimento
– volume: 14
  start-page: 40
  year: 1985
  end-page: 46
  ident: bib43
  article-title: Methane emissions to the atmosphere through aquatic plants
  publication-title: J. Environ. Qual.
  contributor:
    fullname: Bartlett
– volume: 44
  start-page: 5450
  year: 2010
  end-page: 5455
  ident: bib6
  article-title: Methane emissions from pantanal, South America, during the low water season: toward more comprehensive sampling
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Enrich-Prast
– volume: 50
  start-page: 585
  year: 2013
  end-page: 593
  ident: bib34
  article-title: Changing weather conditions and floating plants in temperate drainage ditches
  publication-title: J. Appl. Ecol.
  contributor:
    fullname: Scheffer
– volume: 22
  start-page: 73
  year: 2005
  end-page: 94
  ident: bib46
  article-title: Biogeochemistry of methane exchange between natural wetlands and the atmosphere
  publication-title: Environ. Eng. Sci.
  contributor:
    fullname: Whalen
– volume: 81
  start-page: 141
  year: 2005
  end-page: 155
  ident: bib17
  article-title: Physiological control of leaf methane emission from wetland plants
  publication-title: Aquat. Bot.
  contributor:
    fullname: Taylor
– volume: 15
  start-page: 4399
  year: 2015
  end-page: 4981
  ident: bib41
  article-title: Compilation of Henry’s law constants (version 4.0) for water as solvent
  publication-title: Atmos. Chem. Phys.
  contributor:
    fullname: Sander
– volume: 37
  start-page: 1420
  year: 1992
  end-page: 1433
  ident: bib10
  article-title: Internal pressurization and convective gas flow in some emergent freshwater macrophytes
  publication-title: Limnol. Oceanogr.
  contributor:
    fullname: Orr
– volume: 103
  start-page: 28029
  year: 1998
  end-page: 28039
  ident: bib25
  article-title: Diel variation in methane emission from a midlatitude prairie wetland: Significance of convective throughflow in Phragmites australis
  publication-title: J. Geophys. Res. Atmos.
  contributor:
    fullname: Clement
– volume: 92
  start-page: 1166
  year: 2011
  end-page: 1173
  ident: bib15
  article-title: Aquatic herbivores facilitate the emission of methane from wetlands
  publication-title: Ecology
  contributor:
    fullname: Bodelier
– start-page: 29
  year: 1991
  end-page: 63
  ident: bib42
  article-title: Role of plants in regulating the methane flux to the atmosphere
  publication-title: Trace Gas Emissions by Plants
  contributor:
    fullname: Rennenberg
– volume: 27
  start-page: 1539
  year: 1993
  end-page: 1552
  ident: bib4
  article-title: Methane emissions from water hyacinth-infested freshwater ecosystems
  publication-title: Chemosphere
  contributor:
    fullname: Sen
– volume: 51
  start-page: 944
  year: 1973
  end-page: 952
  ident: bib27
  article-title: The temperature dependence of the diffusion coefficients of Ar, CO
  publication-title: Can. J. Chem.
  contributor:
    fullname: Walkley
– volume: 13
  start-page: 397
  year: 1961
  end-page: 603
  ident: bib5
  article-title: The movement of 150 through barley and rice plants
  publication-title: J. Exp. Bot.
  contributor:
    fullname: Evans
– volume: 14
  start-page: 225
  year: 2021
  end-page: 230
  ident: bib40
  article-title: Half of global methane emissions come from highly variable aquatic ecosystem sources
  publication-title: Nat. Geosci.
  contributor:
    fullname: Eyre
– volume: 3
  start-page: 42
  year: 2008
  end-page: 53
  ident: bib44
  article-title: The water hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain)
  publication-title: Aquat. Invasions
  contributor:
    fullname: Guzmán
– volume: 18
  start-page: 447
  year: 1948
  end-page: 472
  ident: bib35
  article-title: The biology of the water hyacinth
  publication-title: Ecol. Monogr.
  contributor:
    fullname: Earle
– volume: 196
  start-page: 799
  year: 2012
  ident: 10.1016/j.aquabot.2022.103574_bib18
  article-title: Internal methane transport through Juncus effusus: experimental manipulation of morphological barriers to test above- and below-ground diffusion limitation
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04303.x
  contributor:
    fullname: Henneberg
– volume: 180
  year: 2022
  ident: 10.1016/j.aquabot.2022.103574_bib1
  article-title: Impact of plant species and intense nutrient loading on CH4 and N2O fluxes from small inland waters: an experimental approach
  publication-title: Aquat. Bot.
  doi: 10.1016/j.aquabot.2022.103527
  contributor:
    fullname: Aben
– volume: 22
  start-page: 73
  year: 2005
  ident: 10.1016/j.aquabot.2022.103574_bib46
  article-title: Biogeochemistry of methane exchange between natural wetlands and the atmosphere
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2005.22.73
  contributor:
    fullname: Whalen
– volume: 145
  start-page: 1
  year: 2018
  ident: 10.1016/j.aquabot.2022.103574_bib33
  article-title: The impact of water hyacinth (Eichhornia crassipes) on greenhouse gas emission and nutrient mobilization depends on rooting and plant coverage
  publication-title: Aquat. Bot.
  doi: 10.1016/j.aquabot.2017.11.005
  contributor:
    fullname: Oliveira-Junior
– volume: 100
  start-page: 439
  year: 2022
  ident: 10.1016/j.aquabot.2022.103574_bib37
  article-title: Eichhornia crassipes as biosorbent for industrial wastewater treatment: equilibrium and kinetic studies
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24132
  contributor:
    fullname: Prasad
– year: 2021
  ident: 10.1016/j.aquabot.2022.103574_bib9
  article-title: Methane fluxes of vegetated areas in natural freshwater ecosystems: 2 Assessments and global significance 3 4
  publication-title: EarthArXiv
  contributor:
    fullname: Bodmer
– volume: 11
  start-page: 145
  year: 2005
  ident: 10.1016/j.aquabot.2022.103574_bib24
  article-title: Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes
  publication-title: Glob. Chang Biol.
  doi: 10.1111/j.1365-2486.2004.00888.x
  contributor:
    fullname: Kankaala
– volume: 15
  start-page: 4399
  year: 2015
  ident: 10.1016/j.aquabot.2022.103574_bib41
  article-title: Compilation of Henry’s law constants (version 4.0) for water as solvent
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-4399-2015
  contributor:
    fullname: Sander
– start-page: 29
  year: 1991
  ident: 10.1016/j.aquabot.2022.103574_bib42
  article-title: Role of plants in regulating the methane flux to the atmosphere
  contributor:
    fullname: Schütz
– volume: 27
  start-page: 1539
  year: 1993
  ident: 10.1016/j.aquabot.2022.103574_bib4
  article-title: Methane emissions from water hyacinth-infested freshwater ecosystems
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(93)90248-4
  contributor:
    fullname: Banik
– volume: 149
  start-page: 233
  year: 2006
  ident: 10.1016/j.aquabot.2022.103574_bib8
  article-title: Animal-plant-microbe interactions: Direct and indirect effects of swan foraging behaviour modulate methane cycling in temperate shallow wetlands
  publication-title: Oecologia
  doi: 10.1007/s00442-006-0445-9
  contributor:
    fullname: Bodelier
– volume: 36
  start-page: 5149
  year: 2002
  ident: 10.1016/j.aquabot.2022.103574_bib14
  article-title: Effect of standing water depth on methane emissions from freshwater marshes in northeast China
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(02)00647-7
  contributor:
    fullname: Ding
– volume: 13
  start-page: 397
  year: 1961
  ident: 10.1016/j.aquabot.2022.103574_bib5
  article-title: The movement of 150 through barley and rice plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/13.3.397
  contributor:
    fullname: Barber
– volume: 92
  start-page: 223
  year: 1986
  ident: 10.1016/j.aquabot.2022.103574_bib19
  article-title: Effects of vegetation on the emission of methane from submerged paddy soil
  publication-title: Plant Soil
  doi: 10.1007/BF02372636
  contributor:
    fullname: Holzapfel-Pschorn
– volume: 103
  start-page: 28029
  year: 1998
  ident: 10.1016/j.aquabot.2022.103574_bib25
  article-title: Diel variation in methane emission from a midlatitude prairie wetland: Significance of convective throughflow in Phragmites australis
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/98JD02441
  contributor:
    fullname: Kim
– volume: 14
  start-page: 385
  year: 1999
  ident: 10.1016/j.aquabot.2022.103574_bib22
  article-title: Vascular plant controls on methane emissions from northern peatforming wetlands
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/S0169-5347(99)01649-3
  contributor:
    fullname: Joabsson
– volume: 127
  start-page: 6
  year: 2015
  ident: 10.1016/j.aquabot.2022.103574_bib36
  article-title: Herbivore damage increases methane emission from emergent aquatic macrophytes
  publication-title: Aquat. Bot.
  doi: 10.1016/j.aquabot.2015.07.003
  contributor:
    fullname: Petruzzella
– volume: 50
  start-page: 585
  year: 2013
  ident: 10.1016/j.aquabot.2022.103574_bib34
  article-title: Changing weather conditions and floating plants in temperate drainage ditches
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.12066
  contributor:
    fullname: Peeters
– volume: 14
  start-page: 225
  year: 2021
  ident: 10.1016/j.aquabot.2022.103574_bib40
  article-title: Half of global methane emissions come from highly variable aquatic ecosystem sources
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-021-00715-2
  contributor:
    fullname: Rosentreter
– volume: 92
  start-page: 1166
  year: 2011
  ident: 10.1016/j.aquabot.2022.103574_bib15
  article-title: Aquatic herbivores facilitate the emission of methane from wetlands
  publication-title: Ecology
  doi: 10.1890/10-1297.1
  contributor:
    fullname: Dingemans
– volume: 14
  start-page: 40
  year: 1985
  ident: 10.1016/j.aquabot.2022.103574_bib43
  article-title: Methane emissions to the atmosphere through aquatic plants
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1985.00472425001400010008x
  contributor:
    fullname: Sebacher
– volume: 71
  start-page: 259
  year: 2001
  ident: 10.1016/j.aquabot.2022.103574_bib23
  article-title: Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. ex Steud. and Typha latifolia L. in a boreal lake
  publication-title: Aquat. Bot.
  doi: 10.1016/S0304-3770(01)00186-3
  contributor:
    fullname: Käki
– volume: 78
  start-page: 575
  year: 2019
  ident: 10.1016/j.aquabot.2022.103574_bib3
  article-title: The water hyacinth microbiome: link between carbon turnover and nutrient cycling
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-019-01331-9
  contributor:
    fullname: Ávila
– volume: 46
  start-page: 111
  year: 1993
  ident: 10.1016/j.aquabot.2022.103574_bib12
  article-title: Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes
  publication-title: Aquat. Bot.
  doi: 10.1016/0304-3770(93)90040-4
  contributor:
    fullname: Chanton
– volume: 56
  start-page: 1761
  year: 2011
  ident: 10.1016/j.aquabot.2022.103574_bib30
  article-title: Differential response to climatic variation of free-floating and submerged macrophytes in ditches
  publication-title: Freshw. Biol.
  doi: 10.1111/j.1365-2427.2011.02611.x
  contributor:
    fullname: Netten
– volume: 856
  start-page: 68
  year: 2015
  ident: 10.1016/j.aquabot.2022.103574_bib39
  article-title: Determination of dissolved methane in natural waters using headspace analysis with cavity ring-down spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.10.058
  contributor:
    fullname: Roberts
– volume: 51
  start-page: 944
  year: 1973
  ident: 10.1016/j.aquabot.2022.103574_bib27
  article-title: The temperature dependence of the diffusion coefficients of Ar, CO2, CH4, CH3Cl, CH3Br, and CHCl2F in water
  publication-title: Can. J. Chem.
  doi: 10.1139/v73-140
  contributor:
    fullname: Maharajh
– volume: 42
  start-page: 143
  year: 1996
  ident: 10.1016/j.aquabot.2022.103574_bib45
  article-title: Methane emissions from natural wetlands
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/BF00394047
  contributor:
    fullname: Wang
– volume: 1
  start-page: 101
  year: 2011
  ident: 10.1016/j.aquabot.2022.103574_bib29
  article-title: Allied attack: climate change and eutrophication
  publication-title: Inland Waters
  doi: 10.5268/IW-1.2.359
  contributor:
    fullname: Moss
– volume: 191
  start-page: 233
  year: 1997
  ident: 10.1016/j.aquabot.2022.103574_bib20
  article-title: The dependence of methane transport in rice plants on the root zone temperature
  publication-title: Plant Soil
  doi: 10.1023/A:1004203208686
  contributor:
    fullname: Hosono
– volume: 44
  start-page: 5450
  year: 2010
  ident: 10.1016/j.aquabot.2022.103574_bib6
  article-title: Methane emissions from pantanal, South America, during the low water season: toward more comprehensive sampling
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1005048
  contributor:
    fullname: Bastviken
– volume: 37
  start-page: 1420
  year: 1992
  ident: 10.1016/j.aquabot.2022.103574_bib10
  article-title: Internal pressurization and convective gas flow in some emergent freshwater macrophytes
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1992.37.7.1420
  contributor:
    fullname: Brix
– volume: 12
  start-page: 1
  year: 2022
  ident: 10.1016/j.aquabot.2022.103574_bib28
  article-title: Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back
  publication-title: Inland Waters
  doi: 10.1080/20442041.2022.2029317
  contributor:
    fullname: Meerhoff
– volume: 55
  start-page: 145
  year: 2001
  ident: 10.1016/j.aquabot.2022.103574_bib7
  article-title: A mechanistic model on methane oxidation in a rice rhizosphere
  publication-title: Biogeochemistry
  doi: 10.1023/A:1010640515283
  contributor:
    fullname: Bodegom
– volume: 3
  start-page: 42
  year: 2008
  ident: 10.1016/j.aquabot.2022.103574_bib44
  article-title: The water hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain)
  publication-title: Aquat. Invasions
  doi: 10.3391/ai.2008.3.1.8
  contributor:
    fullname: Téllez
– volume: 203
  start-page: 1253
  year: 1979
  ident: 10.1016/j.aquabot.2022.103574_bib13
  article-title: Methane efflux from lake sediments through water lilies
  publication-title: Science
  doi: 10.1126/science.203.4386.1253
  contributor:
    fullname: Dacey
– volume: 4
  start-page: 47
  year: 1990
  ident: 10.1016/j.aquabot.2022.103574_bib16
  article-title: Methane production and emission in a Texas rice field
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/GB004i001p00047
  contributor:
    fullname: Fisher
– volume: 6
  year: 2016
  ident: 10.1016/j.aquabot.2022.103574_bib2
  article-title: Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake
  publication-title: Sci. Rep.
  doi: 10.1038/srep20424
  contributor:
    fullname: Attermeyer
– volume: 64
  start-page: 1895
  year: 2019
  ident: 10.1016/j.aquabot.2022.103574_bib21
  article-title: Wetland methane emissions dominated by plant‐mediated fluxes: contrasting emissions pathways and seasons within a shallow freshwater subtropical wetland
  publication-title: Limnol. Oceano
  doi: 10.1002/lno.11158
  contributor:
    fullname: Jeffrey
– ident: 10.1016/j.aquabot.2022.103574_bib11
– ident: 10.1016/j.aquabot.2022.103574_bib31
  doi: 10.1007/978-1-4615-2812-8_18
– volume: 24
  start-page: 988
  year: 2021
  ident: 10.1016/j.aquabot.2022.103574_bib32
  article-title: Water hyacinth’s effect on greenhouse gas fluxes: a field study in a wide variety of tropical water bodies
  publication-title: Ecosystems
  doi: 10.1007/s10021-020-00564-x
  contributor:
    fullname: Oliveira Junior
– volume: 136
  start-page: 205
  year: 2017
  ident: 10.1016/j.aquabot.2022.103574_bib38
  article-title: Wetland methane emissions altered by vegetation disturbance: an interaction between stem clipping and nutrient enrichment
  publication-title: Aquat. Bot.
  doi: 10.1016/j.aquabot.2016.10.008
  contributor:
    fullname: Rietl
– volume: 81
  start-page: 141
  year: 2005
  ident: 10.1016/j.aquabot.2022.103574_bib17
  article-title: Physiological control of leaf methane emission from wetland plants
  publication-title: Aquat. Bot.
  doi: 10.1016/j.aquabot.2004.10.003
  contributor:
    fullname: Garnet
– volume: 104
  start-page: 200
  year: 2016
  ident: 10.1016/j.aquabot.2022.103574_bib26
  article-title: Fate of methane in aquatic systems dominated by free-floating plants
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.07.054
  contributor:
    fullname: Kosten
– volume: 18
  start-page: 447
  year: 1948
  ident: 10.1016/j.aquabot.2022.103574_bib35
  article-title: The biology of the water hyacinth
  publication-title: Ecol. Monogr.
  doi: 10.2307/1948585
  contributor:
    fullname: Penfound
SSID ssj0001807
Score 2.4303987
Snippet Wetlands are large sources of methane (CH4), and plant-mediated fluxes can contribute considerably to their total CH4 emissions. However, plant-mediated fluxes...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 103574
SubjectTerms Eichhornia crassipes
Floating macrophyte
Gas transport
Greenhouse gas flux
Plant morphology
Tropics
Title Methane emissions through water hyacinth are controlled by plant traits and environmental conditions
URI https://dx.doi.org/10.1016/j.aquabot.2022.103574
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VloEF8SnKR-WBNW0dO3UyQgUqH60QUKlb5MSOKEJpKUWoC7-dO-JAkRADY6JYiZ6tdy_ndz6A4wxDRJZl3LPcdjxpdOrpRBlP6tT4whgkQEro9wed3lBejoJRBbplLQzZKh33F5z-ydbuTsuh2ZqOx6072tQTSlGpKAnzaAVqGI6krELt5OKqN_giZO6qpgVtAuCA70Ke1mNTP78i2uSq9H2qQA-U_D1ELYWd8w1Yd3qRnRSftAkVm2_B6ukENd1iG0zfUurbMuraRnmvF-Ya77A3FJEz9rDQ6TifPzA9s8zZ0p-sYcmCTZ8QVEYtIuYvTOeGLdW84RvxYVPYuXZgeH523-15rm-Cl_qKS0_Z0OJvheBBkggVGu0nCpWIiDrcCM0Dy31uo0yEKhERl8h2bauFTNsmUOQqFbtQzSe53QNmMYBnSilOYcz3wzCJogAFuaVeNTiZdWiWUMXT4niMuPSNPcYO25iwjQts6xCWgMY_5jlGCv976P7_hx7AGl0VNpRDqM5nr_YIxcQ8acBK8503cMl0b69vGm7pfACI9Mqv
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QTfRi_BnxZw9eB3Td6HZUIkEFLkLCrenWLkLIQBgxXPzbfY91ARPjwevWZsvX5b1vr9_XR8h9AikiSRLmGGYajqdV7KhIaMdTsXa51hAAsaDf7TXaA-9l6A9LpFl4YVBWaWN_HtPX0dpeqVk0a7PRqPaGm3pcCLSKIjEPd8gusgHUdVW_NjoPZj3THLcAYPjGxlMbV9XHErBGTaXrov_cF97vCWor6bSOyKFli_Qhf6FjUjLpCdl7nAKjW50S3TVY-DYUe7Zh1WtBbdsd-gkUck7fVyoepdk7VXNDrSh9YjSNVnQ2AUgpNojIFlSlmm453uCJMFjnYq4zMmg99Zttx3ZNcGJXMM8RJjDwU8GZH0VcBFq5kQAewsMG01wx3zCXmTDhgYh4yDyIdXWjuBfXtS9QU8rPSTmdpuaCUAPpOxFCMExirhsEURj6QMcNdqqBpayQagGVnOWHY8hCNTaWFluJ2Moc2woJCkDlj1WWEMD_nnr5_6l3ZL_d73Zk57n3ekUO8E4uSLkm5Wy-NDdAK7Lodv3ZfAP9Fcnv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+emissions+through+water+hyacinth+are+controlled+by+plant+traits+and+environmental+conditions&rft.jtitle=Aquatic+botany&rft.au=Struik%2C+Quinten&rft.au=Oliveira+Junior%2C+Ernandes+S.&rft.au=Veraart%2C+Annelies+J.&rft.au=Kosten%2C+Sarian&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=0304-3770&rft.eissn=1879-1522&rft.volume=183&rft_id=info:doi/10.1016%2Fj.aquabot.2022.103574&rft.externalDocID=S0304377022000869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3770&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3770&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3770&client=summon